
• UNISYS A Series

COBOL ANSI-74
Programming
Reference Manual
Volume 1:
Basic Implementation

Release 3.9.0

Priced Item

September 1991

Printed in U S America
8600 0296-000

• UNISYS A Series
COBOL ANSI-74
Programming
Reference Manual
Volume 1:
\ Basic Implementation

Copyright © 1991 Unisys Corporation.
All rights reserved.
Unisys is a registered trademark of Unisys Corporation.

Release 3.9.0

Priced Item

September 1991

Printed in U S America
86000296-000

The names, places, and/or events used in this publication are not intended to correspond to any
individual, group, or association existing, living, or otherwise. Any similarity or likeness of the
names, places, and/or events with the names of any individual, living or otherwise, or that of any
group or association is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Any product and
related material disclosed herein are only furnished pursuant and subject to the terms and
conditions of a duly executed Program Product License or Agreement to purchase or lease
equipment. The only warranties made by Unisys, if any, with respect to the products described in
this document are set forth in such License or Agreement. Unisys cannot accept any financial or
other responsibility that may be the result of your use of the information in this document or
software material, including direct, indirect, special or consequential damages.

You should be very careful to ensure that the use of this information and/or software material
complies with the laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to
advise of such changes and/or additions.

Correspondence regarding this publication may be forwarded using the Product Information card at
the back of the manual, or may be addressed directly to Unisys, Product Information, 19 Morgan,
Irvine, CA 92718.

· Page. Status

Page Issue

iii through xi -000
xii Blank
xiii through xxvii -000
xxviii Blank
xxix -000
xxx Blank
xxxi through xxxii -000
1-1 through 1-13 -000
1-14 Blank
2-1 through 2-19 -000
2-20 Blank
3-1 through 3-9 -000
3-10 Blank
4-1 through 4-3 -000
4-4 Blank
5-1 through 5-33 -000.
5-34 Blank
6-1 through 6-25 -000
6-26 Blank
7-1 through 7....;55 -000
7-56 Blank
8-1 through 8-39 -000
8-40 Blank
9-1 through 9-169 -000
9-170 Blank
10-1 through 10-2 -000
11-1 through 11-11 -000
11-12 Blank
12-1 through 12-38 -000
13-1 through 13-7 -000
13-8 Blank
14-1 through 14-29 -000
14-30 Blank
15-1 through 15-17 -000
15-18 Blank
16-1 through 16-120 -000
17-1 through 17-47 -000
17-48 Blank

continued

8600 0296-000 iii

Page Status

iv

continued

Page

A-I through A-4
B-1 through B-7
B-8
C-I through C-I6
0-1 through 0-13
0-14
Glossary-I through 29
Glossa ry-30
Bibliography-I through 2
Index-I through 42

Issue

-000
'-000
Blank
-000
-000
Blank
-000
Blank
-000
-000

Unisys uses an II-digit document numbering system. The suffix of the document
number (1234 5678-xyz) indicates the document level. The first digit of the suffix (x)
designates a revision levelj the second digit Cy) designates an update level. For example,
the first release of a document has a suffix of -000. A suffix of -130 designates the
third update to revision 1. The third digit (z) is used to indicate an errata for a particular
level and is not reflected in the page status summary.

8600 0296-000

About This Manual

Purpose
This manual describes the various features of Common Business Oriented Language
(COBOL) ANSI-74 as implemented on Unisys A Series systems and provides reference
material about the COBOL language

Acknowledgment
Any organization wishing to reproduce this COBOL manual in whole or in part as the
basis for an instruction manual or for any other purpose is free to do so. However, all
such organizations are requested to reproduce this section as part of the introduction
to the manual. Those using a short passage, as in a book, need not quote this entire
preface.

COBOL is an industry language and is not the property of any company or group of
companies or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the COBOL
Committee as to the accuracy and functiOning of the programming system and language.
Moreover, no responsibility is assumed by any contractor or by the committee in
connection therewith.

Procedures have been established for the maintenance of COBOL. Inquiries concerning
the procedures for proposing changes should be directed to the Executive Committee of
the Conference on Data Systems Language.

The authors and copyright holders of the copyrighted material used herein have
specifically authorized the use of this material, in whole or in part, in the COBOL
specifications. These authors or copyright holders are the following:

• FLOW-MATIC (Trademark of Sperry Rand Corporation), Programming for the
Univac R I and II, Data Automation Systems, copyrighted 1958, 1959 by Sperry
Rand Corporation

• mM Commercial Translator, Form No. F28-8013, copyrighted 1959 by International
Business Machines Corporation

• FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

Such authorization extends to the reproduction and use of COBOL specifications in
programming manuals or similar publications.

86000296--000 v

About This Manual

Scop~

This two-volume set provides a complete description of COBOL74 as implemented
for use on A Series systems. This volume provides the syntax and rules specific to
COBOL 74. Volume 2 contains the syntax for using COBOL74 to write application
programs that interface with the following products:

• Advanced Data Dictionary System (ADDS)

• Data Management System II (DMSII)

• Communications Management System (COMS)

• DMSII Transaction Processing System (TPS)

• Semantic Information Manager (SIM)

• Screen Design Facility (SDF)

• Screen Design Facility Plus (SDF Plus)

Audience
The primary audience for this manual includes programmers and system analysts
who are experienced in developing, maintaining, and reading COBOL programs. The
secondary audience consists of technical support personnel and information systems
management. A possible tertiary audience includes programmers who are learning
COBOL, but the manual is not designed for this audience.

Prerequisites
To use this manual, you should be familiar with the general concepts of COBOL
programming.

How to Use This Manual

vi

Throughout this manual, Volume 2 refers to the A Series COBOL ANSI-74
Programming Reference Manual, Volume 2: Product Interfaces, unless a different
manual title is specified.

Unisys standard COBOL74 is based on, and is fully. compatible with, the American
National Standard programming language COBOL, X3.23-1974. Throughout this
manual, extensions to the American National Standard Programming Language COBOL,
X3.23-1974 are identified as such with the phrase Unisys extension.

The elements of the language are described in the order in which they are coded in a
program. The IDENTIFICATION DIVISION is described first; the PROCEDURE
DIVISION is described last. For a statement or a clause, individual elements are
described in the orner in which they are listed in the format.

8600 0296-000

About This Manual

COBOL modules including the Report Writer, Debugging, Communication,
Segmentation, and Inter-Program Communication modules are described in separate
sections.

The GENERALSUPPORT system library must be installed before you can use the
features of the COBOL 7 4 compiler described in this manual.

Organization
This manual has 17 sections and 4 appendixes. In addition, a glossary, a bibliography, and
an index appear at the end of the manual.

Section 1. Program Structure

This section includes a brief introduction to the COBOL language and to source
programs.

Section 2. Language Elements

This section describes the .elemental constructs of COBOL (inc1llding words, names,
literals, and character strings) and the rules governirig their association into sentences,
clauses, and paragraphs.

Section 3. File and Task Concepts

This section describes a number of concepts pertaining to files and tasks. These concepts
include the physical and logical aspects of a file, file organization, file attributes, task
attributes, and related concepts.

Section 4. IDENTIFICATION DIVISION

This section specifies the function, format, and elements of the IDENTIFICATION
DMSION of a COBOL source program.

Section 5. ENVIRONMENT DIVISION

This section specifies the function, format, and elements of the ENVIRONMENT
DMSION of a COBOL source program.

Section 6. Data Concepts

This section describes a number of concepts pertaining to records and data. The record
concept encompasses structure, record leve1, and data items in the record The data
concept includes data type, data aligmnent, and data referencing. The table concept for
handling sets of data includes subscripting and indexing.

Section 7. DATA DIVISION

Thisseetion specifies the function, format, and elements of the DATA DIVISION ofa
COBOL source program.

8600 0296-000 vii

About This Manual

viii

Section 8. PROCEDURE DIVISION Concepts

This section includes a general description of the PROCEDURE DMSION structure,
statements and sentences, functions, arithmetic expressions, conditions, and the
functions of the verbs.

Section 9. PROCEDURE DIVISION Statements

This section specifies the function, format, and elements of the PROCEDURE
DIVISION of a COBOL source program.

Section 10. Segmentation

This section describes the standard COBOL segmentation module. This module is used
to divide a very large program into segments.

Section 11. Debugging

This section describes the COBOL debug module. This module is used to monitor data
item values and program-control status during program execution. A programming
example is provided at the end of the section.

Section 12. Report Writer

This section describes the Report Writer module of COBOL. A programming example is
provided at the end of the section.

Section 13. ANSI Inter-Program Communication (IPC)

This section describes the COBOL Inter-Program Communication (!PC) module.

Section 14. COMMUNICATION SECTION

This section describes the COBOL communications module and COBOL message control
system (MCS).

Section 15. Libraries

This section describes the A Series library feature, which is a separate feature from the
COBOL library feature and the COBOL IPC module.

Section 16. Internationalization

This section includes a general introduction to internationalization concepts and a
summary of CENTRALSUPPORT library procedures. Each library procedure, with its
parameters and result, is presented in alphabetical order. A list of error messages and
values ends the section.

8600 0296-000

About This Manual

Section 17. Control of the Compilation Process

This section describes the input and output files used by the COBOL compiler and the
compiler control options that direct compiler processing of COBOL source input.

Appendix A. General Format Notation

This appendix explains the notation aids for interpreting COBOL syntax.

Appendix B. Reserved Words and Keywords

This appendix lists the reserved words in alphabetical order.

Appendix C. EBCDIC and ASCII Character Sets

This appendix lists the values for the EBCDIC and ASCII characters sets.

Appendix D. Examples

This appendix displays examples that show various constructs.

Related Product Information

A Series CANDE Configuration Reference Manual (form 8600 1344)

This manual describes the coriunands used to perform CANDE control functions and
data communications network control functions.· It also describes how to configure
CANDE to meet the resource requirements of the installation. This manual is written
for system administrators and operators.

A Series COBOLANSI-74 Programming Reference Manual, Volume 2: Product
Interfaces (form 8600 0130)

This manual describes the extensions to the standard COBOL ANSI-74 language.
These extensions are designed to allow application programs to interface with the
Advanced Data Dictionary System (ADDS), the Communications Management System
(COMS), the Data Management System II (DMSII), the DMSII Transaction Processing
System (TPS), the Screen Design Facility (SDF), the Screen Design Facility Plus (SDF
Plus), and Semantic Information Manager (SIM) products. This manual is written for
programmers who are familiar with COBOL74 programming language concepts and
terms.

A Series COBOLANSI-74 Test and Debug System (TAnS) Programming Guide
(form 1169901)

This guide documents COBOL74 TADS, an interactive tool for testing and debugging
COBOL74 programs and libraries. This guide is written for programmers familiar with
COBOL74 programming language concepts and terms.

8600 0296-000 ix

About This Manual

x

A Series Distributed Systems Service (DSS) Operations Guide
(form 8600 0122)

This guide de~cribes the capabilities and features of DSS Se~ces. It is intended for
system operators, system administrators, and general computer users.

A Serif!s Editor Operations Guide (form 8600 0551)

This guide describes the operation of the Editor, an interactive tool for creating
and modifying text and program files. This guide is written for experienced and
inexperienced users who are responsible for creating and maintaining text and program
files. .

A Series File Attributes Programming Reference Manual (form 8600 0064).
Formerly A Series I/O Subsystem Programming Reference Manual

This manual contains information about each file attribute and each direct I/O buffer
attribute. The manual is written for programmers and operations personnel who need
to understand the functionality of a given attribute. The A Series I/O Subsystem
Programming Guide is a companion manual. .

A Series I/O Subsystem Programming Guide (form 8600 0056). Formerly
A Series I/O Subsystem Programming Reference Manual

This guide contains information about how to program for various types of peripheral
files and how to program for interprocess communication, using port files. This guide is
written for programmers who need to understand how to describe the characteristics of
a file in a program. The A Series File Attributes Programming Reference Manual is a
companion manual.

A Series MultiLingual System (MLS) Administration, Operations, and
Programming Guide (form 8600 0288)

This guide describes how to use the MLS environment, which encompasses many Unisys
products. The MLS environment includes a collection of operating system features,
productivity tools, utilities, and compiler extensions. The guide explains how these
products are used to create application systems tailored to meet the needs of users in
a multilingual or multicultural business environment. It explains, for example, the
procedures for translating system and application output messages, help text, and
user interface screens from one natural language to one or more other languages; for
instance, from English to French and Spanish. This guide is written for international
vendors, branch systems personnel, system managers, programmers, and customers who
wish to create customized application systems.

A Series System Commands Operations Reference Manual (form 8600 0395)

This manual gives a complete description of the system commands used to control
system resources and work flow. This manual is written for systems operators and

. administrators.

A Series System Software Support Reference Manual (form 8600 0478)

This manual describes a number of facilities used for system monitoring and debugging,
including BARS, DUMP ANALYZER, LOGANAL YZER, and LOGGER. It also describes

8600 0296-000

About This Manual

the format of the SUMLOG file. This manual is written for system support personnel
and operators.

A Series System Software Utilities Operations Reference Manual
(form 8600 0460)

This manual provides information" on the system utilities, such as DCSTATUS,
FILECOPY, and DUMP ALL. This manual is written for applications programmers and
operators.

A Series Task Attributes Programming Reference Manual (form 8600 0502).
Formerly the A Series Work Flow Administration and Programming Guide

This manual describes all the task attributes available on A Series systems. It also gives
examples of statements for reading and assigning task attributes in various programming
languages. The A Series Task Management Programming Guide is a companion
manual.

A Series Transmission Control Protocol/Internet Protocol (TCPIIP)
Implementation Guide (form 1221328)

This guide explains how to install the TCP/IP software in an A Series BNA Version 2
network. It also describes related features and dependencies, such as Distributed
Systems Services (DSS) features supported by TCP/IP and the interfaces to the
Ethernet™ local area network (LAN) and X.25 wide area network (WAN) provided by
the Unisys CP 2000 communications processor.

A Series Work Flow Language (WFL) Programming Reference Manual (form
86001047)

This manual presents the complete syntax and semantics of WFL. WFL is used to
construct jobs that compile or run programs written in other languages and that perform
library maintenance such as copying files. This manual is written for individuals who
have some experience with programming in a block-structured language such as ALGOL
and who know how to create and edit files using CANDE or the Editor.

Ethernet is a trademark of Xerox Corporation.

8600 0296-000 xi

xii 8600 0296-000

Contents

Section 1.

Section 2.

8600 0296-000

About This Manual 0 • 0 • "0 0 0 0 • v

Program Structure

Source Program Components 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 0 • 0 • 0 0 0 • 0 • • 1-1
Program Divisions. 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 • 0 0 0 • 0 0 0 1-1
Sections. 0 0 0 • 0 0 • 0 0 0 • 0 • • 0 0 0 0 • 0 0 • • 0 • • 0 0 0 • • 0 1-2
Paragraphs 0 '0 0 0 0 0 0 0 0 0 0 •••• 0 • 0 0 0 • 0 0 0 0 ••• 0 0 1-3
Sentences o. 0 0 • 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1-4
Statements 0 0 0 • • 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 0 • 0 0 • 0 • 0 0 0 1-5
Clauses, Phrases, and Options . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1-5
Words 00000000000000000000000.0000000000 1-5

Line Layout 0 0 0 0 0 0 0 0 0 0 0 0 •• 0 • 0 •• 0 0 • 0 • 0 • 0 •• 0 •• 0 0 0 • 0 • 1-5
Columns 1-6: Sequence Area 0 0 0 0 0 • 0 ••• 0 •• 0 • 0 • • 1-6
Column 7: Indicator Area 0 0 •• 0 0 •• 0 0 •• 0 0 0 0 0 0 •• 0 1-7
Columns 8-11: Area A 0 0 0 •• 0 0 0 • 0 0 • 0 •• 0 ••• 0 • 0 1-7
Columns 12-72: Area Boo 0 ••• 0 0 •••••• 0 • 0 • 0 0 0 1-9
Columns 73-80: Identification Area . 0 • 0 • 0 0 0 0 • 0 • 0 1-9

Special-Purpose Lines 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 •• 0 0 • 0 • 0 0 0 • 0 1-10
Comment Lines 0 0 0 0 • 0 0 0 • 0 0 •• 0 0 0 0 0 • 0 • 0 0 0 0 0 • 0 1-10
Continuation Lines 0 ••• 0 0 0 0 •• 0 0 0 0 0 0 •• 0 • 0 0 0 • 0 1-10
Debugging Lines 0 • 0 • 0 • 0 • 0 0 • 0 • 0 0 0 • 0 0 0 0 • 0 0 0 • • 1-11
Compiler Control Options 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • • 1-13
Blank Lines 0 0 0 0 0 0 0 0 0 0 0 0 0 ••••• 0 0 •• 0 0 • 0 • 0 • • 1-13

Language Elements

Character Set 0 0 0 0 0 0 •• 0 0 • 00 0 •• 0 0 0 •• 0 0 0 0 "0 • "0 ••• 0 0 ••••

Separators . 0 0 0 • 0 • 0 • 0 0 0 • 0 • 0 • • 0 • 0 0 0 0 0 0 0 0 0 0 • 0 • 0 • • • • •

Character Strings 0 • 0 0 : • 0 ••• 0 0 •• 0 • 0 0 0 • 0 • 0 ••• 0 •••• 0 • 0

Word Types 00' 0 0 0 • 0 •• 0 • 0 0 0 0 •• 0 0 •• 0 o. 000 •• 0 • 0 •• 0 • 0

Literals

Reserved Words . 0 0 0 • 0 0 0 •• 0 0 • 0 0 0 • 0 • 0 • 0 0 ••••

Connectives .. 0 •••• 0 • 0 0 • 0 • 0 •••••••••• 0

Figurative Constants ... 0 0 • 0 •••••••••••••

Keywords and Optional Words . 0 •••••••••••

Special Registers 0 ••••••• 0 •• 0 ••••••• 0 •••

Special-Character Words 0', 0 ." •••••• 0 • 0 •••

Context-Sensitive Keywords .. 0 •••• 0 ••••• 0 •• 0 •• "

Application-Specific Keywords 0 • 0 •• 0

System-Name ... 0 0 • 0 0 0 ••• 0 • 0 •••••••• 0 • 00 0 •

User-Defined Words 0 0 0 0 ••••• 0 0 0 ••• 0 0 • 0 • 0 0 ••

Nonnumeric 0 • 0 • 0 • 0 0 0 0 • 0 ••• 0 • 0 0 ••• 0 ••• 0 • 0 •

Numeric. 0 • 0 • 0 0 0 • 0 • 0 • 00' • 0 • 0 ••••• 0 • 0 • 0 •••

Floating Point. 0 • 0 • 0 • 0 • 0 ••• 0 0 0 • 0 • 0 • 0 • 0 • 0 •••

2-1
2-2
2-3
2-4
2-4
2-5
2-5
2-8
2-9

2-10
2-11
2-11 .
2-12
2-12
2-14
2-14
2-15
2-16

xiii

Contents

Undigit (Unisys Extension) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 2-17
Kanji (Unisys Extension) 0 • 2-18

Section 3. File and Task Concepts

Physical Aspects of a File 0 0 0 0 0 0 0 • 0 3-1
Logical Aspects of a File 0 3-1
Assigning a File to a Device 0 0 0 0 •• 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 3-2

Remote Files 0 3-2
Port Files 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3-2

File Attributes . 0 0 0 0 0 0 0 0 0 • 0 • 0 3-2
File-Attribute Identifiers 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 3-3
File-Attribute Categories. 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 3-4

Alphanumeric File-Attribute Identifier 0 0 0 0 0 0 0 0 0 3-4
Numeric File-Attribute Identifier 0 0 0 0 0 0 0 0 0 0 0 0 3-4
Mnemonic File-Attribute Identifier 0 0 0 0 0 0 • 0 0 0 • 3-4
Boolean File-Attribute Identifier 0 0 0 0 0 0 0 0 0 0 0 0 0 3-5
Event File-Attribute Identifier 0 0 0 • 0 0 0 0 • 0 0 0 0 0 3-5

File Organization and Access Methods. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3-5
Sequential Organization 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 3-5
Relative Organization. 0 0 0 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 3-5
Indexed Organization 0 0 0 0 0 0 0 • 0 0 0 0 0 •• 0 •• 0 •• 0 0 0 3-6

Current-Record Pointer 0 0 0 0 0 • 0 • 0 0 0 0 • 0 0 0 0 •• 0 • 0 • 0 0 0 0 0 • 0 3-6
Task Attributes 0 0 0 0 ••• 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 • 0 • 0 3-6

Task-Attribute Identifiers (Unisys Extension) 0 •• 0 0 0 0 0 3-6
Task-Attribute Types o. 0 • 0 0 0 0 0 0 • 0 0 • 0 0 0 0 0 • 0 0 0 0 3-8
Interrogating Task Attributes. 0 0 0 0 • 0 '0 • 0 0 • 0 0 ••• 0 3-8

Section 4. IDENTIFICATION DIVISION

PROGRAM-ID Paragraph . 0 0 0 0 • 0 • 0 0 0 0 0 • 0 0 0 • 0 0 0 0 • 0 0 0 • • 4-2
DATE-COMPILED Paragraph. 0 0 o •••• 0 ••••• 0 ••••• 0 • • • • • 4-3

Section 5. ENVIRONMENT DIVISION

CONFIGURATION SECTION o. 0 ••• 0 •• 0 0 • 0 • 0 0 0 0 0 0 0 •• 0 • 0 5-2
SOURCE-COMPUTER. 0 • 0 ••• 0 •• 0 0 • 0 • 0 0 • • • • • • 5-2
OBJECT-COMPUTER 0 0 0 0 •• 0 0 0 0 ••• 0 • 0 •• 0 0 • 0 0 0 5-3
SPECIAL-NAMES 0 0 0 0 0 0 0 • 0 0 • 0 0 • 0 0 0 0 0 0 0 0 • 0 0 0 5-5

INPUT-OUTPUT SECTION o. 0 0 0000.000.00000000000000 5-11
FILE-CONTROL Paragraph 0 0 0 • 0 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 5-12

Sequential I/O 0 0 0 0 • 0 • 0 •• 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 5-13
Relative I/O 0 0 0 0 0 0 0 • 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 0 0 o· 5-17
I ndexed I/O 0 • 0 0 0 0 0 0 • 0 0 • 0 • 0 • 0 • 0 0 0 0 0 •• 0 ~ 5-20

Sort-Merge. 0 0 0 • 0 • 0 0 0 0 0 0 0 •• 0 • 0 • 0 • 0 0 0 0 0 0 • 0 0 5-24
I-O-CONTROL o. 0 • 0 0 0 • 0 • 0 •••••• 0 0 0 0 0 0 0 0 • 0 0 5-25

I/O Status o. 0 • 0 0 0 0 0 0 • 0 • 0 • • • 0 • 0 0 0 • 0 • 0 0 0 0 • 0 0 0 .. 0 • o· 0 0 5-27
Sequential./lO Status 0 0 0 0 • 0 0 0 • 0 • 0 0 0 ... 0 0 0 0 0 0 0 • 5-27
Relative I/O Status • 0 0 0 • • • • 0 0 0 • 0 0 0 • 0 0 • • 0 0 • 0 • 5-30

xiv 8600 0296-000

Section 6.

Section 7.

Contents

I ndexed I/O Status 0 5-31
ENVIRONMENT DIVISION Program Sample 00000000 0000000 5-33

Data Concepts

Records 00 0 0 0 0 0 0 0 0 00 0 • 0 ••

Levels 00.000 0 0 0 • 000000. 0 0 0 • 0 0 •• 00000. 00.00000000

6-1
6-2
6-2
6-3
6-4
6-5
6-5
6-1'
6-9

Data

Understanding Elementary and Group Items 0 0 0 0 0 0 0 0

Organizing Data with Level-Numbers 0 0 0 0 0 0 0 0 0 0 0 0 0

Constructing a Record 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0

Classifying Data into Categories and Classes 0 0 0 0 • 0 0 0

Qualifying Data to Ensure Uniqueness 0 0 0 0 0 0 0 • 0 0 0 0

Aligning Data 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 •

Tables .. 0 0 •• 0 0 0 ••• 0 0 •• 0 0 • 0 ••• 0.0000.0000. o •• 00 0 0 6-10
6-11
6-12
6-12
6-14
6-15
6-16
6-19
6-19
6-20
6-20
6-21
6-22
6-23
6-24

Editing

Defining Tables 0 0 • 0 0 0 • 0 0 0 0 0 • 0 0 • 0 0 0 • 0 • 0 0 0 •• 0

Accessing Tables 0 •• 0 0 •• 0 ••• 0 ••• 0 ••• 0 0 • 0 • 0 0 •

Subscripting 0 0 0 •• 0 ••• 0 ••••• 0 •• 0 • 0 • 0 • 0 0

Indexing. 0 0 0 • 0 0 0 • 0 0 0 0 0 0 0 0 0 •• 0 • 0 0 0 0 0 0 •

Describing Elementary Items with Symbols 0 0 • 0 • 0 • 0 0

Insertion Editing . 0 0 • 0 • 0 • 0 •• 0 0 • 0 • 0 0 • 0 • 0 0 0 0 0 0

Simple Insertion Editing. 0 •• 0 •• 0 • 0 0 • 0 • 0 • 0 0

Special Insertion Editing .. 0 0 •• 0 0 0 • 0 0 0 0 •• 0 •

Fixed Insertion Editing. 0 0 • 0 0 0 0 •• 0 0 0 0 • 0 0 0 0

Floating Insertion Editing 0 0 0 • 0 0 0 0 • 0 '0 0 • 0 0 0 0

Zero-Suppression and Replacement Editing o. 0 0 0 0 • 0

Editing Methods and Data Categories . 0 0 • 0 0 '0 0 0 ••

. Editing Application of the PICTURE Clause 0 0 • 0 0 0 0 • 0

DATA DIVISION

Sections of the DATA DIVISION 0 •••• 0 •• 0 •• 0 •• 0 •• 0 • 0 •• 0 0 7-1
FILE SECTION 0 ••• 0 •••• 0 ••• 0 ••• 0 •••• 00 ••• 0000 7-3

File-Description (FD) Entry 0 • 0 0 0 0 • 0 • 0 • 0 0 0 • 0 0 • 0 • 7-3
BLOCK CONTAINS Clause 0 • 0 0 0 0 •• 0 0 0 0 • 0 0 0 7-6
RECORD CONTAINS Clause 00000.00 o. 00.00 7-7
LABEL RECORDS Clause 0 0 0 0 0 0 0 0 • 0 • • • • • • • 7-8
VALUE OF Clause 0 0 • 0 0 ; • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7-10
DATA RECORDS Clause 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7-13
LINAGE Clause 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7-14
CODE-SET Clause 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 7-16

Record Description 0 0 0 0 0 : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7-17
Data-Description Entry for Record Structure 0 0 0 0 0 0 0 0 7-17

Data-Name or FILLER Clause 0 0 0 0 0 0 0 0 0 • 0 0 0 0 7~19
BLANK WHEN ZERO Clause 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7-20
GLOBAL Clause (Unisys Extension) 0 0 0 0 0 0 0 0 0 0 7-21
JUSTIFIED Clause 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 7-22
LOCAL Claus~ (Unisys Extension) 0 0 0 0 0 0 0 0 0 0 0 7-23
LOWER-BOUNDS Clause (Unisys Extension) 0 0 0 7-23

8600 0296-000 xv

Contents

Section 8.

xvi

OCCURS Clause . 7-24
OWN Clause (Unisys Extension) 7-28
PICTURE Clause. 7-29

Defining Data Categories 7-29
Determining the Size of the Elementary Item 7-31
Using Symbols to Describe Data. 7-31
Understanding Precedence Rules 7-32

RECEIVED Clause (Unisys Extension) 7-34
REDEFINES Clause. 7-35
SIGN Clause. 7-37
SYNCHRONIZED Clause 7-38
TYPE Clause (Unisys Extension) 7-39
USAGE Clause . 7-41
VALUE Clause 7-46

Data-Description Entry for Renaming Entries 7-49
Data-Description Entry for Condition-Names. 7-51

WORKING-STORAGE SECTION. 7-53
Noncontiguous WORKING-STORAGE Items. 7-53
WORKING-STORAGE Records 7-53

LOCAL-STORAGE SECTION (Unisys Extension) 7-54

PROCEDU RE DIVISION Concepts

PROCEDURE DIVISION Header 8-1
PROCEDURE DIVISION Body. 8-2
Categories of Statements and Sentences. 8-4

Conditional Statements and Sentences. 8-4
Compiler-Directing Imperative Statements and

Sentences 8-5
Program-Directing Imperative Statements and

Sentences 8-5
Arithmetic Expressions . 8-6

Arithmetic Operators . 8-6
Formation and Evaluation Rules 8-7
Numeric Functions 8-8

DIV . 8-8
FORMATTED-SIZE :............. 8-9
MOD ... 8-10
OFFSET. 8-12
REM. 8-12
Multiple Function Calls in an Expression. 8-13

Conditional Expressions 8-13
Simple Conditions. 8-14

Relation Condition. 8-14
Comparing Numeric Operands 8-16
Comparing Nonnumeric Operands. 8-16
Comparing Kanji Operands. 8-17
Comparing Index-Names and Index Data

Items. 8-17
Class Condition. 8...,.18
Condition-Name Condition. 8-19

8600 0296-000

Section 9.

8600 0296-000

Contents

Sign Condition 8-19
Event-Identifier Condition. 8-20

Complex Conditions. 8-20
Negated Simple Conditions. 8-21
Combined and Negated Combined Conditions. . . 8-21
Abbreviated Combined Relation Conditions. 8-23
Condition Evaluation Rules " 8-24

Common Phrases in Statements ". 8-25
ROUNDED Phrase 8-25
SIZE ERROR Phrase 8-25
CORRESPONDING Phrase. 8-26

Common Rules for Arithmetic Statements. 8-27
Calculating Multiple Results with One Arithmetic

Statement 8-27
Handling Incompatible Data. 8-28

Functional Grouping of COBOL74 Verbs. 8-28

PROCEDURE DIVISION Statements

ACCEPT '
ADD•...................
ALLOW (Unisys Extension)
ALTER
ATTACH (Unisys Extension)
AWAIT-OPEN (Unisys Extension)
CALL .. .
CAUSE (Unisys Extension)
CHANGE (Unisys Extension) .. "
CLOSE "

Format 1: SequentialI/O
Devices Other Than Tape
Single-Reel Tape. "
Multiple-Reel Tape
Close File Dispositions

Format 2: Relative and Indexed I/O
Format 3: Port Files (Unisys Extension)
I/O Status Value

COMPUTE "
CONTINUE (Unisys Extension) "
COpy .•..
DELETE .. .
DETACH (Unisys Extension)
DiSALLOW
DiSPLAy
DiViDE .. .
EXECUTE (Unisys Extension)
EXIT .. .
GOTO "
IF .. .
INSPECT

Inspection ~

9-1
9-3
9-5
9-7
9-7
9-9

9-12
9-19
9-20
9-22
9-23

, 9-23
9-24
9-26
9-27
9-30
9-31
9-34
9-34
9-35
9-36
9-40
9-41
9-42
9-43
9-44
9-48
9-48
9-51 "
9-52
9-53
9-58

xvii

Contents

xviii

Comparison Cycle
Tallying and Replacing
Establishing Boundaries for the BEFORE or

AFTER Phrase
Examples of the INSPECT Statement

LOCK (Unisys Extension)
MERGE .. .
MOVE
MULTIPLY
OPEN

Format 1: Sequential, Relative, and Indexed I/O
Open Modes '.'
Format 2: Opening Port Files (Unisys Extension)
I/O Status Value

PERFORM
PROCESS (Unisys Extension)
READ

RELEASE

Format 1: Sequential Access
Format 2: Random Access of Relative or Indexed Files.
Format 3: Dynamic Access of Relative or Indexed I/O

Files
Format 4: Random Access of Indexed Files

RESET (Unisys Extension)
RESPOND (Unisys Extension)
RETURN
REWRITE '"

Sequential I/O
Relative I/O
I ndexed I/O

RUN (Unisys Extension)
SEARCH
SEEK (Unisys Extension)
SET
SORT ;
START

Relative I/O Comparison '
Indexed I/O Comparison
Reference Key Use

STOP
STRING .. .
SUBTRACT
UNLOCK (Unisys Extension)•.............
UNSTRING ... '
USE
WAIT (Unisys Extension)
WRITE .. .

Format 1: Sequential I/O and Vertical Positioning of
Lines

Format 2: Sequential, Relative, and Indexed I/O
Sequential I/O
Relative I/O

9-58
9-59

9-60
9-60
9-62
9-64
9-68
9-73
9-75
9-75
9-78
9-79
9-83
9-83
9-92
9-93
9-94
9-96

9-98
9-99

9-101
9-102
9-102
9-106
9-108
9-109
9-109
9-109
9-110
9-111
9-116
9-116
9-121
9-130
9-131
9-131
9-132
9-132
9-133
9-136
9-139
9-139
9-151
9-157
9-160

9-161
9-163
9-165
9-165

8600 0296-000

Contents

Indexed I/O
Port Files (Unisys Extension)

Formats 3 and 4: Kanji Delimiters

9-166
9-166
9-167

Section 10. Segmentation

Actual COBOL74 Segmentation. 10-1
Standard COBOL74 Segmentation. 10-1

Section 11. Debuggi ng

Compile-Time Switch . 11-1
Object-Time Switch 11-1
ENVIRONMENT DIVISION in the Debug Module 11-2
PROCEDURE DIVISION in the Debug Module 11-2
DEBUG-ITEM Special Register 11-5
Debugging Lines 11-9
Debug Module Program Sample. 11-9

Section 12. Report Writer

8600 0296-000

FILE SECTION REPORT Clause
REPORT SECTION Report-Description Entry

CODE Clause (Unisys Extension)
CONTROL Clause
PAGE Clause

Special Registers
PAGE-COUNTER
LINE-COUNTER ; ..

REPORT SECTION Report-Group Descriptions
Format 1 Report-Group Descriptions

LINE NUMBER Clause
NEXT GROUP Clause
TYPE Clause
USAGE Clause (Report Writer)

Processing Report Groups••••
Processing a CONTROL FOOTING Report Group.
Processing a DETAIL Report Group•.•
Processing After Printing a Body Group••

Format 2 Report-Group Descriptions•.
Format 3 Report-Group Descriptions (Unisys Extension) ,

BLANK WHEN ZERO Clause
COLUMN NUMBER Clause•.
GROUP INDICATE Clause•....
JUSTIFIED Clause ' .•...............
LINE NUMBER Clause•.......
PICTURE Clause
SOURCE Clause ..•...............••...
SUM Clause•.............. ~ ••..

12-1
12~2

12-3
12-5
12-7

12-11
12-11
12-12
12-12
12-13
12-14
12-15
12-16
12-18
12-19
12-19,
12-19
12-20,
12-20
12-22
12-23
12-23
12-24
12-24
12-24
12-24
12-25
12-25

xix

Contents

xx

VALUE Clause
USAGE Clause (Report Writer) . 0 0 ••••••••••

Summary of RD Entries
Understanding Sum Counters

Incrementing Sum Counters
PROCEDURE DIVISION Statements

INITIATE Statement.
GEN ERATE Statement

GENERATE Statement Actions
Producing Report Groups

TERMINATE Statement 0 0 • 0 • 0 0 • 0 0 •• 0 0 •• 0

USE BEFORE REPORTING Statement 0 0 • 0 • 0 • 0 ••••

Report Writer Program Example 0 0 0 •••• 0 0 0 0 • 0 0 0 0 0 ••• 0 • 0

Section 13. ANSI Inter-Program Communication (I PC)

12-26
12-26
12-27
12-27
12-28
12-29
12-29
12-30
12-31
12-31
12-32
12-32
12-33

LINKAGE SECTION in the IPC Module 0 • 0 ••• 0 •• 0 •••• 0 •• 0 • 13-1
Noncontiguous Linkage Storage .. 0 0 • 00 0 • 0 • 0 • 0 • • 13-2
Linkage Records 0 0 0 0 0 0 • 0 0 0 • 0 0 0 •• 0 • 0 •• 0 •••• 0 13-3

PROCEDURE DIVISION in the IPC Module 0 0 0 • 0 0 0 0 0 0 0 0 0 0 • 13-3
PROCEDURE DIVISION Header 0 • • • • 13-3
CALL Statement 0 0 •••••••••••••••• 0 • 13-4
CANCEL Statement .. 0 0 •••••••••• 0 0 • • • • • • • • • 13-5
EXIT PROGRAM Statement 0 • • • • • • • • 13-6
STOP RUN Statement 0 • • • • • • • • • • • • 13-7

Section 14. COMMUNICATION SECTION

DCILIBRARY Library 0 ••• 0 •••••••••• 0 •••••••••

DCIENTRYPOINT
Parameter 1 of DCIENTRYPOINT
Parameter 2 of DCIENTRYPOINT
Parameter 3 of DCIENTRYPOINT '0'

Parameter 4 of DCIENTRYPOINT
Parameter 5 of DCIENTRYPOINT
Parameter 6 of DCIENTRYPOINT
Parameter 7 of DCIENTRYPOINT
Parameter 8 of DCIENTRYPOINT

Program Sample: CD Array
DATA DIVISION in the Communication Module
PROCEDURE DIVISION in the Communication Module

ACCEPT MESSAGE COUNT Statement
DISABLE Statement
ENABLE Statement
RECEIVE Statement
SEND Statement

14-1
14-1
14-1
14-2
14-3
14-3
14-3
14-3
14-3
14-4
14-4
14-6

14-19
14-19
14-20
14-21
14-22
14-25

8600 0296-000

Contents

Section 15. Libraries

Creating a Library
PROCEDURE DIVISION Header in Library Program .. .
Rules for Parameters

Exiting a Library
Securing a Library
Referring to a Library

CALL Statement for Libraries
Effect of Library State on a CALL Statement
CANCEL Statement for Libraries
Effect of Library Initial State on a CANCEL Statement .

Library Attributes
Types of Library Attributes
CHANGE ATTRIBUTE Statement for Libraries

library Compiler Control Options
LI BRARYLOCK
SHARING
TEMPORARY

Program Samples of Referring to a Library

Section 16. Internationalization

8600 0296-000

Accessing the Internationalization Features
Using the Ccsversion, Language, and Convention

Default Settings
Understanding the Hierarchy for Default Settings

Understanding the Components of the MLS Environment
Understanding Coded Character Sets and Ccsversions .

Understanding Mapping Tables
Understanding Data Classes
Understanding Text Comparisons

Sorting and Merging
Creating Indexed Files

Providing Support for Natural Languages
Creating Messages for an Application Program ..
Creating Multilingual Messages for Translation ..

Providing Support for Business and Cultural
Conventions .

Using the Date and Time Features
Formatting Date and Time with Syntax

Elements
Formatting Date and Time with Library Calls

Using the Numeric and Currency Features
Formatting Numerics and Currencies with

Syntax Elements·
Formatting Numerics and Currencies with

Library Calls. ;
Using the Page Size Formatting Features

Formatting Page Size with Syntax Elements
Formatting Page Size with Library Calls ...

15-1
15-;-2
15-3
15-4
15-5
15-5
15-6
15-8

15-10
15-11
15-12
15-12 .
15-13
15-14
15-14
15-14
15-15
15-16

16-2

16-2
16-3
16-4
16-4
16-6
16-6
16-7
16-9
16-9

16-10
16-10
16..,.11

16-11
16.:-12

16-12
16-13
16-14

16-14

16-14
16-15
16-15
16-15

xxi

Contents

xxii

Summary of Language Syntax by Division 0 • 0 •• 0 • 0 0 • 0 • 0

IDENTIFICATION DIVISION. 0 ••• 0 ••••• 0 •• 000 ••

ENVIRONMENT DIVISION. 0 0 0 0 0 • 0 0 0 0 ••••••• 0 0

DATA DIVISION . 0 • 0 0 0 •••• 0 •• 0 ; • 0 0 0 •• 0 •••••

PROCEDURE DIVISION 0 •• 0 ••• o ••••• '

Summary of CENTRALSUPPORT Library Procedures ... 0 ••• 0 0

Library Calls 0 ••••••• 0 ••• 0 0 • 0 • 0 •••••• 0

Pa ra meter Categories. '. 0 • • • • • • • •

Input Parameters 0 •••

Input Parameters with Type Values 0

Output Parameters 0 •••••••••

Result Parameter 0 •••••••••

Procedure Descriptions
CCSTOCCS TRANS TEXT - -
CCSVSN NAMES NUMS 0 •••••• 0 •• - -
CENTRALSTATUS 0 • 00 •• 0 • 0 0 ••••••••••••••••

CNV CURRENCYEDITTMP COB o •••••••••• 0 ••• - -
CNV CURRENCYEDIT COB 0 •• 0 • - -
CNV DISPLAYMODEL COB 0 0 •••••••• 0 •••••••• - -
CNV FORMATDATETMP COB - -
CNV FORMATDATE COB 0 •••••••••• 0 •••••••• - -
CNV FORMATTIMETMP COB· - -
CNV_FORMATTIME_COB
CNV FORMSIZE 0 •••••• 0 •••••

CNV NAMES 0" •• o ••••

CNV SYM BOLS . 0 ••• 0 •••••••••••••••••••••

CNV SYSTEMDATETIMETMP COB .. 0 ••••• 0 0 ••• - -
CNV SYSTEM DATETI M E COB. 0 •••••••• 0 ••••• 0 - -
CNV TEMPLATE COB - -
CNV VALIDATENAME
GET CS MSG ... 0 ••••••• 0 •••••••••••••••• 0

MCP BOUND LANGUAGES 0 •••••••• - -
VALIDATE NAME RETURN NUM . 0 •••••••••••• - - -
VALIDATE NUM RETURN NAME - - -
VSNCOM PARE TEXT .. 0 • 0 •••••••••• 0 • 0 ••• 0 •

VSNESCAPEMENT 0 0 •• 0 0 0 •••••• 0 • 0 ••• 0

VSNGETORDERINGFOR_ONE_TEXT 0.0 ••••• 0

VSNINSPECT TEXT ... 0 0 ••••••••••• 0 ••••• 0 0

VSNTRANS TEXT . 0 0 •••• 0 • 0 ••• 0 •••• 0 •• 0 ••••

Errors 0 ••••••• 0 ••••• 0 • 0 • 0 ••• 0 • 0 ••••••••

Declarations 0 •••••• 0 • 0 • 0 0 •• 0 • 0 0 0

Explanation of Error Values ... 0 • 0 •••••• 0 •••••••

Section 17. Control of the Compilation Process

16-15
16-15
16-16
16-16
16-17
16-20
16-27
16-27
16-28
16-28
16-30
16-30
16-30
16-31
16-34
16-37
16-41
16-44
16-47
16-50
16-53
16-56
16-58
16-61
16-64
16-67
16-75
16-78
16-81
16-84
16-86
16-90
16-93
16-95
16-98

16-102
16-105
16-109
16-113
16-116
16-116
16-117

Starting a Compilation 0 ••••••••• 0 • • • • • • • 17-1
Using Cross-Reference Files 0 •••••• 0 ••••••••••• 0 • 17-1
Performing a Separate Compilation•.. 17-4

Providing the Changed Records. 17-6
Observing Compilation Restrictions. 17-6

Compiler Control Option Concepts. • 17-7

8600 0296-000

8600 0296-000

Contents

Types of Compiler Control Records (CCRs)
Types of Compiler Control Options

Boolean
Value
Immediate

Compiler Control Option Formats
Option Action Indicators
COBOL74 Source and Object Files

I nput Files
Output Files

Compiler Control Options
BINARYCOMP
BINDINFO
CLEAR
CODE
COMPILERDEBUG
DEBUG
DELETE .. '
DOUBLE
ERRORLIMIT
ERRORLIST
FEDLEVEL
FREE
GLOBAL
GLOBALTEMP
GROUPMOVEWARN
INFO
LEVEL
LlB$ OR LlBDOLLAR
LlBRARYLOCK
LINEINFO•.....
LiST
LlST$ or LlSTDOLLAR
LlSTDELETED
LlSTOMITTED ;
LISTP
LIST1
MAKEHOST
MAP
MERGE
NEW
NEWID '
NOXREFLIST
OMIT
OPTIMIZE or OPT
OWN•.....
OWNTEMP
PAGE
SEPCOMP
SEQCHECK•.......
SEQUENCE or SEQ•...

Sequence Base ..•.....................

17-7
17-8
17-8
17-8
17-9
17-9

17-10
17-12
17-13
17-15
17-17
17-18
17-18
17-19
17-19
17-19
17-19
17-20
17-20
17-21
17-21
17-22
17-22
17-23
17-24
17-24
17-25
17-26
17-26
17-26
17-27
17-27
17-27
17-28
17-28
17-28
17-28
17-29
17-29
17-30
17-30
17-31
17-31
17-32
17-32
17-33
17-34
17-34
17-35
17-35
17-36
17-37

xxiii

Contents

xxiv

Sequence Increment 17-37
SHARING. .. 17-38
SPEC................................... 17-39
STATISTICS 17-39
SUMMARY. .. 17-40
Symbolic 10 .. 17-40
TAOS..... 17-40
TARGET. .. 17-42
TEMPORARY. 17-43
USER. 17-44
VOIO .. 17-44
WARN FATAL 17-45
WARNSUPR. .. 17-45
XOECS. .. 17-45
XREF. 17-46
XREFFILES. 17-46
XREFS. 17-47

Appendix A. General Format Notation

Appendix B. Reserved Words and Keywords

Reserved Words . 8-1
Context-Sensitive Keywords. 8-6
Application-Specific Keywords. 8-6

Appendix C. EBCDIC and ASCII Character Sets

Appendix D. Examples

Glossary '.' . 1

Bibliography. 1

Index. 1

8600 0296-000

Examples

1-1.
1-2.
1-3.
1-4.
1-5.
1-6.

3-1.

4-1.

5-1.

6-1.
6-2.
6-3.
6-4.

7-1.
7-2.
7-3.
7-4.
7-5.
7-6.
7-7.
7-8.
7-9.
7-10.

8-1.
8-2.
8-3.
8-4.
8-5.
8-6.
8-7.
8-8.

9-1.
9-2.
9-3.
9-4.
9-5.
9-6.
9-7.
9-8.

8600 0296-000

Coding Paragraphs
Coding Area A Entries
Coding Area B Entries for Readability
Coding Comment Lines
Coding Continuation Lines ~
Coding Debugging Lines

Setting the BDBASE Option

Coding the IDENTIFICATION DIVISION

Coding the ENVIRONMENT DIVISION

Coding Elementary and Group Items
Level-N umber Construction for a Record
Defining a One-Dimensional Table
Defining a Three-Dimensional Table

Coding the LABEL RECORDS Clause
Coding the VALUE OF Clause
Coding the DATA RECORDS Clause
Effect of the BLANK WHEN ZERO Clause
Coding the GLOBAL Clause
Using the GLOBAL Compiler Option
Coding the OWN Clause
Coding the TYPE Clause
Coding Condition-Names
Coding the WORKING-STORAGE SECTION

Use of Declaratives
Coding the DIV Function
Results of FORMATTED-SIZE Function
Coding the MOD Function
Coding the OFFSET Function
Coding the REM Function :
Coding Multiple Function Calls in an Expression
Parentheses Restrictions in Simple Conditions ..•................

Coding an AWAIT-OPEN WITH WAIT Statement
Coding an AWAIT-OPEN WITH NO WAIT Statement
Coding an AWAIT-OPEN AVAILABLE Statement
Coding an AWAIT-OPEN ... PARTICIPATE Statement ...•............
Coding an AWAIT-OPEN ... coNNECT-TIME-L1MIT Statement
Coding a CLOSE WITH WAIT Statement
Coding a CLOSE WITH NO WAIT Statement
Coding a CLOSE ... ASSOCIATED-DATA Statement

1-4
1-8
1-9

1-10
1-11
1-12

3-9

4-2

5-33

6-3
6-5

6-11
6-12

7-10
7-12
7-13
7-20
7-21
7-22
7-28
7-41
7-52
7-54

8-3
8-9
8-9

8-11
8-12
8-13
8-13
8-14

9-11
9-11
9-11
9-12
9-12
9-33
9-33
9-33

xxv

Examples

xxvi

9-9.
9-10.
9-11.
9-12.
9-13.
9-14.

9-15.

9-16.
9-17.
9-18.
9-19.
9-20.
9-21.
9-22.
9-23.
9-24.
9-25.
9-26.
9-27.
9-28.

9-29.
9-30.
9-31.
9-32.
9-33.
9-34.
9-35.
9-36.
9-37.

11-1.
11-2.

12-1.

14-1.
14-2.

15-1.
15-2.
15-3.

16-1.
16-2.
16-3.
16-4.
16-5.
16-6.

Coding a CLOSE ... ASSOCIATED-DATA-LENGTH Statement
Closing Multiple Port Files
Coding an INSPECT TALLYING Statement with LEADING Option
Coding an INSPECT TALLYING Statement with BEFORE INITIAL Option .
Coding an INSPECT TALLYING Statement with LEADING BEFORE Option
Coding an INSPECT TALLYING Statement with FOR ALL REPLACING

Option
Coding an INSPECT REPLACING ALL Statement with BEFORE INITIAL

Option '
Coding an INSPECT TALLYING, REPLACING Statement
Coding an INSPECT ... REPLACING Statement with Literals
Coding an INSPECT. .. REPLACING CHARACTERS Statement . ','
Coding an OPEN Statement
Coding an OPEN WAIT Statement
Coding an OPEN OFFER Statement
Coding an OPEN NO WAIT Statement
Coding a RESPOND Statement for an Orderly Close Operation
Coding a RESPOND Statement That Requests a Dialogue
Coding a RESPOND Statement That Rejects an Open Request 0 0 0 •

Coding a RESPOND Statement That Uses Associated Data 0 ••• 0 0 0 •••

Coding a RESPOND Statement with Multiple Files o. 0 0 0 0 0 • 0 0 0 0 0 • 0 0

Sort Program Using INPUT PROCEDURE IS and OUTPUT PROCEDURE IS
Options 0 0 0 0 0 00 0 0 00 • 0 00' 00 0 0 0 0 00 0 0 0 • 0 0 0 •• 0 0 o. 0 0 0 0 0 • 0 •

Coding a Simple UNSTRING Statement 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0

Coding an UNSTRING Statement Using the DELIMITED BY Option 0 0 •• 0

Coding an UNSTRING Statement Using the DELIMITED BY ALL Option 0

Coding an UNSTRING Statement Using'the WITH POINTER Option 0 0 ••

Coding an UNSTRING Statement Using Many Options 0 0 0 •• 0 • 0 • 0 ••• 0

Coding an UNSTRING Statement Using the FOR Option 0 0 0 0 • 0 • 0 0 •••

Coding an UNSTRING Statement Using FOR, WITH POINTER Options ..
Sample Program Using Format 1 and 2 Examples 0 0 0 • 0 • 0 0 •• 0 • 0 ••• 0

Display from UNSTRING Program 0 • 0 • 0 •• 0 • 0 0 0 ••• 0 ••• 0 0 0 •• 0 0 • 0

Implicit Description of DEBUG-ITEM Special Register . 0 0 • 0 0 ••• 0 ••••

Debug Module Sample Program 0 0 0 0 .' 0 • 0 0 • 0 0 0 0 • 0 0 • 0 • 0 • 0 • 0 0 0 • 0

Sample Report Writer Program 0 0 0 0 0 ••• 0 • 0 0 •••• 0 •• 0 • 0 •••• 0 0 "0

Example Program for DCI Library Entry Point ... 0 • 0 •••••• 0 ••••• 0 •

Program Sample: Maintaining Associations of Physical Terminals with
Queues .. 0 •••• 0 0 • 0 0 • 0 0 0 • 0 0 0 •••• 0 • 0 0 •••• o ••••••••••••

Calling a Library . 0 0 • 0 • 0 • 0 • 0 • 0 ••••• o •• 0 •••••••• 0 ••• 0 •••••

Calling a Library by Function 0 • 0 • 0 •••••••• 0 •• 0 ••••• 0 ••• 0 • 0 •••

Substituting a Family Specification 0 ••••••• 0 •••••••••••••• 0 •••

Coding the Format 3 ACCEPT Statement
Coding the MOVE Statement for Internationalization
Sample Data Declarations for Type Value Data Items
Calling the CCSTOCCS_TRANS_TEXT Procedure•.
Calling the CCSVSN_NAMES_NUMS Procedure
Calling the CENTRALSTATUS Procedure

9-33
9-33
9-60
9-61
9-61

9-61

9-61
9-62
9-62
9-62
9-78
9-82
9-82
9-82

9-105
9-105
9-105
9-105
9-106

9-128
9-146
9-147
9-147
9-:-147
9-148
9-148
9-149
9-149
9-151

11-6
11-9

12-33

14-5

14-17

15-16
15-17
15-17

16-18
16-19
16-29
16-31
16-34
16-38

8600 0296-000

Examples

16-7. Calling the CNV_CURRENCYEDITTMP _COB Procedure
16-8. Calling the CNV_CURRENCYEDIT_COB Procedure
16-9. Calling the CNV_DISPLAYMODEL_COB Procedure
16-10. Calling the CNV_FORMATDATETMP_COB Procedure
16-11. Calling the CNV _FORMATDATE _COB Procedure
16-12. Calling the CNV_FORMATTIMETMP _COB Procedure
16-13. Calling the CNV_FORMATTIME_COB Procedure
16-14. Calling the CNV _FORMSIZE Procedure
16-15. Calling the CNV_NAMES Procedure
16-16. Calling the CNV_SYMBOLS Procedure
16-17. Calling the CNV_SYSTEMDATETIMETMP _COB Procedure
16-18. Calling the CNV_SYSTEMDATETIME_COB Procedure
16-19. Calling the CNV_TEMPLATE_COB Procedure
16-20. Calling the CNV _ VALIDATENAME Procedure
16-21. Calling the GET_CS_MSG Procedure
16-22. Calling the MCP _BOUND_LANGUAGES Procedure
16-23 .. Calling the VALIDATE_NAME_RETURN_NUM Procedure
16-24. Calling the VALIDATE_NUM_RETURN_NAME Procedure
16-25. Calling the VSNCOMPARE_TEXT Procedure
16-26. Calling the VSNESCAPEMENT Procedure
16-27. Calling the VSNGETORDERINGFOR_ONE_TEXT Procedure
16-28. Calling the VSNINSPECT _TEXT Procedure ':
16-29. Calling the VSNTRANS_TEXT Procedure
16-30. Declaring Message Values

17-1. . Separate Compilation with the Host Title Given as a String
17-2. Separate Compilation with the Host Title File-Equated
17-3. Understanding the GROUPMOVEWARN Option

0-1.
D-2.
D-3.
D-4.
D-5.
0-6.
D-7.
0-8.

8600 029&-000

Coding REAO and WRITE Statements
Coding Indexed Files with Alternate Keys
Coding OCCURS DEPENDING ON Phrase in WRITE FROM Statement ..
Coding the SORT Program with the USING and GIVING Options
Coding MERGE Program with the USING and GIVING Options
Coding Remote Files with Variable-Record Lengths
Coding PERFORM Program with the VARYING UNTIL Option
Coding Remote Files

16-42
16-45
16-47
16-51
16-53
16-56
16-59
16-61
16-64
16-67
16-76
16-79
16-81
16-84
16-87
16-90
16-93
16-96
16-98

16-102
16-105
16-109
16-113
16-116

17-5
17~5

17-25

D-1
·0-2
D-4
D-6
D-7
D-9

D-11
D-12

xxvii

xxviii 86000296-000

Figures

1-1.

7-1.

9-1.

9-2.

9-3.

11-1.

12-1.
12-2.
12-3.

14-1.
14-2.

17-1.

8600 0296-000

Line Format '

PICTURE Character Precedence Chart

Flowchart for the VARYING Phrase of a PERFORM Statement with One
Condition

Flowchart for the VARYING Phrase of a PERFORM Statement with Two
Conditions .. .

Flowchart for the SEARCH Statement Containing Two WHEN Phrases .. .

Debugging Output from Debug Module Sample Program

Page Format Control
Input Data File to Sample Report Writer Program
Sample Report Writer Report

Communication Status Condition in the 01-level
Communication Status Key Condition in the 02-level

Compiler Data Flow : '

1-5

7-33

9-90

9-91
9-113

11-11

12-10
12-37
12-38

14-11
14-16

17-12

xxix

xxx 8600 0296-000

Tables

I-I.
1-2.
1-3.

2-I.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.

5-I.
5-2.
5-3.

6-l.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.

,6-8.
6-9.
6-10.
6-1l.
6-12.
6-13.

7-l.
7-2.
7-3.
7-4.
7-5.

8-l.
8-2.
8-3.
8-4.
8-5.
8-6.
8-7.

8-8.

8600 0296-000

Purpose of COBOL 74 Divisions
Purpose of Sections
Placement of Source Program Component within Areas

Character Set
Meanings of Separators
Figurative Constants
Special-Register Definitions
Special-Character Words
User-Defined Words
Range of Values Permitted for Floating-Point Literals

Meaning of Status Code Values for Sequential I/O
Meaning of Status Code Values for Relative I/O
Meaning of Status Code Values for Indexed I/O

Usage and Maximum Size of a Record Description
Assigning Level-Numbers
Level-Numbers Associated with Data-Description Entries
Classes and Categories of Data Items
Alignment Rules for Move Operation by Data Categories
Describing Elementary Items Using Symbols
Simple .Insertion Editing Ex~mples
Special Insertion Editing Example
Data Item Values and Results of Editing Sign Control Symbols
Floating Insertion Editing Examples
Zero-Suppression and Replacement Editing Examples
Data Categories and Editing Methods Allowed
Editing Application of the PICTURE Clause

COBOL74 and ALGOL Parameter Matching
Defining Items with the PICTURE Clause
Using Symbols to Describe Elementary Items
VALUE Clause Rules by Data Category
VALUE Clause Rules by Section

Binary Arithmetic Operators " '
Unary Arithmetic Operators
Combination of Symbols in Arithmetic Expressions .. '
Meanings of Relational Operators
logical Operators and Their Meaning•..
Combinations of Conditions, Logical Operators, and Parentheses •......
Abbreviated Combined Relation Conditions and Their Expanded

E . I' ? qUlva ents ,
Categories of COBOL74 Verbs ;•...•..

1-2
1-3
1-6

2-1
2-2
2-6
-2-9

2-11
2-13
2-17

5-28
5-30
5~32

6-1
6-4
6-4
6-6

6-10
6-16
6-20
6-20
6-21
6-22
6-23
6-24
6-24

7-24
7-30
7-32
7-48
7-49

8-6
8-6
8-7

8-15
8-21
8-22

8-24
8-28

xxxi

Tables

xxxii

9-1.
9-2.
9-3.

, 9-4.
9-5.
9-6.
9-7.
9-8.
9-9.
9-10.
9-11.

9-12.
9-13.
9-14.
9-15.
9-16.

12-1.
12-2.

14-1.

15-1.
15-2.

15-3.

15-4.
15-5.
15-6.

Designating Subfiles for the AWAIT-OPEN Statement
I/O Status Values for the AWAIT-OPEN Statement
Parameter Mapping for Tasking Calls
WFL and COBOL74 Parameters
Parameters for Bound and Host Programs
Close-File Dispositions for Sequential I/O
Designating Subfiles to Close
I/O Status Values for CLOSE Statement Completion
Comparison of Sending and Receiving Items in MOVE Statements
I/O Statements Allowed for Open Files with Sequential Organization
I/O Statements Allowed for Open Files with Relative or Indexed

Organization "
Designating Subfiles to Open
I/O Status Values for OPEN Statement
Designating Subfiles to Respond '
Values for RESPOND Statement Completion
Validity of Operands for the SET Statement

Page Regions Established by the PAGE Clause
Permissible Clause Combinations in Format 3 Report-Group Description

Entries

Transmission Indicator Schedule

Parameter Matching for Data Items Requiring Special Rules
Effect of SHARING Option Value and Library Initial State on CALL
Statement .. .

Effect of SHARING Option Value and Library Initial State on CANCEL
Statement .. .

Effects of Setting the LlBACCESS Attribute
Meanings of SHARING Option Values
SHARING and TEMPORARY Compiler Control Option Combinations

9-10
9-11
9-14
9-16
9-17
9-28
9-32
9-34
9-71
9-79

9-79
9-82
9-83

9-104
9-105
9-118

12-10

12-27

14-28

15-3

15-9

15-11
15-12
15-14
15-15

16-1. Functional Grouping of CENTRALSUPPORT Library Procedures 16-21
16-2. Specific Descriptions for Internationalization Error Values. 16-118

17-1.
17-2.
17-3.
17-4.
17-5.
17-6.
17-7.
17-8.

A-I.

C-I.
C-2.

Effects of the XDECS and XREFS Compiler Control Options
Effects of the NOXREFUST Option
Effects of the XREF and XREFFILES Options
Attribute Values for the Compiler Input File
Compiler Input Files
Compiler Output Files
Attribute Assignments for Compiler Output Files
Effects of the SHARING Option

General Format Notation Components

EBCDIC-to-ASCII Translation Chart
ASCII-to-EBCDIC Translation Chart

17-2
17-3
17-4

17-13
17-14
17-15
17-17
17-38

A-2

C-1
C-11

8600 0296-000

Section 1
Program Structure

COBOL74 is a programming language based on the English language and, as such is
composed of paragraphs, sentences, clauses, and words. The language is designed so
that your source program is self-explanatory to someone who does not understand
COBOL74. This section describes the following:

• The components of a source program

• The rules for entering the components iIi the source program

Source Program Components
A source program is code written in COBOL74 that the compiler accepts as input. When
you compile the source program, the compiler verifies that your code follows the rules
presented in this manual and translates the source program into an object program. The
object program directs the computer to operate on the data. If the compiler indicates
that your source program needs corrections, you can make the appropriate changes and
then recompile it. The object program always reflects the source program you create.

Program Divisions

A COBOL74 source program is divided into four parts called divisions. The divisions
must appear in the following order:

1. IDENTIFICATION DMSION

2. ENVIRONMENT DMSION

3. DATA DMSION

4. PROCEDURE DMSION

A division header consists of the name of a division, the word DMSION, and a period.

8600 0296--000 1-1

Progra mStructure

Table 1-1 describes the purpose of each division.

Division Name

IDENTIFICATION

ENVIRONMENT

DATA

PROCEDURE

Table 1-1. Purpose of COBOL74 Divisions

Purpose of Division

Identifies and provides documentation about the source program.

Specifies the computer system and associates files with VO devices.

Describes the structure of the data, the constants to be used, the
intermediate storage areas, and any external data.

Instructs the computer to perform the steps necessary to solve the
problem addressed by the source program. This division uses the
data described in the DATA DIVISION.

Sections

1-2

The ENVIRONMENT, DATA, and PROCEDURE DIVISIONs can be subdivided into
sections. A section further identifies the purpose of a division.

A section begins with a name that identifies the section. COBOL74 specifies the names
of sections in the ENVIRONMENT and DATA DMSIONs. You specify names of
sections in the PROCEDURE DIVISION.

A section header consists of the name of the section, the word SECTION and a period.
A section continues with one 9r more successive paragraphs that follow the period.
A section ends immediately before the next section, at the end of the division, or at
the keywords END DECLARATIVES in the DECLARATIVES SECTION of the
PROCEDURE DIVISION.

8600 0296-000

Program Structure

Table 1-2 describes the sections associated with each division.

Division Name

IDENTIFICATION

ENVIRONMENT

DATA

PROCEDURE

t Unisys extension

Paragraphs

Table 1-2. Purpose of Sections

Section Name

None

CONFIGURATION

INPUT-OUTPUT

FILE

DATA-BASEt

WORKING-STORAGE

LOCAL-STORAGEt

LINKAGE

COMMUNICATION

REPORT

User defined

Purpose of Section

Not applicable

Specifies computer eq uipment

Associates files with specific devices

Describes the record structure of files

Describes one or more data-bases that can
be used by the COBOL program

Describes intermediate data items

Describes data to be either passed or
received as parameters to an external
procedure

Describes data items to be referenced by the
calling program and the called program

Describes the data items in the source
program that serve as the interface between
the data communications interface <DCI)
library and the program

Describes the contents and format of
generated reports for the Report Writer

Groups paragraphs into sections that you
define

In the IDENTIFICATION and ENVIRONMENT DMSIONs, a paragraph begins with a
header that identifies the paragraph. A paragraph header consists of a reserved word
followed by a period. The paragraph continues with one or more successive clauses or
entries.

In the PROCEDURE DIVISION, a paragraph begins with a user-defined word called a
paragraph-name. It is followed by a period and optionally·one or more entries.

A paragraph ends immediately before the next paragraph header or section name, at the
end of the division, or at the keywords END DECLARATIVES in the DECLARATIVES
SECTION of the PROCEDURE DIVISION.

8600 0296-000 1-3

Program Structure

Example

Example 1-1 shows examples of paragraphs in the IDENTIFICATION,
ENVIRONMENT, and PROCEDURE DIVISIONs.

010000 IDENTIFICATION DIVISION.
010050*The PROGRAM-ID paragraph header is a reserved word.
010100 PROGRAM-ID. GUEST-CREDIT-AUTHORIZATION.
100000 ENVIRONMENT DIVISION.
100050 CONFIGURATION SECTION.
100150*The SOURCE-COMPUTER paragraph header is a reserved word.
100200 SOURCE-COMPUTER. MICROA.
100250 INPUT-OUTPUT SECTION.
100300*The FILE~CONTROL paragraph header is a reserved word.
100350 FILE-CONTROL.

200000 PROCEDURE DIVISION.
200050* You define paragraph-names in the PROCEDURE DIVISION.
200100 MAIN-PARAGRAPH.

Example 1-1. Coding Paragraphs

Sentences

1-4

A sentence consists of one or more statements. You must end a sentence with a period.

A sentence can be one of the following three types:

• A compiler-directing sentence that directs the compiler to take a specific action
during the compilation process.

• A conditional sentence that tests a truth value and specifies an action depending on
the result of the test.

• An imperative sentence that specifies an unconditional action to be taken.

Example

The following is an example of a conditional sentence:

IF BALANCE LESS THAN ZERO
PERFORM PROCESS-DEBIT

ELSE
NEXT SENTENCE.

See Also

For more information about types of sentences, refer to Section 8, "PROCEDURE
DMSION Concepts."

8600 0296-000

Program Structure

Statements

A statement is a syntactically valid combination of words and symbols beginning with
a COBOL74 verb. A statement ends whenever the compiler detects a new verb or a
period.

Clauses, Phrases, and Options

Words

A clause is a set of consecutive COBOL74 words that represents a valid portion of a
statement or entry. A phrase is a set of consecutive COBOL74 words that represents a
valid portion of a statement, entry, or clause. In this manual, optional phrase and clauses
are often referred to as options.

A word is a 'string of characters that form a valid COBOL74 word for creating valid
phrases, clauses, statement, sentences, paragraphs, sections, and divisions.

See Also

For a complete description of the rules for forming words, refer to Section 2, "Language
Elements. "

Line Layout
The compiler expects the'components of your source program to appear in specific areas
along a line of code. Each line has 80 positions, which are grouped into five areas that
make up the line format (also called the reference format), as shown in Figure 1-1.

COLUMN
1 - 6 8 - 11 12 - 72 73 - 80
~7 ~ ________________ -AA __________________ ~

I.&J 125 I u
z: I-
I.&J 151 =:)0
O'z: -I.&J

I~ I Vl

1 I

8600 0296-000

<
<
I.&J AREA B
0::
<

Figure 1-1. Line Format

Q
0....1
_I.&J -IJ..

1-5

Program Structure

Table 1-3 shows the columns associated with each area, the name of the area, and the
program components that can begin in that area.

Columns

1-6

7

8-11

12-72

73-80

See Also

Table 1-3. Placement of Source Program Component within Areas

Name

Sequence area

Indicator area

Area A

Area B

Identification area

Acceptable Entries

Sequence number

Asterisk (*), slash (J), D, hyphen (-), or
dollar sign ($)

• Division header

• Section header

• Paragraph header

• File description (FD) entry

• Sort merge description (SD) entry

• Level numbers

• DECLARATIVES keyword

• END DECLARATIVES keyword

• Sentences

• Level numbers other than 01 or 77

Comment entries

For information about using the FREE compiler option to remove the margin restrictions
required by COBOL74, refer to "FREE" in Section 17, "Control of the Compilation
Process."

Columns 1-6: Sequence Area

1-6

The sequence area contains a 6-digit sequence number that is incremented with each
successive line. These numbers are generated automatically when you use CANDE or
the Editor.

8600 0296-000

Program Structure

Column 7: Indicator Area

The indicator area contains one of the following five characters. Each character indicates
the specified special purpose for the line.

• An asterisk (*) indicates the line is a comment line.

• A slash (j) indicates the line is a comment line and causes the printer to eject a page
and print the comment at the top of the source listing.

• The letter D indicates the line is a debugging line.

• A hyphen (-) indicates the line is a continuation line.

• A dollar sign ($) indicates the line is a compiler control record.

See Also

For more information about these types of lines, refer to "Special Purpose Lines" later in
this section.

Columns 8-11: Area A

Division, section, and paragraph headers, level indicators, the level numbers 01 and
77 , and the keywords for declaratives must begin in area A. You can begin your entry
anywhere within area A. It is acceptable for your entry to extend into area B.

The rules for forming division and section headers are as follows:

• Enter the division or section name in area A.

• Follow the name by at least one space.

• Enter DIVISION or SECTION, whichever is appropriate.

• End the entry with a period.

The rules for forming paragraph headers are as follows:

• Enter the name of the paragraph.

• Follow the name with a period.

The rules for forming the indicators of a file description (FD) or sort-merge description
(SD) entry or a level-number 01 or 77 entry are as follows:

• Enter FD, SD, 01, or 77, whichever is appropriate.

• Follow the entry with the appropriate associated name and descriptive information.

8600 0296-000 1-7

Program Structure

1-8

The rules for forming declarative keywords are as follows:

• Enter DECLARATIVES. on a line by itself at the beginning of the DECLARATIVES
SECTION of the PROCEDURE division.

• Enter END DECLARATIVES. on a line by itself at the end of the DECLARATIVES
SECTION.

Example

Example 1-2 shows coding of area A entries.

000100 IDENTIFICATION DIVISION.
000200 ENVIRONMENT DIVISION.
000300 CONFIGURATION SECTION.
000400 SOURCE-COMPUTER. MICROA.
000500 INPUT-OUTPUT SECTION.
000600 FILE-CONTROL.

001000 DATA DIVISION.
001100 FILE SECTION.
001200 FD GUEST-FILE

001400 01 NAME-RECORD.

001800 WORKING-STORAGE SECTION.
001900 77 EOF-FLAG.

003000 PROCEDURE DIVISION.
003100 DECLARATIVES.

003300 END DECLARATIVES.
003400 MAIN SECTION.

Example 1-2. Coding Area A Entries

See Also

• For information about level numbers, refer to Section 7, "DATA DMSION."

• For information about declaratives, refer to Section 8, "PROCEDURE DIVISION
Concepts." ,

8600 0296-000

Program Structure

Columns 12-72: Area B

The bulk of your code, including sentences, statements, clauses, and many level-number
entries, begin in area B. Your entry can begin anywhere within area B.

In the DATA DIVISION, all level numbers other than 01 and 77 can begin anywhere in
areaAorB.

The first sentence or entry in a paragraph begins either on the same line as the
paragraph name or in area B of the next nonblank line that is not a comment line.
Additional sentences begin after the previous sentence in area B of the same line or in
area B of the next nonb1ank line that is not a comment line.

For readability, Unisys recommends that you begin all level numbers other than 01 or
77 in area B and that you indent each successively higher level number two to· four
positions. In addition, U nisys suggests that you define level numbers with an increment
value greater than one so that it is possible to insert new levels between two levels, if the
need arises.

Example

Example 1-3 shows the use of indentation to make your coding more readable.
Subordinate entries are indented four spaces. For example, MONTH, DAY, and YEAR
are all elements of DATER.

010000* Indentation improves the readability of your program.
010050*
010100 01 INPUT-RECORD.
100350 03 DATER
100400 05 MONTH PIC 99.
100450 05 DAY PIC 99.
100500 ·05 YEAR PIC 99.
100550 03 FILLER PIC X(33).
100600 66 IN-DATE RENAMES MONTH THRU YEAR.

Example 1-3. Coding Area B Entries for Readability

Columns 73-80: Identification Area

This area is an optional area. You can use it for documentation purposes.

8600 0296-000 1-9

Program Structure

Special· Purpose Lines
Special purpose lines are lines that have a special character in the indicator area
(column 7) or are blank. These include comment lines, continuation lines, debugging
lines, compiler control options, and blank lines.

Comment Lines

A comment line is any line with either an asterisk (*) or a slash (f) in the indicator area
(column 7) of the line. A comment line can appear anywhere in a source program and
can use any combination of characters from the character set of the computer, not just
the characters in the COBOL74 character set. You can use successive comment lines.

If you use the slash character to indicate a comment, the printer ejects a page before
printing the comment on the output listing of the compiler.

Example

Example 1-4 shows the use of comment lines.

100100 IDENTIFICATION DIVISION.
100200* The purpose of this program is to
100300* Notice that comments can use lowercase letters.
100400 PROGRAM-ID. GUEST-CREDIT-AUTHORIZATION.
100500/ This comment is printed at the top of a new page.
100600 ENVIRONMENT DIVISION.

Example 1-4. Coding Comment Lines

Continuation Lines

1-10

A continuation line is a line that is continued from a previous line. You indicate a
continuation line with a hyphen (-) in the indicator area (column 7). The hyphen means
that the first nonblank character in area B (columns 12-72) of the continuation line
follows the last nonblank. character of the preceding line, with no spaces inserted. Area
A (columns 8-11) of a continuation line must be. blank. If no hyphen is present in the
indicator area of a line, the compiler assumes that the last character in the preceding line
is followed by a space. You can use successive continuation lines.

8600 0296-000

Program Structure

The rules for using a continuation line with a nonnumeric literal (which must begin with
a quotation mark) or an undigit literal (which must begin with a commercial at sign) are
as follows:

• . Use all 72 positions on the line to be continued. All spaces at the end of the line are
considered to be part of the literal.

• Do not close the literal in column 72 with a quotation mark for the nonnumeric
literal or a commercial at sign (@) for the undigit literal because doing so will delimit
the literal and prevent it from being continued.

. • Enter as the first nonblank character in area B a quotation mark for the nonnumeric
literal or a commercial at sign for the undigit literal. The literal continues with the
character immediately after the quotation mark or a commercial at sign.

Example

Example 1-5 shows coding of continuation lines.

1~~15~*Line 1~~2~~ continues the clause begun on the preceding line.
1~~1~~ SELECT GUEST-FILE ASSIGN TO DISK OR
1~~2~~- GANIZATION IS SEQUENTIAL.

1~~7~~* Line 10~90~ continues a nonnumeric literal.
100800 77 HEADER-LINE PIC X(6~) VALUE IS II JANUARY FEBRUARY
1~~900- MARCH APRIL MAY JUNE II
101~00

101500*Line 1020~0 continues an undigit literal.
1~1000 77 HEX-LITERAL PIC X(3~) VALUE IS @AAAAAAAAAABBBBBBBBBBCCC
1~2~00- @CCCCCC@.
102300
1~2500* The first quote continues the nonnumeric literal; the second
102550* quote ends the literal.
1~2600 01 WARNING MESSAGE PIC X(24) VALUE IS IIWRONG ENTRY FOR THIS KEY
1~2700- 1111

Example 1-5. Coding Continuation Lines

Debugging Lines

A debugging line is any line with a D in the indicator area (column 7) of the line. A
debugging line with spaces in columns 8 through 72 is considered to be the same as a
blank line .. You can enter a debugging line anywhere after the OBJECT-COMPUTER
paragraph.

The debugging module is activated when you specify the WITH DEBUGGING MODE
clause in the SOURCE-COMPUTER paragraph. If you do not activate the debugging
module, the compiler treats a debugging line like a comment line. Therefore, you should
make sure that your program is syntactically correct when the debugging lines are
considered to be comment lines.

8600 0296-000 1-11

Program Structure

1-12

You can use successive debugging lines and can continue debugging lines; however, each
continuation line must contain a D in the indicator area, and character strings cannot be
continued across multiple lines.

Example

Example 1~6 shows the use of debugging lines.

010000 IDENTIFICATION DIVISION.
100000 ENVIRONMENT DIVISION.
100100 SOURCE-COMPUTER. MICROA WITH DEBUGGING MODE

100600 WORKING STORAGE SECTION.
100700077 PERFORMANCE-COUNT PIC 9(4).
100800077 BAD-RECORDS PIC 9(4).
100900077 RATIO PIC 9(4).99.

101000 PROCEDURE DIVISION.
102000 OPEN-IT.
102100 OPEN INPUT GUEST-FILE.
1030000 MOVE ZEROS TO PERFORMANCE-COUNT, BAD-RECORDS, RATIO.
104000 READ-IT.
104100 READ GUEST-FILE AT END GO TO FINISH-IT.
1050000 ADD 1 TO PERFORMANCE~COUNT.
1060000 IF IN-KEY NOT NUMERIC ADD 1 TO BAD-RECORDS.

107000 GO TO READ-IT.
108000 FINISH-IT.
108100 CLOSE GUEST-FILE.
1090000 DIVIDE PERFORMANCE-COUNT BY BAD-RECORDS GIVING RATIO.

Example 1-6. Coding Debugging Lines

See Also

• For information about the WITH DEBUGGING MODE clause, refer to Section 4,
"IDENTIFICATION DIVISION."

• For information about the debug module, refer to Section 11, "Debugging."

8600 0296-000

Program Structure

Compiler Control Options

A compiler control option is any line with a dollar sign ($) in the indicator area (column 7)
of the line. This line specifies compiler control options to use during the compilation
process.

See Also

For a discussion of the available compiler control options and their uses, refer to
Section 17, "Control of the Compilation Process."

Blank Lines

A blank line is a line that has no entries in the indicator area, area A, or area B. You
can use a blank line anywhere in the source program except immediately preceding a
continuation line.

8600 0296-000 1-13

1-14 8600 0296-000

Section 2
Language Elements

This section describes the following elements used to form the components of a source
program:

• Character set

• Separators

• Character strings

Character Set
The most basic and indivisible unit of the COBOL741anguage is the character. The set
of characters you use to write COBOL74 programs includes the letters of the alphabet,
digits, and special characters. The character set consists of 52 characters, including the
51 characters specified in the ANSI-74 standard plus the commercial at sign (@), which
is a U nisys extension. You link these individual characters together to form character
strings and separators and you link character strings and separators to form a source
program.

Table 2-1 shows the COBOL 7 4 character set.

Character

o through 9

I

$

<

t Unisys extension

8600 0296-000

Table 2-1. Character Set

Meaning

Digit

Space or blank

Minus sign or hyphen

Virgule, or slash

Dollar sign

Semicolon

Quotation mark

Right parenthesis

Less tha n sign

Character

A through Z

+

*

(

>

@t

Meaning

Letter

Plus sign

Asterisk

Equal sign

Comma or decimal point

Period or decimal point

Left parenthesis

Greater than sign

Commercial at sign

2-1

Language Elements

Separators
A separator is a string of one or more punctuation characters. You can link. a separator
with another separator or with a character string. A character-string must be linked to a
separator. Table 2-2 lists all the separators and the rules governing them.

Separator

(space)

, ;

()

1111

@t

NCI't

Table 2-2. Meanings of Separators

Explanation

Spaces can precede or follow all other separators. Special rules for spaces are as
follows:

• A space is required before the opening pseudotext delimiter.

• A space that precedes the ending quotation mark of a nonnumeric literal is
considered to be part of the literal.

• A space that follows the opening quotation mark of a nonnumeric literal is
considered to be part of the literal.

Periods mark the end of a COBOL74 entry. A period is always treated as a
separator when it is followed by a space. In-a Unisys extension, a period does not
neeq to be followed by a space in most cases. tHowever, Unisys recommends that
the period always be followed by a space when it is used as a separator character.
This practice prevents problems in those environments in which the space is
required but not encountered.

Commas and semicolons delimit clauses. A comma or a semicolon is always
treated as a separator when it is followed by a space. In a Unisys extension, they
do not need to be followed by a space in most cases. t However, Unisys
recommends that the comma and semicolon always be followed by a space when
they are used as a separator character. This practice prevents problems in those
environments in which the space is required but not encountered.

Left and right parentheses delimit subscripts, indexes, arithmetic expressions, or
conditions. They must appear in balanced pairs.

Quotation marks delimit nonnumeric literals. They must appear in balanced pairs.
If the literal is continued on another line, you need to enter another quotation
mark as the first nonblank character in area B. An opening quotation mark must
be preceded immediately by a space, left parenthesis, (comma, or semicolont).
A closing quotation mark must be followed immediately by a space, comma,
semicolon, period, or right parenthesis.

Pseudotext delimiters set off pseudotext. They must appear in balanced pairs. An
opening pseudotext delimiter must be preceded by a space. A closing pseudotext
delimiter must be followed by a space, comma, semicolon, or period.

Commercial at signs delimit undigit literals. An opening @ character must be
preceded immediately by a space, comma, semicolon, or left parenthesis; a
closing @ character must be followed immediately by a space, comma,
semicolon, period, or right parenthesis.

NC" characters precede a Kanji literal. A quotation mark follows the Kanji literal.

t Unisys extension

2-2 8600 0296-000

Language Elements

Any punctuation character that you use in a PICTURE character string or numeric
literal is considered to be part of the PICTURE character string or numeric literal
rather than a punctuation character. You delimit PICTURE character strings by· spaces,
commas, semicolons, or periods.

The rules established for the formation of separators do not apply to the characters
in nonnumeric literals, comment-entries, or comment 'TInes. When you are coding
nonnumeric literals, comment-entries, or comment lines, you can use the complete
character set of the computer, not just the COBOL74 character set.

Character Strings
A character string is a set of one or more characters delimited by separators that form
one of the following:

• Word

• Literal

• PICTURE character string

• Comment-entries

See Also

• For information about the various types of COBOL words, refer to "Word Types"
later in this section.

• For definitions and examples of the various types of literals you can use in a COBOL
program, refer to "Literals" later in this section.

• For information about PICTURE character strings in the PICTURE clause, refer to
Section 7, "DATA DMSION."

• Refer to Section 1, "Program Structure," for information about comment-entries.

8600 0296-000 2-3

Language Elements

Word Types
A COBOL word is a character string that forms one of the following:

• Reserved word

• Context-sensitive keyword

• Application-specific keyword

• System-name

• User-defined word

You can use a given COBOL word in your program as both a system-name and a
user-defined word, or as both a system-name and a reserved word. You cannot use a
reserved word as a user-defined word.

Reserved Words

2-4

A reserved word is a COBOL 74 word that has a specific meaning to the compiler.
For example, MOVE is a reserved word that directs the compiler to perform a move
operation.

A reserved word is a word that is reserved by the compiler and that you cannot use as
a user-defined word anywhere in the source program. No exceptions exist for specific
divisions, sections, or statements. Reserved words are used in the following six ways:

• As connectives that qualify data, link two or more operands in a series, or link logical
operators to form conditions

• As figurative constants that associate names to values that you commonly use in a
source program

• As keywords that are verbs or other required pieces of a syntax

• As optional words that increase the readability of your program

• As special registers that are compiler-generated, read-only storage areas that
provide you with access to specific COBOL 74 features

• As special-character words that indicate arithmetic or relational operations

See also

For a complete list of reserved words in Unisys COBOL74, refer to Appendix B,
"Reserved Words and Keywords."

8600 0296-000

Language Elements

Connectives

Connectives are reserved words that you can use in any of the following two ways:

• As a qualifier to associate a data-name, a condition-name, a text-name, or a
paragraph-name with its qualifier. Examples of qualifier connectives are OF or IN.

• As logical connectives to form conditions. Examples of logical connectives are AND
and OR.

Figurative Constants

Figurative constants are reserved words that act as literals for values you might
commonly use in a source program. These reserved words make your programming task
easier by relieving you of the burden of assigning names to specified constant values.
You can use a figurative constant wherever a literal can be used. For example, aMOVE
SPACES TO data-name statement fills the data-name with spaces. The only figurative
constant that acts as a numeric literal is the ZERO (ZEROS, ZEROES) figurative
constant, and then only when you use it in a context that requires a numeric literal.

You can use. figurative constants in the following types of statements:

• In MOVE and IF statements for moving and comparing data items

• In DISPLAY and STOP statements for displaying one character

• In STRING and UNSTRING statements for manipulating one character

Figurative constants increase the readability of your program. The singular and plural
forms of figurative constants are equivalent and interchangeable. Each figurative
constant is a distinct word, except for the ALL literal constant, which is two distinct
words.

8600 0296-000 2-5

La nguage Elements

The individual figurative constants are described in Table 2-3.

2-6

Figurative Constant

ZERO, ZEROS,
ZEROES

SPACE, SPACES

HIGH-VALUE,
HIGH-VALUES

LOW-VALUE,
LOW-VALUES

QUOTE, QUOTES

ALL literal

Table 2-3. Figurative Constants

Explanation

Represents numeric 0 or one or more of the alphanumeric character
0, depending on context.

Represents one or more of the alphabetic character space from the
character set of the computer.

Represents the alphanumeric character or characters that occupy
the last position in your program's collating sequence. If you specify
a collating sequence in the SPECIAL-NAMES paragraph, the
HIGH-VALUE figurative constant represents the character or
characters that occupy the last position in the collating sequence
that you specify. This figurative constant may produce unexpected
results when used with the system default ccsversion in the
SPECIAL-NAMES paragraph. For more information, see
IISPECIAL-NAMES" in Section 5, IIENVIRONMENT DIVISION."

Represents the alphanumeric character or characters that occupy
the first position in your program's collating sequence. If you specify
a collating sequence in the SPECIAL-NAMES paragraph, the
LOW-VALUE figurative constant represents the character or
characters that occupy the first position in the collating sequence
that you specify. This figurative constant may produce unexpected
results when used with the system default ccsversion in the
SPECIAL-NAMES paragraph. For more information, see
IISPECIAL-NAMES" in Section 5, "ENVIRONMENT DIVISION."

Represents one or more alphanumeric quotation mark characters.
You can use this figurative constant to avoid using a quotation mark
within a literal. For example, MOVE QUOTE TO OUT-LINE
causes a quotation mark to be printed. You cannot use QUOTE or
QUOTES to bound a nonnumeric literal. For example, QUOTE XYZ
QUOTE is incorrect as a way of stating the nonnumeric IiteraIIXYZ".

Represents a continuous sequence of any alphanumeric literal. The
literal part of the figurative constant must be a nonnumeric literal or
a figurative constants other than ALL. When you use a figurative
constant other than ALL as the literal, the word ALL is redundant.
For example, MOVE ALL SPACES is equivalent to MOVE SPACES.
You might want to retain the word ALL to improve the readability of
your program.

8600 0296-000

Language Elements

wp.en a figurative constant represents a string of one or more characters, the compiler
determines the length of the string from context according to the following rules.

• When a figurative constant is moved to or compared 'Yith another data item, the
compiler repeats the string of characters specified by the figurative constant,
character by character, until the receiving string has as many characters as the
associated data item. The compiler independently completes the character repetition
before it applies any JUSTIFIED clause that is associated with the data item.

• When you compare the alphanumeric figurative constant HIGH-VALUE,
LOW-VALUE, or QUOTE with a numeric data item in a relation condition, the
compiler uses the rules for nonnumeric comparison.

• When you move an alphanumeric figurative constant HIGH-VALUE, LOW-VALUE,
or QUOTE to a numeric or numeric-edited data item, the compiler uses the rules
for moving an alphanumeric item to a numeric or numeric-edited item; that is,
the results are the same as if an alphanumeric data item contained the figurative
constant value in all its character positions. The compiler moves the data as if
the figurative constant was an unsigned numeric integer; therefore, it converts
nonnumeric characters into numeric characters. For example, it converts the
LOW-VALUE EBCDIC character to EBCDIC 0, the HIGH-VALUE EBCDIC
character to EBCDIC 9, and the EBCDIC QUOTE character to EBCDIC 9.

• When the figurative constants ZERO, SPACE, HIGH-VALUE, or LOW-VALUE are
move to or compared with a Kanji data item, the compiler represents the actual
character associated with each figurative constant as one or more of the Kanji
characters.

Examples

The following example initializes a value in the WORKING-STORAGE SECTION to
three zeros.

77 NUMBER-OF-GUESTS PIC 9(3) VALUE ZEROS
The next example uses LOW-VALUE and HIGH-VALUE to process an End-Of-File
condition.

77 EOF-FLAG PIC X VALUE LOW ... VALUE

READ GUEST-FILE AT END
MOVE HIGH-VALUE TO EOF-FLAG.

IF EOF-FLAG EQUAL TO HIGH-VALUE

The next example uses ZERO and SPACES for compare and move operations.

IF NUMBER-OF-GUESTS EQUAL TO ZERO
MOVE SPACES TO GUEST-LAST-NAME.

8600 0296-000 2-7

Language Elements

The next example uses the ALL literal figurative constant in a MOVE ALL literal TO
data-item statement .. The first column shows the value of the literal, the second colunm
shows the size of the data item designated as the receiving field, and the third column
shows the value of that data item after the MOVE statement completes.

Contents of
Receiving Field Receiving Field

ALL Literal Size in Characters after MOVE

ALL "ABC" 7 ABCABCA

ALL "3" 5 33333

ALL "HI-LO" 12 HI-LOHI-LOHI

ALL "LlMI,... 4 LlMI

The next example shows that the figurative constant ALL is redundant when used With
a figurative constant.

Figurative
Constant

QUOTES

ALL QUOTES

See Also

Receiving Field
Size in Characters

3

3

Contents of
Receiving Field

after MOVE
111111

• For information about specifying a collating sequence, refer to "OBJECT
COMPUTER" and "SPECIAL-NAMES" in Section 5, "ENVIRONMENT
DIVISION."

• Refer to "MOVE" in Section 9, "PROCEDURE DIVISION Statements," for
information about rules for moving data.

Keywords and Optional Words

2-8

A keyword is a word that is required by the context in which it appears. In the format
notation, keywords are uppercased and underlined. There are the following three kinds
of keywords:

• Verbs, such as ADD, READ, and MOVE

• Functional words, such as NEGATIVE and SECTION

• Other words that appear in statement and entry formats

Optional words are reserved words that increase the readability of your program. They
do not affect the execution of your program. In the format notation, they appear as
uppercase words that are not underlined.

8600 0296-000

Language Elements

Example

In the following example, RECORD is a keyword, CONTAINS and CHARACTERS
are optional words, TO is a keyword required when the integer-! option is used, and
DEPENDING and ON are keywords required when the DEPENDING ON option is
used. Data-name is a user-defined word rather than a keyword, but if the DEPENDING
ON option is present, the data-name user-defined word must appear too. Likewise, if .
data-name is present, DEPENDING ON must appear too.

RECORD CONTAINS [integer-! TO] integer-2 CHARACTERS

[DEPENDING ON data-name]

See Also

Refer to Appendix A, "General Format Notation," for a full explanation of the format
notation.

Special Registers

Special registers are compiler-generated, read-only storage areas that primarily give
access to information produced with the use of specific COBOL74 features.

Table 2-4 explains each of the special registers.

Register

DATE

DAY

DEBUG-ITEM

8600 0296-000

Table 2-4. Special-Register Definitions

Explanation

Contains the system date formatted as year of century, month of
year, and day of month. DATE is an an unsigned, 6-digit, elementary
numeric integer. For example, July 1, 1990, is expressed as
90070l.

Contains the system date formatted as the year of century followed
by the number of days since the beginning of the year. DAY is an
unsigned, 5-digit, elementary numeric integer. For example, July 1,
1990, is expressed as 90183.

Provides information about the conditions that caused execution of a
debugging section. Each execution of a debugging section has the
specia I register DEBUG-ITEM associated with it.

continued

2-9

Language Elements

Register

TIME

TIMERt

TODAYS-DATEt

TODAYS-NAMEt

LlNAG E-COU NTER

LINE-COUNTER

PAGE-COUNTER

t Unisys extension

Table 2-4. Special-Register Definitions (cont.)

Explanation

Contains the elapsed time after midnight based on a 24-hour clock
in hours, minutes, seconds, and hundredths of a second. TIME is an
unsigned, 8-digit, elementary numeric integer. For example, 2:41
p.m. is expressed as 14410000. The maximum value of TIME is
23595999.

Represents the number of 2.4-microsecond intervals since midnight.
TIMER is a single, unsigned 11-digit, numeric integer. It is
composed of the current value of the computer's interval timer.

Represents the date as the month of the year, followed by the day of
the month, followed by the year of the century. TODAYS-DATE is a
6-digit, unsigned, elementary numeric integer. For example, July 1,
1990, is expressed as 070190.

Provides the current day of the week. TODAYS-NAME is an
elementary,9-character, alphanumeric item. If the day of the week
is less than nine characters long, it is left-justified in the 9-character
area provided, with space-fill on the right.

Contains at any time the number of lines advanced within a printed
page. LINAGE-COUNTER is a fixed data-name for a line counter
suitable for computation. It is generated by the presence of a
LINAGE clause in a file description (FD). The implicit class of a
LINAGE-COUNTER is numeric. No data item is referenced; it is
treated as a lINENUMBER attribute for purposes of retrieval. The
compiler automatically supplies one LINAGE-COUNTER for each file
in the FILE SECTION that has a LINAGE clause in its FD entry.

Provides the vertical position in a report. LINE-COUNTER is a fixed
data-name for a line counter suitable for computation. It is
generated for each report description (RD) in the REPORT SECTION.
The compiler automatically provide,S one LINE-COUNTER register for
each report in the RD entry.

Provides page numbers within a report group. PAGE-COUNTER is a
fixed data-name for a page counter suitable for computation. It is
generated for each report-description (RD) entry in the REPORT
SECTION. The compiler automatically supplies one PAGE-COUNTER
for each report that has the word PAGE-COUNTER as a source data
item in a RD entry.

Special-Character Words

2-10

Special characters are reserved words used to indicate the arithmetic operations of
addition, subtraction, multiplication, division, and exponentiation and the relational
operations of comparing less than, greater than, and equal to conditions.

8600 0296-000

Language Elements

Table 2-5 shows the meaning of each special-character word.

Table 2-5. Special-Character Words

Character Meaning

Arithmetic Operator + Plus sign

Minus sign

* Mu Itipl ication

/ Division

** Exponentiation

Relation Character < Less than sign

> Greater than sign

Equals sign

Context-Sensitive Keywords

A context-sensitive keyword is a word that the compiler recognizes as reserved when it is
used in a compiler-defined syntax. IT you want to use that word as a user-defined word
in another.place, the compiler recognizes it as a user-defined word in that context.

See Also

For a list of context-sensitive keywords, refer to Appendix B, "Reserved Words and
Keywords. "

Application-Specific Keywords

An application-specific keyword is a word that is reserved by the compiler for the
extent of the program. Application-specific keywords are used for applications
such as internationalization and port files. You must specify that you are using
application-specific keywords by using the RESERVE clause of the SPECIAL-NAMES
paragraph in the ENVIRONMENT DMSION.

See Also

• For information about using the RESERVE clause (a Unisys extension) to indicate
that the compiler should treat certain keywords as application-specific, refer to
"SPECIAL-NAMES" in Section 5, "ENVIRONMENT DMSION."

• For the list of application-specific keywords; refer to Appendix B, "Reserved Words
and Keywords."

8600 0296-000 2-11

Language Elements

System-Name

A system-name is a word that you use to communicate with the operating environment.
A system-name can be one of the following two types:

• A computer-name, such as MICROA and A17, that identifies the computer on
which the program is to be compiled or run. Computer-name is treated as a
comment-entry.

• An implementor-name, such as ODT and SWl, that refers to a particular feature
available with your system.

The rules for forming a system-name are as follows:

• Make the system-name no more than 30 characters long.

• Select each character from the set of characters A through Z, 0 through 9, and the
hyphen (-).

• Do not use the hyphen as the first or last character of a system-name.

User-Defined Words

A user-defined word is a word that you define to complete the format of a clause or
statement. The rules for forming a user-defined word are as follows:

• Make the user-defined word up to 30 characters long.

• Select each character from the set of characters A through Z, 0 through 9, and the
hyphen (-).

• Do not use the hyphen as the first or last character of a word.

• Do not use a reserved word.

• Make sure that all user-defined words, except for level-numbers and
segment-numbers, are unique. You can use qualification to ensure that a word
is unique. Level-numbers and segment-numbers do not need to be unique. A
given level-number or segment-number can be identical to a paragraph-name or a
section-name.

• Include at least one alphabetic character in all user-defined words except
paragraph-names, section-names, level-numbers, text-names, library-names,
family-names, and segment-numbers.

2-12 8600 0296-000

Language Elements

Table 2-6 shows some of the user-defined words and explains how they are used in your
program.

User-Defined Word

Alphabet-name

CD-name

Condition-name

Data-name

Family-namet

File-name

Index-name

Level-number

Library-name

Mnemonic-name

Paragraph-name

Program-name

Record-name

t Unisys extension

8600 0296-000

Table 2-6. User-Defined Words

Explanation

Assigns a name to a specific character set and collating sequence in
the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION.

Assigns a name to a communication description (CD).

Assigns a name to a specific value, set of values, or range of values
within a complete set of values that a conditional variable can have.
A conditional variable is a data item that can assume more than one
value. The values that it can assume have condition-names
assigned to them. A condition-name can also assign a name to a
switch or device.

Condition-names can be defined in the DATA DIVISION or in the
SPECIAL-NAMES paragraph within the ENVIRONMENT DIVISION.

You can use a condition-name as an abbreviation for a relation
condition. A relation condition states that the associated conditional
variable is equal to one of the set of values to which that
condition-name is assigned.

Names a data item described in a data-description entry.

Identifies a family of disks on which a file resides.

Names a file described in a file-description entry or a sort-merge file
description (FD) entry in the FILE SECTION of the DATA DIVISION.

Names an index associated with a specific table.

Assigns a one- or two-digit number that shows the hierarchical
position of a data item or a special property of a data-description
entry. .

Names a COBOL library that is to be used in conjunction with the
COpy statement by the compiler for a given source program
compilation.

Assigns a user-defined word to an implementor-name. These
associations are established in the SPECIAL-NAMES paragraph of
the ENVIRONMENT DIVISION.

Identifies and begins a paragraph in the PROCEDURE DIVISION.
Paragraph-names are equivalent only if composed of the same
sequence and number of digits and/or characters.

Identifies a source program in the IDENTIFICATION DIVISION.

Names a record described in a record-description (RD) entry in the
DATA DIVISION.

continued

2-13

Language Elements

User-Defined Word

Report-na me

Routine-namet

Section-name

Segment-number

Text-name

Table 2-6. User-Defined Words (cont.)

Explanation

Names a Report Writer report described in a report-description (RD)
entry in the DATA DIVISION.

Identifies a procedure written in a language other than COBOL74.
('

Names a section in the PROCEDURE DIVISION. Section-names are
equivalent only if composed of the same sequence and number of
digits and/or characters.

Groups sections in the PROCEDURE DIVISION for the purposes of
segmentation.

Specifies the external identification of a file in the COBOL library.

This manual also uses user-defined words that are not identified in Table 2-6 in order
to clarify the meaning of a format notation. For example, an identifier for an event is

. called an event-identifier. You can determine that a word is user defined if it appears in
lowercase letters in the format notation. Some of the user-defined words described in
Volume 2 are form-name, formlibrary-name, and group-list-name.

See Also

For information about qualification, refer to Section 6, "DATA Concepts."

Literals
A literal is a string of characters whose value is either the ordered set of characters of
which the literal is composed or a reserved word that refers to a figurative constant.

Every literal is one of the following five types:

• Nonnumeric

• Numeric

• Floating point

• Undigit

• Kanji

Nonnumeric

2-14

A nonnumeric literal is a string of characters delimited on both sides by quotation marks.
An example is "Month Year". You can use any allowable character in the character set of

86000296--000

Language Elements

the computer to form a nonnumeric literal. Nonnumeric literals are in the alphanumeric
category.

The rules for the formation of nonnumeric literals are as follows:

• Nonnumeric literals can be between 1 ~d 160 characters long.

• A single quotation mark is delimited by two contiguous quotation marks within a
nonnumeric literal. Each embedded pair of contiguous quotation marks represents a
single quotation mark character.

• Delimiting quotation marks are excluded from the value of the nonnumeric literal.

• Except delimiting quotation marks, all other punctuation characters within the
literal are considered to be part of the nonnumeric literal.

• Any literals used for arithmetic computation must not be enclosed in quotes as
nonnumeric literals. The literal "7.7" is a nonnumeric literal and is stored differently
from the numeric literal 7.7 (not enclosed in quotes).

Examples

The following are examples of nonnumeric literals. The string on the left shows the
literal as it appears in your source program. The string on the right shows the literal as
it is stored by the compiler.

Numeric

Literal in Source Program

"ANNUAL DUES"

"(M I LES/GALLON)"

"-123.456"

"AIIIIS"

IIIIIILlMITATIONS"11

Literal Stored by Compiler

ANNUAL DUES

(MILES/GALLON)

-123.456

A"B

ILiMITATIONS"

A numeric literal is a character string selected from the digits 0 through 9, the plus sign
(+), the minus sign (-), and the decimal point.

The rules for the formation of numeric literals are as follows:

• A literal can be between 1 and 23 digits long.

• A literal must contain at least one digit.

• A literal must not contain more than one sign character. If a sign is used, it must
appear as the leftmost character of the literal. If the literal is unsigned, it is positive.

8600 0296-000 2-15

Language Elements

• A literal must not contain more than one decimal point. The decimal point is treated
as an assumed decimal point and can appear anywhere within the literal except as
the rightmost character. If the literal contains no decimal point, the literal is an
integer. A literal that conforms to the rules for the formation of numeric literals, but
is also enclosed in quotation marks, is a nonnumeric literal and is treated as such by
the compiler.

• The value of a numeric literal is the algebraic quantity represented by the characters
in the numeric literal. Every numeric literal is in the numeric category. The size of a
numeric literal in standard data-format characters is equal to the number of digits
that you specify.

Examples

The following are examples of numeric li~erals:

12345
.005
+1.008
-.0965
7842.1

Floating Point

A floating-point literal is a string of characters that uses two numbers to represent one
original number. The first number is called the mantissa. It has a value between 0 (zero)
·and nine. The second number is called the exponent. It represents the power of ten
by which the first number is multiplied to obtain the original number. The format of a
floating-point literal is as follows:

mantissa E exponent

For example, 8,765,432.1 is 8.7654321E6 in floating-point notation.

The advantage of floating-point notation is that you can handle very small and very large
numbers easily. You can use floating-point literals as alternatives to coding numeric
literals. You should consider using floating-point literals with REAL and DOUBLE data
items.

The rules for the formation of floating-point literals are as follows:

• The mantissa can be signed and must have one decimal point.

• The exponent can be signed and must be an integer.

2-16 8600 0296--000

Type

Single

Double

Language Elements

Table 2-7 shows the smallest and largest permitted values for single-precision and
double-precision data items using floating-point literals.

Table 2-7. Range of Values Permitted for Floating-Point Literals

Smallest Permitted Value

8.75811540203E-47

1.93854585713758583355640E-29581

Examples

Largest Permitted Value

4.31359146674E68

1.94882938205028079124469E29603

The following are examples of floating-point literals.

l.E-40
-.0023E29
+.0012345E-5
+1.2E9500
2.E40
+123.45678901234E20

Undigit(Uni·sys Extension)

An undigit literal is a string of characters that represents the hexadecimal equivalent
of an EBCDIC character. Each EBCDIC character is represented by two hexadecimal
digits. This means there are always an even number of digits in an undigit literal. You
might want to use an undigit literal to send control sequence messages to a remote
terminal.

The rules for the formation of undigit literals are as follows:

• Delimit both ends of the literal with the commercial at sign (@) characters.

• Select the characters from the hexadecimal digits 0 (zero) through 9 and the
characters A through R

The compiler interprets the undigit literal as either a 4-bit numeric literal or an 8-bit
alphanumeric literal. You determine the interpretation of the undigit literal by specifying
the type of the data item to which the undigit literal is associated. An undigit literal
is numeric if it appears in the VALUE clause associated with a COMPUTATIONAL
item. An undigit literal is alphanumeric when the category of the associated data item is
alphanumeric.

8600 0296-000 . 2-17

Language Elements

An undigit literal is interpreted as alphanumeric in the following cases:

• In the VALUE clause associated with an alphanumeric, alphabetic, or group data
item, or in the VALUE clause of condition-names associated with such items

• In the MOVE statement, where the category of the receiving field is either
alphanumeric or alphabetic

• In the conditional expression of an IF, PERFORM, or SEARCH statement, where
the category of the other relational operand is either alphanumeric or alphabetic

• In an INSPECT, STRING, UNSTRING, DISPLAY, STOp, DISABLE, or ENABLE
statement

• In the ALL figurative constant

You can use undigit literals for numeric destinations in the MOVE statement when your
program meets all of the following criteria:

• The usage of the destination is COMP.

• The picture string for the destination does not contain the symbols S, V, or P.

• There is neither a SIGN clause nor a BLANK WHEN ZERO clause associated with
the data item associated with the undigit literal.

You can only use an undigit literal as described in the preceding paragraphs. No other
uses are allowed.

Examples

The following are examples of undigit literals and their EBCDIC equivalents.

Undigit literal

@OD@

@25@

EBCDIC Equivalent

CR (carriage return)

LF (line feed)

Kanji (Unisys Extension)

A Kanji (National Character) literal is intended to be used with KANJI data items as an
alternative to using standard nonnumeric literals. The general format for a Kanji literal
is the following:

NC" character-string"

2-18 8600 0296-000

Language Elements

The rules for the formation of a Kanji literal are as follows:

• A Kanji literal is bounded on the left by the separator Ne" and on the right by a
quotation mark (").

• The character string contains a string of Kanji characters between the blank space
after the first quotation mark and the blank space preceding the end quotation
mark. The compiler recognizes the start and the end of a Kanji character string by
means of the two blank spaces within the quotation marks.

• Spaces are not allowed within the character string of Kanji characters.

• A Kanji literal can be from 1 to 80 characters long.

A Kanji literal occupies twice as much storage space as a literal that is not Kanji.

8600 0296-000 2-19

2-20 8600 0296-000

Section 3
File and Task Concepts

To develop successful COBOL 74 programs, you need to understand some concepts that
underlie files and tasks. For example, to use files efficiently you need a knowledge of file
attributes, file organization, and access mode. An understanding of the tasking concept
includes knowledge of task attributes.

Physical Aspects of a File
File information describes both the physical aspects of the file and the logical
characteristics of the data in the file.

The physical characteristics of a file describe the data as it appears on the input or
output medium. This description refers to the grouping of the logical records within the
physical1imitations of the file medium.

A physical record is a physical unit of data with a size and recording mode convenient
for storing data on an input or· output device of a particular computer. The size of a
physical record is hardware dependent and has no direct relationship to the size of the
information file contained on a device.

The distinction between a physical record and a logical record, which is described next, is
important.

Logical Aspects of a File
The conceptual characteristics of a file are the explicit definitions of each logical entity
in the file. In a COBOL74 program, the input or output statements refer to one logical
record.

A COBOL logical record is related information that is uniquely identifiable and treated
as a unit.

One or more logical records can be contained in a single physical record. In a mass
storage file, however, one logical record could require more than one physical record In
this manual, references to records mean logical records unless the term physical record
is specified.

The concept of a logical record is not restricted to file data. A logical record can also
apply to the definition of working-storage. Thus, working-storage can be grouped into
logical records and defined by a series of record-description eIl:tries.

See Also

Refer to "Levels" in Section 6, "Data Concepts," for more information about records.

8600 0296-000 3-1

File and Task Concepts

Assigning a File to a Device
On A Series systems, the logical file mechanism supports access to remote and port files
as well as to other devices. The devices to which a file can be assigned are specified in
the SELECT clause of the ENVIRONMENT DIVISION.

Remote Files

Assignment of a file to a remote device enables the use of the logical file mechanism
to access a family of terminal or station devices. This mechanism uses traditional
file-handling methods rather than the specialized, data-communications handling
methods of the communication module.

Port Files

User processes communicate across a network through the standard I/O file mechanism
using a special kind of file called a port file. The program opens and closes port files
just like other files. A user can communicate with a process by performing read and
write operations to a port file. A port file is composed of one or more port subfiles, each
of which can be connected to a different process. Communication between processes
on the same host or system is effected by using port files without going through a
network. In addition, there is a service associated with each port file. This service can
be assigned with the SERVICE file attribute. For example, a user can set the SERVICE
file attribute to BNANATIVESERVICE.

A subfile provides a two-way, point-to-point, logical communication path between two
programs. To establish this path, each program must describe the desired connection.
This process is called matching. Each program describes its matching properties by using
file attributes.

In the SELECT clause of the ENVIRONMENT DMSION, the ACTUAL KEY clause
specifies the subfile index of a port file. If the ACTUAL KEY value is 0 (zero), the
OPEN statement opens all subfiles, the READ statement performs a nonselective read
operation, the WRITE statement performs a broadcast write operation, and the CLOSE
statement closes all opened subfiles associated with the port file.

If no A~TUAL KEY clause is specified, the file must contain a single subfile, which is
assumed to be the subfile in associated I/O statements.

See Also

The A Series I/O Subsystem Programming Guide provides more information about and
an example of coding a port file application.

File Attributes

3-2

'File attributes provide the capability for defining, monitoring, or changing file properties
or attributes.

8600 0296-000

File and Task Concepts

Note: File attributes provide you with access to functionality not otherwise
available within the language. File attributes can also be used to
declare and access files. When both a file attribute and standard
COBOL74 syntax are available to accomplish a desired function, it is
always preferable to use the standard COBOL74 syntax. Changing
the attribute can lead to unexpected results in cases when the attribute
is also used or altered by the compiler.

See Also

• Refer to the I/O Subsystem Programming Guide for information about how to use
file attributes.

• Refer to the A Series File Attributes Programming Reference Manual for the details
about a specific attribute.

File-Attribute Identifiers

File-attribute identifiers provide the ability to monitor, manipulate, define, or
dynamically change any specific file attribute.

The general format of the file-attribute identifier follows:

A'lTRIBUTE attribute-name {~} file-name [iarithmetic-expression2]

Explanation of Format

The attribute-name is defined by the system. Examples of attribute names include
FILETYPE, TITLE, and MAXRECSIZE. For more information on attribute names, see
the I/O Subsystem Programming Guide.

Port Files

A subfile index is required for accessing or changing attributes of a subfile of a port file.
A subfile index must be an arithmetic expression.

The arithmetic-expression option can be used only with a port file. The value of the
expression specifies the subfile of the file that is affected. If the arithmetic-expression
is not specified, the attribute of the port is accessed. If the arithmetic-expression is
specified and its value is not 0 (zero), it specifies a subfile index and causes the attribute
subfile to be accessed. If the arithmetic-expression is specified and its value is 0 (zero),
then the arithmetic-expression caUses causes the attribute of all subfiles to be accessed.

8600 0296-000 3-3

File and Task Concepts

File-Attribute Categories

A file attribute belongs to one of five categories, depending on the type of attribute-name
specified in the file-attribute identifier. The five file-attribute categories are described in
the following paragraphs.

Alphanumeric File-Attribute Identifier

Where allowed in syntax, an alphanumeric file-attribute identifier is similar to an
elementary alphanumeric DISPLAY data item that has a size equal to the maximum
size allowed for the specified attribute. The contents of the alphanumeric file-attribute
identifier are left-justified with·space-fill. Alphanumeric file-attribute identifiers are
allowed as operands in relation conditions and as sending operands in Format 1 MOVE
statements.

Numeric File-Attribute Identifier

Where allowed in syntax, a numeric file-attribute identifier is siinilar to an elementary
numeric DISPLAY data item that represents a signed integer with eight decimal digits.
Numeric file-attribute identifiers are allowed as operands in arithmetic expressions and
as sending operands in Format 1 MOVE statements. Some numeric file attributes
represent information about the number of areas, blocks, records, and so forth in the file.
These attributes are "one relative" in that their value specifies the exact number of
areas, blocks, records, and so forth in the file.

Mnemonic File-Attribute Identifier

3-4

Certain file attributes are associated with values that are best expressed as
mnemonic-names because the magnitude of the actual value is unrelated to its meaning.
Mnemonic file-attribute identifiers can appear as the subject of a mnemonic-attribute
relation condition, with the name for one of the values associated with the specified
attribute used as the object. The name for the attribute value must follow the reserved
word VALUE as shown in the next example.

Mnemonic-attribute relation conditions are allowed in any conditional expression. The
general format of a mnemonic-attribute relation condition follows:

mnemonic-attribute-identifier IS [NOT 1 {~QUAL TO}

{
VALUE} ··b al VA mnemomc-attrl ute-v ue

8600 0296-000

File and Task Concepts

Mnemonic-attribute relation conditions cannot be abbreviated. The names for the
mnemonic-attribute values are system-names and are not necessarily reserved words.
Boolean file attributes are considered mnemonic attributes in COBOL and are associated
with the mnemonic-attribute values TRUE and FALSE.

Boolean File-Attribute Identifier

These attributes are referenced in the same manner as numeric file-attribute identifiers.
These attributes return the value 1 for TRUE and 0 for FALSE.

Event File-Attribute Identifier

The file attributes of the type EVENT are the same as the variables of the USAGE
EVENT identifier. They can be used whenever an event-identifier is allowed.

File Organization and Access Methods
The organization of a file determines the access mode of that file. The organization can
be sequential, relative, or indexed.

Sequential Organization

Sequential files are organized so that each record in the file except the first has a unique
predecessor record, and each record except the last has a unique successor record.
These predecessor/successor relationships are established by the order.of the WRITE
statements when the file is created. Once established, the predecessor/successor
relationships do not change except when records are added to the end of the file.

Records in a file with sequential organization can be accessed in the sequence established
when the records were written to the file. A sequential mass storage file can be used for
input and output at the same time. This feature.enables a record to be read, updated,
and returned with modifications to its original position for purposes of file maintenance.

A file with sequential organization enables you to specify records in rerun points and
share memory areas among files.

Relative Organization

Relative I/O enables you to access file records in either a random or a sequential manner.
Each record in a relative file is uniquely identified by an integer value greater than 0
(zero). The value is called the relative record number. It specifies the logical, ordinal
position of the file record.

Records are read from, and written to, the file based on the relative record number.
For example, the tenth record is the record addressed by relative record number 10
and occupies the tenth record area, whether or not record areas 1 through 9 have been
written. .

8600 0296--000 3-5

File and Task Concepts

Indexed Organization

Indexed I/O enables you to access file records in either a random or a sequential manner.
Each record in an inde?Ced file is uniquely identified by the value of one or more keys
within that record.

The record description of an indexed file includes one or more key data items, each
associated with an index. The index provides a logical path to the data records, based on
the contents of the record keys in each record. .

Current-Record Pointer
The current-record pointer is a conceptual entity. It indicates to the program the next
record to be accessed within a given file.

For a file opened in the output mode, the current-record pointer concept has no meaning.

For sequential files, the current-record pointer indicates the next record for OPEN and
READ statements.

For relative and indexed files, the current-record pointer indicates the next record for
OPEN, READ, SEEK, and START statements.

Task Attributes
A task attribute is anyone of a number of items that describe and control various
aspects of the execution of a process. The program can access a task attribute by using a
task identifier. The task identifier is a data item declared with task usage in the USAGE
claUse.

A program can assign or change the value of a task attribute by using the CHANGE
statement or the MOVE statement.

See Also

• The syntax for setting task attributes is documented under the CHANGE statement
in Section 9, "PROCEDURE DMSION Statements."

• More information about tasking with COBOL74 is provided in the A Series Task
Management Programming Guide.

Task-Attribute Identifiers (Unisys Extension)

3-6

Task-attribute identifiers are used to change or interrogate the task attributes of related
processes in a synchronous or asynchronous processing environment. You should be
familiar with the concepts of tasking, the task attributes, and their possible variations.

8600 0296-000

File and Task Concepts

The general format of the task-attribute identifier follows:

{

task-identifier [~subscript2] }
ATTRIBUTE attribute-name OF MYSELF

MYJOB

Explanation of Format

task-identifier

A task-identifier can be attached to a program. For example,

CHANGE ATTRIBUTE NAME OF PROG2 TO "OBJECT/TASK.".

subscript

The optional subscript is used when the task item is declared with an OCCURS clause.
A maximum of one subscript is permitted. For example,

CHANGE ATTRIBUTE DECLAREDPRIORITY OF PROGI (1) TO 1.

MYSELF

The reserved word MYSELF is a compiler-supplied task item that enables a program to
access its own task attributes. Thus, any attribute of a given task can be referenced
within that task as ATTRIBUTE attribute-name OF MYSELF. For example,

CHANGE ATTRIBUTE DECLAREDPRIORITY OF MYSELF TO 90.

CHANGE ATTRIBUTE DECLAREDPRIORITY OF ATTRIBUTE PARTNER
OF MYSELF TO 65.

The second example illustrates another task running with a task that you are running.
The PARTNER attribute refers to the other task and the example changes the
DECLAREDPRIORITY of the other task.

MYJOB

The reserved word MYJOB is a compiler-supplied task item that enables a program to
access the task attributes of its job. Thus, any attribute of ajob can be referenced in any
task of that job as ATTRIBUTE attribute-name OF MY JOB. For example,

CHANGE ATTRIBUTE RESTART OF MYJOB TO 5.

8600 0296-000 3-7

File and Task Concepts

Task-Attribute Types

Task attributes of type EVENT can be used in place of any valid event-identifier
(USAGE EVENT).

Task attributes of type TASK are themselves task-identifiers of some other associated
task. This type of attribute can be employed to access or manipulate the task attributes
of the associated task.

Task attributes of type POINTER accept or return an alphanumeric DISPLAY item.

All other task attributes accept or return a numeric identifier, literal, arithmetic
expression, or the value associated with a mnemonic. If the value is not in the
permissible range for th~ attribute specified, an error occurs at compile time or at
execution time.

A task-attribute-mnemonic is a name associated with a constant value for an attribute
that has a set number of predetermined possible values.

The attribute names and their mnemonics are not treated as COBOL reserved words.
They are reserved only within the context in which they are used and can be also used as
data-names or procedure-names if they are not regular reserved words. Therefore, if a
data-name has the same name as the system attribute mnemonic, the value assigned to
the attribute by a CHANGE statement is determined by the use of the optional word
VALUE. If the word VALUE is present, the attribute is set to the value of the system
mnemonic. If the word VALUE is omitted, the attribute is set to the current value of
data-name.

Interrogating Task Attributes

3-8

You can interrogate a task attribute in any of the following ways:

• By specifying a task attribute in the sending field of a MOVE statement. The
following is an example:

MOVE ATTRIBUTE PROCESSTIME OF PROG3 TO PRINT-P-TIME.

When an attribute is moved into an area by a MOVE statement, the use of the
receiving field must be consistent with the type of the attribute. Boolean attributes
(those attributes having mnemonic values of TRUE or FALSE) return the number 0
if FALSE or the number 1 if TRUE. Boolean or INTEGER attributes should be
moved to a numeric receiving field. Type POINTER attributes should be moved to a
nonnumeric receiving field.

8600 0296-000

File and Task Concepts

• By making the task attribute the subject or object of a condition. The following is an
example:

IF ATTRIBUTE LOCKED OF PROG1 (1) = TRUE
CHANGE ATTRIBUTE TASKVALUE OF PROG1 (1) TO -1.

IF ATTRIBUTE NAME OF PROG2 = IIX/Y/Z. II
PERFORM PRINT-ROUTINE
UNTIL ATTRIBUTE ~TATUS OF PROG1 (2) = VALUE SUSPENDED.

• By using attributes with an implicit numeric class in DISPLAY statements. The
following is an example:

DISPLAY ATTRIBUTE STATUS OF PROG2
ATTRIBUTE PROCESSTIME OF PROG2.

• By using attributes with an implicit numeric class in place of any identifier in an
arithmetic statement, except the receiving-field identifier.

Task attributes can be tested against their associated attribute mnemonics.

The program fragment of Example 3-1 sets the BDBASE option of the OPTION task
attribute. Accessing specific options of the type OPTION task attribute requires use of
mnemonic-attribute identifiers. The mnemonic-attribute identifiers represent specific
bits in the type OPTION task attribute word. One way to access these bits is to use the
Format 3 MOVE statement.

11000 WORKING-STORAGE SECTION.
11100 01 OPTION-WORD PIC 9(11) BINARY.
11200 01 VALUE-ONE PIC 9(11) BINARY VALUE 1.
11300 PROCEDURE DIVISION.
11400 P-l.
11500 MOVE ATTRIBUTE OPTION OF MYSELF TO OPTION-WORD.
11600 MOVE VALUE-ONE TO OPTION-WORD [0:VALUE BDBASE:1].
11700 CHANGE ATTRIBUTE OPTION OF MYSELF TO OPTION-WORD.

Example 3-1. Setting the BDBASE Option

See Also

For a description of the rules that govern move operations, refer to "MOVE" in
Section 9, "PROCEDURE DMSION Statements."

8600 0296-000 3-9

3-10 8600 0296-000

Section 4
IDENTIFICATION DIVISION

The first division of the source program, the IDENTIFICATION DMSION, provides
identifying information about the source program such as the name of the program, the
creation date, the compilation date, and other documentation information.

With the exception of the DATE-COMPILED paragraph, the entire IDENTIFICATION
DIVISION is copied from the input source program and listed on the output listing.

The general format of the IDENTIFICATION DMSION is as follows:

[PROGRAM-ID. program-name.]

[AUTHOR. [comment-entry] ...]

[INSTALLATION. [comment-entry] ...]

[DATE-COMPILED. [comment-entry] ...]

[DATE-WRITTEN. [comment-entry] ...]

[SECtmrrY. [comment-entry] ...]

Note: Because the AUTHOR, INSTALLATION, DATE-WRITTEN, and .
SECURITY paragraph headers have associated text consisting only
of comment-entries, they are not further documented.

Explanation of Format

The IDENTIFICATION DMSION must begin with the reserved words
IDENTIFICATION DIVISION or ID DMSION followed by a period and ~ space.

8600 0296-000 4-1

IDENTIFICATION DIVISION

ID DIVISION is a synonym for IDENTIFICATION DIVISION. (The reserved word ID is
a Unisys extension.)

The comment-entry can be any combination of characters from the character set of the
computer. The continuation of the comment-entry by the use of the hyphen in the
indicator area is not permitted; however, the comment-entry can be contained in one or
more lines.

Example 4-1 shows coding of the IDENTIFICATION DIVISION.

IDENTIFICATION DIVISION.
PROGRAM-ID.
AUTHOR.
INSTALLATION.
DATE WRITTEN.
DATE COMPILED.
SECURITY.

GENERAL UPDATE.
JOHN SMITH.
MISSION VIEJO.
SEPTEMBER 10, 1984.
SEPTEMBER 15, 1984.
FOREVER.

Example 4-1. Coding the IDENTIFICATION DIVISION

PROGRAM·ID Paragraph

4-2

The PROGRAM -ID paragraph gives the name by which a program is identified. The
general format is as follows:

PROGRAM~ID. program-name.

Explanation of Format

The program-name identifies the source program and all listings pertaining to a
particular program. The program-name must conform to the rules for formation of a
user-defined word.

The following describes the different uses of the program-name:

Value of FEDLEVEL
Compiler Option

<5

=5

See Also

Use of Program-name

The program-name is treated as a comment.

The program-name is the entry-point name when the program is
used as a library. If a library program does not use the
PROGRAM-ID paragraph to designate an entry-point name, the
entry-point name is PROCEDUREDIVISION.

Refer to Section 15, "Libraries," for more information about creating a library.

8600 0296-000

IDENTIFICATION DIVISION

DATE·COMPILED Paragraph
The DATE-COMPILED paragraph provides the compilation date in the
IDENTIFICATION DMSION source program listing.

The general format of this paragraph is as follows:

DATE-COMPILED. [comment-entry] ...

Explanation of Format

The DATE-COMPILED paragraph causes the current date to be inserted during
compilation. If a DATE-COMPILED paragraph is present, it is replaced during
compilation with a paragraph of the following form:

DATE-COMPILED. current-date.

The current-date represents the date and time at which the compilation of the source
program started.

The comment-entry can be any combination of characters from the character set of the
computer. The continuation of the comment-entry by use of the hyphen in the indicator
area is not permitted; however, the comment-entry can be contained in one or more
lines.

8600 0296-000 4-3

~4 8600 0296-000

Section 5
ENVIRONMENT DIVISION

The second division of a source program, the ENVIRONMENT DMSION, specifies a
standard method of expressing aspects that depend on the physical characteristics of a
specific computer. This division enables you to specify the compiling computer, the object
computer, the files handled by the object program, and the I/O procedures to be used.

The ENVIRONMENT DMSION must be included in every COBOL source program
and must begin with the reserved words ENVIRONMENT DIVISION followed by a
period and a space.

The ENVIRONMENT DMSION consists of two sections: the CONFIGURATION
SECTION and the INPUT-OUTPUT SECTION.

The CONFIGURATION SECTION explains the characteristics of the source computer
and the object computer.

The INPUT-OUTPUT SECTION provides the information needed to control
transmission and handling of data between external media and the object program.

The following general format shows the overall syntax for the ENVIRONMErrr
DIVISION. The individual sections and paragraphs are further defined later in this
section.

The general format of the ENVIRONMENT DIVISION is as follows:

ENVIRONMENT DIVISION.

[

CONFIGURATION SECTION. 1
[SOURCE-COMPUTER. source-computer-entry]

[OBJECT-COMPUTER. object-computer-entry]

[SPECIAL-NAMES. special-names-entry]

rUT-OUTPUT SECTION.]
FILE"-CONTROL. {file-control-entry} ...

[I -O-CONTROL. input-output-control-entry]

8600 0296-000 5-1

ENVIRONMENT DIVISION

CONFIGURATION SECTION
The CONFIGURATION SECTION lists the characteristics of the source computer and
the object computer. This section is divided into the following three paragraphs:

• The SOURCE-COMPUTER paragraph, which describes the computer configuration
on which the source program is compiled

• The OBJECT-COMPUTER paragraph, which describes the computer configuration
on which the object prograni produced by the compiler is to be run

• The SPECIAL-NAMES paragraph, which relates hardware names used by the
COBOL compiler to the mnemonic-names in the source program

SOURCE-COMPUTER

5-2

The SOURCE-COMPUTER paragraph identifies the computer on which the program is
to be compiled.

The general format of this paragraph is as follows:

SOURCE-COMPUTER. computer-name [WITH DEBUGGING MODE] .

Explanation of Format

The computer-name can be any single COBOL word. It is handled as a comment entry
that describes the computer on which the source program is to be compiled. The
computer-name is for documentation only.

See Also

For information on the effects of specifying DEBUGGING MODE, refer to Section 11,
"Debugging. "

86000296--000

ENVIRONMENT DIVISION

OBJECT-COMPUTER

The OBJECT-COMPUTER paragraph identifies the computer on which the program is
to be executed.

The general format of this paragraph is as follows:

OBJECT-COMPUTER. computer-name

[
, MEMORY SIZE IS integer-l {~=CTERS}]

MODULES

[. {WORDS}] , DISK SIZE IS mteger-2 MODULES

[, STACK SIZE IS integer-3]

[, CODE SEGMENT-LIMIT IS integer-4 [WORDS]]

[, SEGMENT-LIMIT IS segment-number]

[, PROGRAM COLLATING SEQUENCE IS alphabet-name].

Explanation tof Format

computer-name

The computer-name is a system-name that identifies the hardware for which object
code is to be generated. A valid OBJECT-COMPUTER system-name can be any single
COBOL74 word. It is treated as a comment.

MEMORY SIZE

The MEMORY SIZE clause is used only in conjunction with the SORT statement.
The SORT statement can also specify MEMORY SIZE and takes precedence over the
OBJECT-COMPUTER paragraph. When MEMORY SIZE is not specified in either the
SORT statement or the OBJECT-COMPUTER paragraph, a default memory size of
12,000 words is assumed. If this option'is used and a SORT statement does not appear

8600 0296-000 5-3

ENVIRONMENT DIVISION

5-4

in the program, the option is ignored. One module of memory is equivalent to 16,384
words of memory.

DISK SIZE (Unisys Extension)

The DISK SIZE clause is used only in conjunction with the SORT statement. If this
option is omitted in a sort program, DISK SIZE is assumed to be 900,000 words. If this
option is used and a SORT statement does not appear in the program, the option is
ignored. One module of disk is equivalent to 1.8 million words of disk.

STACK SIZE (Unisys Extension)

The STACK SIZE clause is for documentation purposes only.

CODE SEGMENT·LI MIT (Unisys Extension)

The CODE SEGMENT-LIMIT clause specifies the value for the size of an object-code
segment in words. During the code-generation process, when the compiler completes the
code for a paragraph or section, it ends the current segment and starts a new segment if
the size of the current segment exceeds the target value.

Integer-4 must be in the range 256 through 7000. If the CODE SEGMENT-LIMIT
clause is not specified, the default segment size is 1500 words.

For information about the SEGMENT-LIMIT clause, refer to Section 10,
"Segmentation."

PROGRAM COLLATING SEQUENCE

If the PROGRAM COLLATING SEQUENCE clause is specified, the collating sequence
associated with alphabet-name is used to determine the truth value of any nonnumeric
comparisons that are explicitly specified in relation or condition-name conditions or
implicitly specified by the presence of a CONTROL clause in a report-description entry.

For localization purposes, the program can specify the PROGRAM COLLATING
SEQUENCE clause and a CCSVERION collating sequence associated with an
alphabet-name. In this case, the truth value of the alphabetic characters that are
explicitly specified in the class condition do not always consist entirely of the characters
A through Z and the space. The class of alphabetic characters is determined based on
the system collating sequence. when the CCSVERSION collating sequence is specified.

If the PROGRAM COLLATING SEQUENCE clause is not specified, the EBCDIC
collating sequence is used. If the PROGRAM COLLATING SEQUENCE clause is
specified, the program-collating sequence is the collating sequence associated with the
alphabet-name specified in that clause.

The PROGRAM COLLATING SEQUENCE clause is also applied to any nonnumeric
merge or sort keys, unless the COLLATING SEQUENCE phrase of the respective
MERGE or SORT statement is specified.

8600 0296-000

ENVIRONMENT DIVISION

See Also

For information about specifying a collating sequence using the internationalization
features, refer to Section 16, "Internationalization."

SPECIAL·NAMES

The SPECIAL-NAMES paragraph enables you to do the following:

• Supply a name for a channel nwnber, a switch, or the Operator Display Terminal
(ODT)

. • Supply a name for a character code set or collating sequence

• Specify a default sign position (U nisys extension)

• Designate a set of words to be recognized as reserved words for a specified kind of
application (U nisys extension)

• Define a currency sign in edited nwneric data

• Specify the role of the comma and period in edited nwneric data

• Rename a file title for binding purposes

Volwne 2 of this manual describes the SPECIAL-NAMES paragraph extensions for
specific product interfaces.

The general format for the SPECIAL-NAMES paragraph is as follows:

8600 0296-000 5-5

ENVIRONMENT DIVISION

SPECIAL-NAMES.

CHANNEL nn IS mnemonic-name-!
ODT IS mnemonic-name-2
switch-name [IS mnemonic-name-3]

I
ON STATUS IS condition-name-! I

.

[.' OFF STATUS IS conditiO. n-name-2]
OFF STATUS IS condition-name-2
[, ON STATUS IS condition-name-!]

EBCDIC
ASCII
STANDARD-!
NATIVE

, alphabet-name IS
CCSVERSION [literal-!] .

{
literal-2 [G:~UGH} literal-a] } ...

{ALSO literal-4} ...

[CURRENCY SIGN IS literal-5]

[DECIMAL-POINT IS COMMA]

[, literal-6 IS mnemonic-name-4]

[
,DEFAULT DISPLAY [SIGN IS] {~~}]

[SEPARATE CHARACTER]

[
{

COMPUTATIONAL} 1
,DEFAULT ~ . [SIGNIS] {=~}

. [SEPARATECHARACTER] .

[RESERVE WORD LIST IS NETWORK CAPABLE]

8600 0296-000

ENVIRONMENT DIVISION

Explanation of Format

CHANNEL nn IS mnemonic-name

The CHANNEL nn IS mnemonic-name clause relates a mnemonic-name to a channel
. number, where nn is an integer from 01 to 11. You can use the mnemonic-name in a
WRITE or SEND statement.

ODr IS mnemonic-name

The ODT IS mnemonic-name clause associates a user-defined word with the operator
display terminal (ODT). You can use the mnemonic name in an ACCEPT or DISPLAY
statement.

switch-name

The switch-name can be SWl, SW2, SW3, SW4, SW5, SW6, SW7, or SWS. The program
uses switches to communicate with the external environment. A switch has a value of
either ON or OFE You can define a condition-name for each value of the switch. You
can then check the status of the switch by testing the condition-name. You can set the
switch at program initiation time or through Work Flow Language (WFL) using the task
attributes SW1, SW2, SW3, SW4, SW5, SW6, SW7, and SWS.

The IS mnemonic-name-3 clause associates a user-defined word with a switch.,name.

The ON STATUS IS phrase associates a condition-name with the ON status of a switch.
The condition-name is TRUE when the switch is set and FALSE when the switch is not
set.

The OFF STATUS IS phrase associates a condition-name with the OFF status ofa
switch. The condition-name is TRUE when the switch is not set, and FALSE when the
switch is set.

A condition-name designates a value for either the ON or OFF value of a switch. You can
associate one condition-name value with the ON status and another with the OFF status.
You define the condition-name as a level-number S8 data item in the DATA DMSION.

alphabet-name IS

The alphabet-name IS clause relates an alphabet-name to a collating sequence or
character set. ·The alphabet-name refers to a collating sequence when you use it
in the PROGRAM COLLATING clause of the OBJECT-COMPUTER paragraph
or the COLLATING SEQUENCE phrase of a MERGE or a SORT statement. The
alphabet-name refers to a character code set when you use it in aCODE-SET clause of a
file-description entry.

The ABCn or STANDARD-l phrase identifies alphabet-name as the collating sequence
or the character code set defined in the American National Standard Code for
Information Interchange, X3.4-196S.

86000296--000 5-7

ENVIRONMENT DIVISION

5-8

The NATIVE phrase or EBCDIC phrase identifies alphabet-name as the native ch.8racter
code set or native collating sequence. The native character code set is the character code
set associated with USAGE IS DISPLAY, EBCDIC.

The Unisysstandard translation tables for EBCDIC-to-ASCII and ASCII-to-EBCDIC
translation determine the correspondence between characters of the ASCII character
code set and characters of the EBCDIC character code set.

If the CCSVERSION option is specified, then the character code set and the collating
sequence identified with the alphabet-name is the system collating sequence. If the
CCSVERSION phrase is specified without literal-I, the collating sequence identified
with the alphabet-name is the internationalized system default collating sequence. If
the CCSVERSION phrase is specified with literal-I, the collating sequence is the one
identified by literal-I, provided that literal-I is valid~ The alphabet-name cannot be
referred to in a CODE-SET clause.

The CCSVERSION phrase can only be specified once. Only one CCSVERSION can be
specified in a program.

Literal-2 specifies the positional value of the character in the program collating sequence.
A given character can be specified only once as a literal in an alphabet-name clause. The
value of each literal specifies both of the following characteristics:

• The ordinal number of a character within the native character set, if the literal is
numeric. Numeric literals must be unsigned integers and must have values in the
range 1 through 256.

• The actual character Within the native character set, if the literal is nonnumeric. If
the value of the nonnumeric literal contains multiple characters, each character in
the literal, starting with the leftmost character, is assigned a successive ascending
position in the collating sequence being specified.

The order in which the literals appear in the alphabet-name clause specifies, in ascending
sequence, the ordinal number of the character within the collating sequence being
specified.

Any characters in the native collating sequence that you do not specify in the literal
phrase assume a position greater than any of the characters that you do specify in the
collating sequence being specified. The relative order within the set of these unspecified
characters is unchanged from the native collating sequence.

The character that has the highest ordinal position in the program-collating sequence
specified is associated with the figurative constant HIGH-VALUE. Ifmore than one
character has the highest position in the program-collating sequence, the last character
specified is associated with the figurative constant HIGH-VALUE.

The character that has the lowest ordinal position in the program-collating sequence
specified is associated with the figurative constant LOW-VALUE. If more than one
character has the lowest position in the program-collating sequence, the first character
specified is associated with the figurative constant LOW-VALUE.

8600 0296-000

ENVIRONMENT DIVISION

Note: Using the internationalized system default ccsversion can produce
unexpected results for the HIGH-VALUE and LOW-VALUE
figurative constants. These unexpected results can occur when the
program is run on a host with a system default ccsversion that differs
from the ccsversion compiled into the program. In this case, the
HIGH-VALUE and LOW-VALUE figurative constants will contain
the values that are correct for the ccsversion compiled into the
program.

For example, if the program was compiled on a host with a system
default ccsversion of SPANISH, but the program is run on a host
with a default ccsversion of FRANCE, the HIGH-VALUE and
LOW-VALUE constants define their values from the SPANISH
ccsversion at compile-time, rather than from the FRANCE ccsversion.

The THROUGH literal-3 phrase assigns successive ascending positions to the set of
contiguous characters in the native character set, beginning with the character specified
by the value of literal-! and ending with the character specified by the value of literal-3.
The set of contiguous characters can specify characters of the native character set in
either ascending or descending sequence. The words THROUGH and THRU are
equivalent. Each literal must be one character in length.

The ALSO literal-4 phrase assigns literal-4 to the same position in the collating sequence
as literal-I.

CURRENCY SIGN IS literal-5

The CURRENCY SIGN IS literal-5 clause assigns the symbol used to represent the
currency symbol in the PICTURE clause. If your program does not specify a currency
symbol, the program uses the dollar sign ($) as the currency symbol in the PICTURE
clause. The literal must be a single character. The currency symbol cannot be any of the
following characters:

• Digits 0 through 9

• . Alphabetic characters A, B, C, D, L, P, R, S, V, X, Z, and the space

• The following special characters:

8600 0296-000

* (asterisk)

- (minus sign)

i (semicolon)

) (right parenthesis)

, (comma)

= (equal sign)

+ (plus sign)

. (period)

((left parenthesis)

,. (quotation mark)

/ (stroke)

5-9

ENVIRONMENT DIVISION

DECIMAL-POINT IS COMMA

The DECIMALrPOINT IS COMMA clause causes the comma to act as the decimal point
and the period to represent the separator for thousands in the character string of the
PICTURE clause and in numeric literals. For example, 1,000.00 changes to 1.000,00 with
this option specified.

Iiteral-6lS mnemonic-name·4 (Unisys Extension)

The literal-6 IS mnemonic-name-4 clause associates a mnemonic-name with a valid
program name. Literal-6 can be of the form AAA/BBB/CCC ... , where each group of
characters between two slashes is one directory of the program-name. A directory can
have a maximum of 17 characters, and a file title can have a maximum of 14 ~ectories.
This clause is used for binding or tasking.

DEFAULT DISPLAY SIGN (Unisys Extension)

The DEFAULT DISPLAY SIGN clause, a Unisys extension, specifies a default sign
position for all signed DISPLAY data items. If you declare a signed data item in the
DATADMSION and do not use the optional SIGN clause, the program uses the
default sign for that type of data item. The use of the optional SIGN clause in the DATA
DMSION overrides the default sign specification in the SPECIAL-NAMES paragraph.

DEFAULT COMPUTATIONAL SIGN (Unisys Extension)

The DEFAULT COMPUTATIONAL SIGN clause, a Unisys extension, specifies a
default sign position for all signed COMPUTATIONAL data items. If you declare a
signed data item in the DATA DMSION and do not use the optional SIGN clause, the
program uses the default sign for that type of data item. The use of the the optional
SIGN clause in the DATADMSION overrides the default sign specification in the
SPECIAL-NAMES paragraph.

RESERVE NETWORK (Unisys Extension)

The RESERVE NETWORK clause tells the compiler to handle the network class of
application-specific keywords as reserved words for the extent of the program. If the
program does not include the RESERVE NETWORK option, then the program can
use the network keywords as normal identifiers. If you need to use port files with
OSINATIVE service, then you should include the RESERVE NETWORK option in your
program in order for the compiler to recognize keywords like the RESPOND verb as
reserved words.

See Also

• For information about identifying a collating sequence, refer to
"OBJECT-COMPUTER" earlier in this section.

• For more information about specifying a sign position, refer to "SIGN Clause" and
"PICTURE Clause" in Section 7, "DATA DMSION" and explanations of the
LEADING and TRAILING options.

5-10 86000296-000

ENVIRONMENT DIVISION

• For more information on binding, refer to the A Series Binder Programming
Reference Manual.

• For definition of port files, refer to "Port Files" in Section 3, "File and Task
Concepts" .

• For information on localizing a COBOL74 application, refer to Section 16,
"Internationalization. "

• For information on the RESERVE SEMANTIC clause and the DICTIONARY clause
of the SPECIAL-NAMES paragraph, refer to Volume 2 of this manual.

INPUT-OUTPUT SECTION
The INPUT-OUTPUT SECTION contains the information needed to control
transmission and handling of data between exterilal media and the object program. If
included, this section must begin with the reserved words INPUT-OUTPUT SECTION,
followed by a period and a space. The INPUT-OUTPUT SECTION is divided into two
paragraphs:

• The FILE-CONTROL paragraph, which names and associates the file with external
. media

• The I-O-CONTROL paragraph, which defines special control techniques to be used
in the object program

8600 0296-000 5-11

ENVIRONMENT DIVISION

FILE-CONTROL Paragrap~

5-12

The FILE-CONTROL paragraph enables you to do the following.

• Name each file.

• Identify the file medium.

• Specify hardware.

• Specify alternate I/O areas.

• Specify the organization of the file.

The FILE-CONTROL paragraph is required in the INPUT-OUTPUT SECTION. You
must include the reserved words FILE-CONTROL, followed by a period, a space, and the
file-control entries.

There are five formats for the file-control entries. These formats are used in the
following ways:

Format

1

2

3

4

5

Explanation

This format is used for sequential files.

This format is used for relative files.

This format is used for indexed files.

This format is used for sort and merge
files.

Refer to Volume 2 for information about
the DICTIONARY-REFERENCE clause.

8600 0296--000

ENVIRONMENT DIVISION

Sequential I/O

Your program must use Format 1 of the FILE-CONTROL paragraph if it is doing
sequential I/O.

Format 1: Sequential I/O

SELECT [LOCAL] [RECEIVED BY {REFERENCE}]
GLOBAL REF

[OPTIONAL] file-name

READER
ASSIGN TO PUNCH

PRINTER
REMOTE
PORT

[; RESERVE integer-l [!:s]]

[;ORG~TIONISSEQUE~]

[; ACCESS MODE IS {~~ }]

[; ACTUAL KEY IS data-name-l]

[; FILE STATUS IS ,data-name-2] .

8600 0296-000 5-13

ENVIRONMENT DIVISION

5-14

Explanation of Format 1

SELECT

The SELECT clause declares each file described in the DATA DIVISION. Each file
described'in the DATA DIVISION must be named once as a file-name in the SELECT
clause. Each file specified in the SELECT clause must have a file-description (FD)
entry in the DATA DMSION. The SELECT clause must be the first clause in the
FILE-CONTROL paragraph. The clauses that follow the SELECT clause can appear in
any order.

LOCAL (Unisys Extension)

The LOCAL option is meaningful only for programs being compiled as procedures. The
LOCAL option specifies that the file is a formal parameter for a procedure and can be
named only in WITH and USING clauses in the declarative USE statement associated
with the procedure.

The LEVEL compiler option must be greater than 2 to use the LOCAL option.

GLOBAL (Unisys Extension)

The GLOBAL option is meaningful only for programs being compiled as procedures. The
GLOBAL option specifies that the first record description must match, by name and
array type, a similar record description for the file in the host. For example,

SELECT GLOBAL GFILE ASSIGN TO DISK.

The GLOBAL compiler option has no effect on ENVIRONMENT DMSION or FILE
SECTION entries. The LEVEL compiler option must be greater than 2 to use the
GLOBAL option. .

RECEIVED BY REFERENCE or RECEIVED BY REF (Unisys Extension)

The RECEIVED BY REFERENCE option enables two or more programs to use the file
with which this option appears. Either program can perform I/O to the file. The default
is RECEIVED BY REFERENCE.

This option is meaningful only if the file-name appears in the USING clause of the
PROCEDURE DMSION header. If the program does not have a RECEIVED BY
REFERENCE clause, the compiler issues a warning when it encounters the file-name in
the USING clause.

The compiler issues a syntax error if the LOCAL and the RECEIVED BY REFERENCE
clauses appear in the same file.

RECEIVED BY REF is a synonym for RECEIVED BY REFERENCE.

8600 0296-000

ENVIRONMENT DIVISION

OPTIONAL

The OPTIONAL phrase specifies an input file that is optional. Specification is required
for input files but not necessarily each time the object program is executed.

ASSIGN

The ASSIGN clause associates the named file with a storage medium. (ASSIGN TO
REMOTE and ASSIGN TO PORT are Unisys extensions.) DISK specifies that mass
storage is the storage medium of the file. You can more precisely specify the storage
medium by using the file attribute mechanism (that is, the VALUE OF clause in the
file-description entry) or by using a file equation.

RESERVE

The RESERVE clause enables you to specify the number of I/O areas to be allocated.
If the RESERVE clause is specified, the number of I/O areas allocated is equal to the
value of integer-l. Two areas are automatically supplied when the RESERVE clause is
omitted.

ORGANIZATION

The ORGANIZATION clause specifies the logical structure of a file. The file
organization is established when a file is created and cannot subsequently be changed.
The def8.ult organization for a file is SEQUENTIAL.

ACCESS MODE

The ACCESS MODE clause specifies whether records in a sequentially organized file are
to be accessed sequentially or randomly. You can specify random access for mass-storage
files only. (RANDOM access is a Unisys extension.)

The default mode of access is sequential.

ACTUAL KEY (Unisys Extension)

The ACTUAL KEY clause can be specified only for mass-storage, port, and remote files.
Data-name-l must be defined in the DATA DMSION as an elementary numeric item
that describes an unsigned integer. If the ACTUAL KEY clause is specified, the following
rules apply:

_ For mass-storage files specifying an ACTUAL KEY, the value of the ACTUAL KEY
data item specifies the logical ordinal position of the record in the file.

_ For port files, the value of the ACTUAL KEY data item specifies the subfile index of
the port file.

-For remote files, the value of the ACTUAL KEY data item specifies the ordinal
number of the station within the station list of the remote file. A zero value specifies
all stations within the station list of the remote file.

8600 0296-000 5-15

ENVIRONMENT DIVISION

The ACTUAL KEY clause must be specified for a port file that contains more than one
subfile.

FILE STATUS

When the FILE STATUS clause is specified, the system moves a value into the data item
specified by data-name-2 after execution of every statement that explicitly or implicitly
references that file. This value indicates the status of execution of the statement.
Data-name-2 must be defined in the DATA DIVISION as a two-character, alphanumeric
data item and must not be defined in the FILE SECTION, the REPORT SECTION, or
the COMMUNICATION SECTION. Data-name-2 can be qualified.

See Also

• For information about status values, refer to "I/O Status" later in this section.

• For more information about sequential I/O, refer to "File Organization and Access
Methods" in Section 3, "File and Task Concepts."

5-16 8600 0296-000

ENVIRONMENT DIVISION

Relative I/O

Your program must use Format 2 when it is performing relative I/O.

Format 2: Relative I/O

SELEGr [~~~AL] [RECEIVED BY {=ERENCE}] file-name

ASSIGN TO DISK

[; RESERVE integer~l [~1s]]

; ORGANIZATION IS RELATIVE

[{

SEQUENTIAL [,RELATIVE KEY IS data-name-l] . }]

; ACCESS MODE IS {RANDOM} .
DYNAMIC ,RELATIVE KEY IS data-name-l

[; FILE STATUS IS data-name-2].

Explanation of Format 2

SELECT

The SELECT clause declares each file described in the DATA DIVISION. Each file
described in the DATA DIVISION must be named once as a file-name in the SELECT
clause. Each file specified in the SELECT clause must have a file-description (FD)
entry in the DATA DIVISION. The SELECT clause must be the first clause in the
FILE-CONTROL paragraph. The clauses that follow the SELECT clause can appear in
any order, except that the RELATIVE KEY clause must follow the ACCESS MODE
clause.

8600 0296-000 5-17

ENVIRONMENT DIVISION

5-18

LOCAL (Unisys Extension)

The LOCAL clause is meaningful only for programs being compiled as procedures. The
LOCAL clause specifies that the file is as a formal parameter for a procedure and can be
named only in WITH and USING clauses in the declarative USE statement associated
with this procedure.

The LEVEL compiler option must be greater than 2 to use the LOCAL clause.

GLOBAL (Unisys Extension)

The GLOBAL clause is meaningful only for programs being compiled as procedures. The
GLOBAL clause specifies that the first record description must match, by name and
array type, a similar record description for the file in the host. For example,

SELECT GLOBAL GFILE ASSIGN TO DISK.

The GLOBAL compiler option has not effect on ENVIRONMENT DIVISION or FILE
SECTION entries. The LEVEL compiler option must be greater than 2 to use the
GLOBAL option.

RECEIVED BY REFERENCE or RECEIVED BY REF (Unisys Extension)

The RECEIVED BY REFERENCE phrase enables two or more programs to use the file
with which this option appears. Either program can perform I/O to the file. The default
is RECEIVED BY REFERENCE.

This option is meaningful only if the file-name appears in the USING clause of the
PROCEDURE DIVISION header. If the program does not have a RECEIVED BY
REFERENCE clause, the compiler issues a warning when it encounters the file-name in
the USING clause.

The compiler issues a syntax error if the LOCAL and the RECEIVED BY REFERENCE
clauses appear in the same file.

RECEIVED BY REF is a synonym for RECEIVED BY REFERENCE.

ASSIGN

The ASSIGN clause associates the named file with a storage medium. DISK specifies
that mass storage is the storage medium of the file. You can more precisely specify the
storage. medium by using the file attribute mechanism (the VALUE OF clause in the
file-description entry) or through file equation.

RESERVE

The RESERVE clause enables specification of the number of I/O areas allocated. If the
RESERVE clause is specified, the number of I/O areas allocated is equal to the value of
integer-I. Two areas are allocated when the RESERVE clause is omitted.

8600 0296-000

ENVIRONMENT DIVISION

ORGANIZATION

The ORGANIZATION clause specifies the logical structure of a file. The file
organization is established when a file is created and cannot subsequently be changed.

The default file organization is sequential.

ACCESS MODE

When the ACCESS MODE is SEQUENTIAL, records in the file are accessed in the
sequence dictated by the file organization. This sequence is the order of ascending
relative record numbers of existing records in the file. All records stored in a relative
file are uniquely identified by relative record numbers. The relative record number of a
given record specifies the logical ordinal position of the record in the file. The first logical
record has a relative number of 1, and subsequent logical records have relative record
numbers of 2, 3, 4, and so forth.

The default mode of access is sequential.

The RELATIVE KEY phrase is required when the access mode is dynamic or random.
When the access mode is dynamic, records in the file can be accessed sequentially,
randomly, or both, depending on the verbs used in the PROCEDURE DMSION.
Dynamic access is random by relative key except in the case of the READ NEXT
statement, in which case the system updates the value of the relative' key.

If the access mode is random, the value of the RELATIVE KEY data item indicates the
record to be accessed.

If a relative file is referenced by a START statement, the RELATIVE KEY phrase must
be specified for that file. Data-name-! must not be defined in a record-description (RD)
entry associated with that file-name. Data-name-! can be qualified.

If the access mode is sequential, the system maintains the value of the relative key on all
I/O operations.

FILE STATUS

When the FILE STATUS clause is specified, the system moves a value into the data item
specified by data-name-2 after execution of every statement that explicitly or implicitly
references that file. This value indicates the status of execution of the statement.
Data-name-2 must be defined in the DATA DMSION as a two-character, alphanumeric
data item, and must not be defined in the' FILE SECTION, the REPORT SECTION, or
the COMMUNICATION SECTION. Data-name-2 can be qualified

See Also

For information about status values, refer to "I/O Status" later in this section.

8600 0296-000 5-19

ENVIRONMENT DIVISION

Indexed I/O

Your program must use Format 3 if it is performing indexed I/O.

Format 3: Indexed I/O

SELECT [~~g~ALl [RECEIVED BY {=RENCE} 1 file-name

ASSIGN TO DISK

[; RESERVE integer-l [~ll

; ORGANIZATION IS INDEXED

[{SEQUENT~}] ; ACCESS MODE IS RANDOM
DYNAMIC

; RECORD KEY IS data-name-!

[
; COMPARISON IS {~~~~ }]
. EQUIVALENT

[; KEY-LENGTH IS integer-2]

[; ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]] ...

[; FILE STATUS IS data-name-3]

5-20 86000296--000

ENVIRONMENT DIVISION

Explanation of Format 3

SELECT

The SELECT clause declares each file described in the DATA DIVISION. Each file
described in the DATA DIVISION must be named once as a file-name in the SELECT
clause. Each file specified in the SELECT clause must have a file-description (FD)
entry in the DATA DIVIS~ON. The SELECT clause must pe the first clause in the
FILE-CONTROL paragraph. The clauses that follow the SELECT clause can appear in
any order.

LOCAL (Unisys Extension)

The LOCAL clause is meaningful only for programs being compiled as procedures. The
LOCAL clause indicates that the file is a formal parameter for a procedure and can be
named only in WITH and USING clauses in the declarative USE statement associated
with this procedure.

The LEVEL compiler option must be greater than 2 to use the LOCAL option.

GLOBAL (Unisys extension)

The GLOBAL clause is meaningful only for program being compiled as procedures. The
GLOBAL clause specifies that the first record description must match, by name and
array type, a similar record description for the file in the host. For example,

SELECT GLOBAL GFILE ASSIGN TO DISK.

The GLOBAL compiler option has no effect on ENVIRONMENT DIVISION or FILE
SECTION entries. The LEVEL compiler option must be greater than 2 to use the
GLOBAL option.

RECEIVED BY REFERENCE or RECEIVED BY REF

The RECEIVED BY REFERENCE or· RECEIVED BY REF phrase, a Unisys extension,
enables two or more programs to use the file with which this option appears. Either
program can perform I/O to the file. The default is RECEIVED BY REFERENCE.

This option is meaningful only if the file-name appears in the USING clause of the
PROCEDURE DIVISION header. If the program does not have a RECEIVED BY
REFERENCE clause, the compiler issues a warning when it encounters the file-name in
the USING clause.

The compiler issues a syntax error if the LOCAL and· the RECEIVED BY REFERENCE
clauses appear in the same file.

RECEIVED BY REF is a synonym for RECEIVED BY REFERENCE.

8600 0296-000 5-21

ENVIRONMENT DIVISION

5-22

ASSIGN

The ASSIGN clause associates the named file with a storage medium. DISK specifies
that mass storage is the storage medium of the file. You can more precise1y specify the
storage medium by using the file attribute mechanism (the VALUE OF clause in the
file-description entry) or through file equation.

RESERVE

The RESERVE clause enables you to specify the number of I/O areas allocated. If the
RESERVE clause is specified, the number of I/O areas allocated equals the value of
integer-l. Two areas are allocated when the RESERVE clause is omitted.

ORGANIZATION

The ORGANIZATION clause specifies the logical structure of a file. The file
organization is established when a file is created and cannot be changed later.

The default file organization is sequential.

ACCESS MODE

When the access Inode is sequential, records in the file are accessed in the sequence
dictated by the file organization. For indexed files, this sequence is the ascending order
of record values within a given key of reference.

If the access mode is random, the value of the record key data item indicates the record
to be accessed.

When the access mode is dynamic, records in the file can be accessed sequentially,
randomly, or both.

The default mode of access is sequential.

RECORD KEY

The RECORD KEY clause specifies the prime record key for the file. The values of the
prime record key must be unique among the file records. This prime record key provides
an access path to records in an indexed file. This clause is required for indexed files.

COMPARISON (Unisys Extension)

The COMPARISON clause specifies the type of comparison to be performed when
searching for the key. This clause is used only for internationalization purposes. A
binary comparison uses the binary value of the key. If the program does not specify the
type of comparison, it performs a binary comparison.

A logical comparison uses the collating sequence value of the key. The collating sequence
is the arrangement of members of a character set according to the ordering sequence
values (OSVs) and the priority sequence values (PSVs). Elements occupy different code

8600 0296-000

ENVIRONMENT DIVISION

positions, with elements having the same OSV differentiated by the PSV assigned to the
code position.

An equivalent comparison uses the ordering value of the key. The ordering sequence is
the arrangement of members of a character set according to a predetermined scheme.
Different elements can have the same ordering attribute. For example, you might want
the equivalent uppercase and lowercase characters (a and A, b and B, and so on) to have
the same ordering values.

KEY-LENGTH (Unisys Extension)

The KEY-LENGTH option specifies the number of8-bit characters the system uses
when it stores a translated key value. The clause is used for internationalization only.
Translated display data can require a larger storage area when including ordering and
collating information. The KEY-LENGTH clause can be used with the prime record key
or the alternate record key when the internationalization features are used. "

If a key length is provided, the number of 8-bit characters used to store a translated key
equals the value of integer-2. Otherwise, the length of the key item is used. Truncation
of the stored key occurs if the key length value is too small. If the program specifies a
system default ccsversion by coding the alphabet-name IS CCSVERSION clause without
the literal-! option in the SPECIAL-NAMES paragraph, that same ccsversion must be
the system" default ccsversion at run time. A run-time error occurs when opening the
indexed file for output if the run-time ccsversion does not match the compiled ccsversion.

ALTERNATE RECORD KEY

An ALTERNATE RECORD KEY clause specifies an alternate record key for the file.
This alternate record key provides an alternate access path to records in an indexed file.

The data items referenced by data-name-! and data-name-2 must each be defined as
data items of the category alphanumeric or numeric within a record-description entry
associated with that file-name. Neither data-name-! nor data-name-2 can describe a
variable-size item. Data-name-! and data-name-2 can be qualified.

Data-name-2 cannot reference an item with the leftmost character position
corresponding to the leftmost character position of an item referenced by data-name-! or
by any other data-name-2 associated with this file.

The data descriptions of data-name-! and data-name-2 and their relative locations within
a record mUst be the same as those used when the file was created. The number of
alternate keys for the file must also be the same as the number used when the file was
created.

The DUPLICATES phrase specifies that the value of the associated alternate record key
can be duplicated within any of the records in the file. If the DUPLICATES phrase is
not specified, the value of the associated alternate record key must not be duplicated
among any of the records in the file.

8600 0296-000 5-23

ENVIRONMENT D'IVISION

FILE STATUS

When the FILE STATUS clause is specified, a value is moved by the operating system
into the data item specified by data-name-3 after execution of every statement that
explicitly or implicitly references that file. This value indicates the status of execution of
the statement.

Data-name-3 must be defined in the DATA DIVISION as a two-character, alphanumeric
data item and must not be defined in the FILE SECTION, the REPORT SECTION, or
the COMMUNICATION SECTION. Data-name-3 can be qualified.

See Also

For information about status values, refer to "I/O Status" later in this section.

Sort-Merge

Your program must use Format 4 for files that are to be sorted or merged.

Format 4: Sort-Merge

SELECT file-name

ASSIGN 'TO
[

{
FOR }·I [DISK [AND integer-l] {~S} III

SORT WITH {TAPE }
-- [integer-2] TAPEs

5-24

MERGE [{~} {~:~ }]
-- TAPES

Explanation of Format 4

Each sort or merge file described in the DATA DMSION must be named once, and only
once, as a file-name in the FILE-CONTROL paragraph. Each sort or merge file specified
in the file-control entry must have a sort-merge file-description entry in the DATA
DIVISION.

Because the file-name represents a sort or merge file, only the ASSIGN clause is
permitted to follow the file-name in the SELECT statement. The ASSIGN clause
associates the named sort or merge file to a storage medium.

The options following the SORT and MERGE clauses in Format 4 are Unisys extensions.

8600 0296-000

ENVIRONMENT DIVISION

If TAPE or TAPES is specified, the primary work medium is still DISK. TAPE or TAPES
can be specified to contain any overflow. If integer-2 is not specified, the default number
of tapes is three. Integer-l and integer-2 must have values in the range 3 through 8.

When DISK is specified, mass storage is the primary work medium. TAPE or TAPES
can be specified to contain any overflow. If integer-l is not specified, three tapes are
assumed.

I-O-CONTROL

The I-O-CONTROL paragraph specifies the following:

• The points at which rerun is to be established

• The memory area to be shared by different files

• The'location of files on a multiple-file reel

The general format of this paragraph is as follows:

I-O-CONTROL.

[; RERUN [ON DISK] EVERY integer-l RECORDS OF file-name-2] ...

[; SAME [RECORD] AREA FOR file-name-3 {, file-name-4} ...] ...

[
; MULTIPLE FILE TAPE CONTAINS file-name-5 [POSITION integer-3]]

[,file-name-6 [POSITION integer-4]]

Explanation' of Format

The I -O-CONTROL paragraph is optional.

RERUN clause

The RERUN clause causes rerun information to be recorded whenever integer-!
RECORDS of file-name-2 have been processed. The ON DISK phrase is optional and is
the default case.

File-name-2 can be an inp~t file or an output file, with any organization or access.
File-name-2 cannot be specified in more than one RERUN clause.

8600 0296-000 5-25

ENVIRONMENT DIVISION

5-26

SAME

The two forms of the SAME clause (SAME AREA and SAME RECORD AREA) are used
as follows:

• More than one SAME clause can be included in a program; however, the following
rules apply:

A file-name must not appear in more than one SAME AREA clause. A file-name
must not appear in more than one SAME RECORD AREA clause.

If one or more file-names of a SAME AREA clause appear in a SAME RECORD
AREA clause, all of the file-names in that SAME AREA clause must appear in
the SAME RECORD AREA clause. However, additional file-names that do not
appear in the SAME AREA clause can also appear in the SAME RECORD AREA
clause. The rule that only one of the files mentioned in a SAME AREA clause
can be open at any time takes precedence over the rule that all files mentioned
in a SAME RECORD AREA clause can be open at any time.

• The files referenced in the SAME AREA or SAME RECORD AREA clause need not
all have'the same organization or access.

The SAME AREA clause specifies that two or more files that do not represent SORT
or MERGE files are to use the, same memory area during processing. The area being
shared includes all storage area assigned to the files specified; thus, only one file can be
open at a time.

The SAME RECORD AREA clause specifies that two or more files are to use the same
memory area for processing of the current logical record. All the files can be open at the
same time. A logical record in the SAME RECORD AREA is considered a logical record
of each opened output file and the most recently read input file, which all have file-names
appearing in this SAME RECORD AREA clause. This is equivalent to an implicit
redefinition of the area; that is, records are aligned at the leftmost character position.

MULTIPLE FILE

The MULTIPLE FILE'clause, which can be used only with sequential I/O, .specifies the
locations of files on a multiple-file reel. This clause is required when more than one file
shares the same physical reel of tape. Regardless of the number of files on a single ree~
only those files used in the object program need to be specified.

The POSITION phrase is ignored by the compiler. You must specify the files in
consecutive order. No more than one file on the same tape reel can be open at one time.

One MULTIPLE FILE clause is used for each multiple-file tape. The titles of all the
files listed in a given clause must have a common volume-identifier: otherwise, the
files appear on different tapes. The volume-identifier is a nonnumeric literal, 1 to 17
characters in length, that cannot contain any special characters or spaces. '

After each file is read or written to, the file is closed without being rewound (CLOSE
file-name WITH NO REWIND) and the next file is opened without being rewound. If
the volume-id is correct, the files are written to or read from the same reel.

8600 0296-000

ENVIRONMENT DIVISION

See Also

For more information about multiple-file tapes and device dependencies, refer to the I/O
Subsystem Programming Guide.

I/O Status
The system can indicate to the COBOL74 program the status of I/O operations during
their execution if the program specifies a FILE STATUS clause in the file-control entry.
The FILE STATUS clause designates a two-character data item into which the system
places a value that indicates the status of the I/O operation. For example, a value of 00
means that the operation completed successfully.

The type of file organization determines the I/O statements for which the system can
give status values.

The data item specified in the FILE STATUS clause is comprised of two numbers called
status key 1 and status key 2. The leftmost character position of the FILE STATUS
data item, called status key 1, indicates one of the following conditions on completion of
the I/O operation:

Status
Value Meaning

0 Successful Completion condition

1 At End condition

2 Invalid Key condition

3 Permanent Error condition

8 Condition defined by Unisys

9 Condition defined by Unisys

The rightmost character position of the FILE STATUS data item, called status key 2,
further describes the results of the I/O operation. If no further information is available,
status key 2 has a value of 0 (zero). On the following pages, this section provides tables
of I/O status values and their meanings for each type of file organization.

See Also

For information about status values for the communication module, refer to Section 14,
"COMMUNICATION SECTION."

Sequential I/O Status

The execution of an OPEN, CLOSE, READ, SEEK, WRITE, or REWRITE statement
causes the system to update the status of the I/O operation. The status value is updated
before the program executes any applicable USE procedure.

8600 0296-000 5-27

ENVIRONMENT DIVISION

5-28

Table 5-1 lists each status code value for sequential I/O operations and explains the
meaning of the value reported.

Value

06
09

10

20

30

34

81

Table 5-1. Meaning of Status Code Values for Sequential I/O

Meaning of Status Value

The execution of the I/O statement was successful.

A network warning or indication was returned by the system. You can get
more information about the message by examining the values of the file
attributes.

An At End condition occurred during the execution of a sequential READ
statement. The read operation was unsuccessful for one of the following
reasons:

• The program attempted to read a nonport file when no next logical
record was present in the file.

• The program executed a READ statement on an optional file that
was unavailable when the associated OPEN statement was
executed.

• The program attempted to read a port file when no next logical
record was present and the communication path with the
correspondent endpoint was no longer established. (This is a Unisys
extension .)

An Invalid Key condition, (a Unisys extension for sequentialI/O) occurred
for one of the fo"owi ng reasons:

• The program executed a format 2 READ statement on a nonport file
with the contents of the ACTUAL KEY data item less than 1 or
greater than the ordinal number of the last record written to the file.

• The program executed a format 2 WRITE statement for a record in a
non port file with the contents 'of the ACTUAL KEY data item less
than 1 or greater than the last record allowed to be written because
of a maximum file size specification.

• The program executed a format 2 READ or WRITE statement on a
port file with the contents of the ACTUAL KEY data item less than 0
or greaterthan the 'number of subfiles in the file (a boundary
violation). .

The execution of the I/O statement was unsuccessful because of an I/O
error (such as a data-check parity error, a transmission error, a security
error, a control ca rd error, a host service a bort error, or a
space-on-medium exhausted error).

Permanent Error. This condition exists because of a boundary violation.
This condition indicates that an attempt was made to write beyond the
externally defined boundaries of a sequential file.

File Not Open. The OFFER or AVAILABLE phrase was specified in an
OPEN statement, and the file was not opened before control was
retu rned to the next statement.

continued

8600 0296-000

Value

82

91

92

93

94

95

96

97

99

8600 0296-000

ENVIRONMENT DIVISION

Table 5-1. Meaning of Status Code Values for Sequential 1/0 (cont.)

Meaning of Status Value

This value indicates a Form Not Found, a File Not Closed, or an
Await-Open Failure condition.

• Form Not Found. A READ FORM or WRITE FORM statement was
performed on either a specific form that does not reside in the
formlibrary or a form for which the compile-time version does not
equal the run-time version.

• File Not Closed. An error occurred during the execution of the
CLOSE statement and the file was not closed before control was
retu rned to the next statement.

• Await-Open Failure. An error occurred during the execution of the
AWAIT-OPEN statement.

Short Block. Because of the limitation of the physical recording medium,
the system is unable to determine whether or not the logical record
returned was written to the file. Determination of the validity of the data
record is the responsibility of the programmer.

Data Error. When logical records are declared variable in length and the
logical record length is supplied by the programmer (with the RECORD
CONTAINS clause), a data error occurs on a READ, WRITE, or REWRITE
statement if the logical record,length supplied is less than the minimum
record size or greater than the maximum record size declared for the file.
This condition initiates no I/O operation and does not cause data to be
transferred to or from the record area.

Broadcast Write error. The WITH NO WAIT clause was used with the
WRITE statement and an error occurred with the broadcast write
operation.

No data. The WITH NO WAIT clause was used with the READ
statement, and no data was available.

No buffer. The WITH NO WAIT clause was used with the WRITE
statement, and no buffer was available.

Timeout. A time limit elapsed before the transfer of data to or from the
hardware device.

Break on Output. For an output or 1-0 file, this condition occurs if the
physical hardware device is equipped with a break so that the transfer of
data in process can be halted.

Unexpected I/O error. An error may have occurred in the I/O operation,
but its nature cannot be determined.

5-29

ENVIRONMENT DIVISION

Relative I/O Status

5-30

The execution of an OPEN, CLOSE, READ, WRITE, REWRITE, DELETE, or START
statement causes the system to update the status of the I/O operation. The status value
is updated before the program executes any applicable USE procedure.

Table 5-2 lists each status code value for relative I/O and explains its meaning.

Value

00

10

20

22

23

24

30

91

92

Table 5-2. Meaning of Status Code Values for Relative I/O

Meaning of Status Value

The execution of the I/O statement was successful.

An At End condition occurred during the execution of a Format 1 READ
statement. The program tried to read a record when there was no next
logical record in the file.

An Invalid Key condition occurred and there is no more information
available.

Duplicate key. An attempt was made to write a record to create a
duplicate key in a relative file.

No Record Found. An attempt was made to access a record identified by
a key, but the record did not exist in the file.

Boundary Violation. An attempt was made to write beyond the externally
defined boundaries of a relative file.

Permanent Error. The execution of the I/O statement was unsuccessful
because of an I/O error (such as a data-check parity error, a transmission
error, a security error, a control card error, a host s~rvice abort error, or a
space-on-medium exhausted error). I

Short Block. Because of the limitation of the physical recording medium,
the system cannot determine whether or not the logical record returned
was written to the file. Determination of the validity of the data record is
the responsibility of the programmer.

Da.ta Error. When logical records are declared variable in length and the
logical record length·is supplied by the programmer (by the RECORD
CONTAINS clause), a data error occurs on a READ, WRITE, or REWRITE
statement if the logical record length supplied is less than the minimum
record size or greater than the maximum record size declared for the file.
This condition initiates no I/O operation and does not cause data to be
transferred to or from the record area.

continued

8600 0296-000

ENVIRONMENT DIVISION

Table 5-2. Meaning of Status Code Values for Relative 1/0 (cont.)

Value

96

97

99

I ndexed I/O Status

Meaning of Status Value

Timeout. A time limit elapsed before the transfer of data to or from the
hardware device.

Break on Output. For an output or 1-0 file, this condition occurs if the
physical hardware device is equipped with a break so that the transfer of
data in process can be halted.

Unexpected I/O error. An error may have occurred in the 1/0 operation,
but its nature cannot be determined.

The execution of an OPEN, CLOSE, READ, WRITE, REWRITE, DELETE, or START
statement causes the system to update the status of the I/O operation. The status value
is updated before the program executes any applicable USE procedure.

Table 5-3 lists each status code value and explains its meaning.

8600 0296-000 5-31

ENVIRONMENT DIVISION

Table 5-3. Meaning of Status Code Values for Indexed I/O

5-32

Value

00

10

20

21

22

23

24

30

91

92

96

97

99

Meaning of Status Value

The execution of the I/O statement was successful.

An At End condition occurred during the execution of a Format 1 READ
statement. The program tried to read a record when there was no next
logical record in the file.

An Invalid Key condition occurred and there is no more information
available.

Sequence error. The ascending sequence requirements of successive
record key values have been violated, or the prime record key value has
been changed between the successful execution of a READ statement
and the execution of the next REWRITE statement for that file.

Duplicate Key. An attempt was made to write a record to create a
duplicate key in a relative file.

No Record Found. An attempt was made to access a record identified by
a key, but the record did not exist in the file.

Boundary Violation. An attempt was made to write beyond the externally
defined boundaries of a relative file.

Permanent Error. The execution of the I/O statement was unsuccessful
because of an I/O error (such as a data-check parity error, a transmission
error, a security error, a control card error, a host service abort error, or a
space-on-medium exhausted error).

Short Block. Because of the limitations of the physical recording
medium, the system cannot determine whether the logical record
returned was written to the file. Determination of the validity of the data
record is the responsibility of the programmer.

Data Error. When logical records are declared variable in length and the
logical record length is supplied by the programmer (by the RECORD
CONTAINS clause), a data error occurs on a READ, WRITE, or REWRITE
statement if the logical record length supplied is less than the minimum
record size or greater than the maximum record size declared for the file.
This condition initiates no I/O operation and does not cause data to be
transferred to or from the record area.

Timeout. A time limit elapsed before the transfer of data to or from the
hardware device.

Break On Output. For an output or 1-0 file, this condition occurs if the
physical hardware device is equipped with a break so that the transfer of
data in process can be halted.

Unexpected I/O error. An error may have occurred in the I/O operation,
but its nature cannot be determined.

8600 0296-000

ENVIRONMENT DIVISION

ENVIRONMENT DIVISION Program Sample
Example 5-1 shows coding of the ENVIRONMENT DIVISION. The program PAYROL
includes both a CONFIGURATION SECTION and INPUT-OUTPUT SECTION in its
ENVIRONMENT DMSION. The SELECT clause in the FILE-CONTROL paragraph
assigns two sequential files, INFIL and OUTFIL, to the storage medium TAPE. The
SAME clause in the I-O-CONTROL paragraph (Format 1) specifies that INFIL and
OUTFIL share the same memory area during processing. However, only one of these
files can be open at a time.

002000 IDENTIFICATION DIVISION.
004000 PROGRAM-ID. PAYROL.
006000 ENVIRONMENT DIVISION.
008000 CONFIGURATION SECTION.
010000 SOURCE-COMPUTER. A17.
012000 OBJECT-COMPUTER. A17.
014000 SPECIAL-NAMES.
016000 SW5 ON STATUS IS SW5-0N
018000 OFF STATUS IS SW5-0FF;
020000 CURRENCY SIGN IS "E";
022000 DECIMAL-POINT IS COMMA.
024000 INPUT-OUTPUT SECTION.
026000 FILE-CONTROL.
028000 SELECT INFIL ASSIGN TO TAPE.
030000 SELECT OUTFIL ASSIGN TO TAPE.
032000 I-O-CONTROL.
034000 SAME AREA FOR INFIL OUTFIL.

Example 5-1. Coding the ENVIRONMENT DIVISION

8600 0296-000 5-33

5-34 8600 0296-000

Section 6
Data Concepts

To understand the DATA DIVISION, you need to understand some of the concepts that
pertain to the data in your program. The record concept encompasses structure, record
level, and data items within the record. The data concept includes categorizing of data,
aligning data, and referring to data. The table concept for handling sets of data includes
subscripting and indexing. The edit concept for formatting data includes using symbols
to format data, insertion editing, and zero-suppression and replacement editing.

Records
The most inclusive data item is the logical record. The record is identified by a Ol-level
entry. One or more related data items are defined in the record.

A data-description entry is an entry in the DATA DMSION that describes a data item.
Each data-description entry consists of a level-number followed by a data-name, if
required, followed by a series of independent clauses, as required.

A record description is a set of data-description entries that describe the characteristics
of the particular record. You can specify the following in a record description:

• The items that are included in the record

• The order in which the items appear in the record

• The way the items are related to each other in the record

The size of a record description is the sum of the maximum sizes of all items subordinate
to a 01-level item. The maximum size of a record description is restricted by the explicit
or implicit usage of the Ol-level item as shown in Table 6-1.

Table 6-1. Usage and Maximum Size of a Record Description

Usage

BINARY or DISPLAY

COMP

TASK, EVENT, INDEX, or LOCK

8600 0296--000

Maximum Size

65,535 characters

65,535 digits

65,535 words

6--1

Data Concepts

Levels
Logical records have subdivisions for data reference. The items in these subdivisions
are organized with a system of levels. Once a subdivision has been specified, it, can be
further subdivided to permit more detailed data referral.

Understanding Elementary and Group Items

6-2

The smallest element of a data description is called an elementary item. Notice that
elementary items cannot have subordinate levels. A record consists of a sequence of
elementary items or of one elementary item.

To refer to elementary items as a set, you can combine the elementary items into groups.
Each group consists of a named sequence elementary items of one or more elementary
items. You can combine groups, in turn, into groups of two or more groups. Thus, an
elementary item can belong to more than one group. of one or more elementary items.
You can combine groups, in turn, only of a level-number and a data-name, optionally
followed by a VALUE, USAGE, or REDEFINES clause, followed by a period.

A group includes all group and elementary items following it until a level-number occurs
that is less than or equal to the level-number of that group. You must describe all items
immediately subordinate to a given group item by using identical level-numbers greater
than the level-number used to describe that group item.

COBOL74 defines all group items to be alphanumeric. The compiler aligns each group
item on a byte boundary. The "FILLER ADDED" message appears where such
alignment has taken place.

Note: No elementary data item can start more than 65,535 bytes (131,070
COMPUTATIONAL digits) from the beginning of the 01-level record
in which the data item is contained. In addition, no elementary data
item whose USAGE IS COMPUTATIONAL can start more than
32,767 bytes (more precisely, 65,535 COMPUTATIONAL digits)
from the beginning of the 01-level record in which the data item is
contained .

. Example

Example ~ 1 shows the coding of elementary and group items. A group is composed
of all group and elementary items described under it. A group item ends when
a level-number less than or equal to the numeric value of the group item itself is
encountered.

8600 0296-000

Data Concepts

1328131313*
1330000* The name of the record is PRODUCTION-RECORD.
03213130*
0341300 131 PRODUCTION-RECORD.
03613130*
13380130* ITEM-NO and LOT-NO are elementary items.
1340000*
13420130
04413130
046000*

03 ITEM-NO
03 LOT-NO

PIC 9(5).
PIC 9(6).

048000* The first group item is ITEM-DATE. The elementary items MONTH,
13489130* DAYS, and YEAR are subordinate to ITEM-DATE. STANDARD-COST
1348950* is an elementary item.
13501300*
13520130
13600130
13621300
064000
072000
13661300*

03 ITEM-DATE.
135 MONTH
135 DAYS
135 YEAR

03 STANDARD-COST

PIC 99.
PIC 99.
PIC 99.
PIC 9(5)V99.

136813130* Both PRODUCTION-CODE and MACHINE-SHOP are group items.
068900* The items MILLING and FINISHING are elementary items
068910* subordinate to the MACHINE-SHOP group item. The items
1368920* ASSEMBLY, INSPECTION, and WARRANTY-CODE are elementary items.
068930* The group item PRODUCTION-CODE ends with the INSPECTION data
068940* item.
13701300*
0740130
07613130
08413130
08613130
08813130
0913000
0920130

133 PRODUCTION-CODE.
135 MACHINE-SHOP.

137 MILLING
137 FINISHING

135 ASSEMBLY
135 INSPECTION

03 WARRANTY-CODE

PIC 999.
PIC 99.
PIC 9(4).
PIC X(5).
PIC XX.

Example 6-1. Coding Elementary and Group Items

Organizing Data with Level-Numbers

A system of level-numbers shows the organization of elementary items and group items.
Because records are the most inclusive data items, level-numbers of records start at
01. You should assign less inclusive data items higher (but not necessarily successive)
level-numbers that are not greater in value than 49. The program writes separate
entries for each level-number used.

The special level-numbers 66, 77, and 88 represent entries for which no true concept of
level exists.

8600 0296-000 6--3

Data Concepts

Constructing a Record

6-4

Table 6-2 shows the type of entry that can be assigned to each type of level-number.

Table 6-2. Assigning Level-Numbers

Level-Number

01

02 through 49

66

77

88

Related Entry

The first entry in each record description. Multiple 01-level
entries subordinate to a level indicator other than RD
represent implicit redefinitions of the same area.

The hierarchy of data in a logical record.

RENAMES clause entries for regrouping data items.

WORKING-STORAGE or LINKAGE SECTION items that are
not organized into a hierarchy.

Condition-names that specify values of conditional variables.

A level-number is required as the first element in each data-description entry. Table 6-3
shows the level-numbers that can be used with each type of data-description entry:
file description (FD), sort merge description (SD), communications description (CD),
report description (RD) and the data-description entries in WORKING STORAGE and
LINKAGE SECTIONs.

Table 6-3. Level-Numbers Associated with Data-Description Entries

Data-Description Entry

FD, SD, or CD

RD

Data-description entries in
WORKING-STORAGE and LINKAGE
SECTIONs

Example

. Level-Numbers Allowed

Level-numbers 01 through 49, 66, or 88

Level-numbers 01 through 49

Level.:.numbers 01 through 49, 66, 77, or 88

Example 6-2 illustrates a record description in COBOL74 for a record called
EMPLOYEE-INFO. The PICTURE clause is associated with each elementary item.

In the example, the following information applies:

• The EMP-PAY-DATA group includes all items until the EMP-LAST-REVIEW group,
which has an equal level-number .

., The EMP-DEDUCTIONS group includes all items until the EMP-LAST-REVIEW
group, which has a lower level-number than EMP-DEDUCTIONS.

8600 0296-000

Data

Data Concepts

• The EMP-DEDUCTIONS group is a part of the EMP-PAY-DATAgroup.

• The EMP-INSURANCE group is a part of the EMP-DEDUCTIONS group.

• EMP-HOSPITAL is a part of the EMP-INSURANCE group.

01 EMPLOYEE-INFO.
03 EMP-NO PIC 9(5).
03 EMP-COST-CNTR PIC 99.
03 EMP-NAME.

05 EMP-LAST-NAME PICX(13).
05 EMP-FIRST-INITIAL PIC X.
05 EMP-M-INITIAL PIC X.

03 EMP-ANNUAL-SALARY PIC 9(6)V99.
03 EMP-DT-HIRED.

05 EMP-H-MONTH PIC 99.
05 EMP-H-DAY PIC 99.
05 EMP-H-YEAR PIC 99.

03 EMP-PAY-DATA.
05 EMP--GROSS PIC 9(6)V99.
05 EMP-DEDUCTIONS.

07 EMP-INSURANCE.
09 EMP-HOSPITAL PIC 9(4)V99.
09 EMP-LIFE PIC 9(4)V99.

07 EMP-TAXES.
09 EMP-FICA PIC 9(4)V99.
09 EMP-STATE-TAX PIC 9(4)V99.
09 EMP-WITHHOLDING PIC 9(4)V99.

03 EMP-LAST-REVIEW.
05 EMP-R-MONTH PIC 99.
05 EMP-R-DAY PIC 99.

Example 6-2. Level-Number Construction for a Record

Data handling in COBOL includes classifying data into categories and classes, qualifying
data to ensure uniqueness, and positioning data in a receiving field.

Classifying Data into Categories and Classes

COBOL74 supports the following seven categories of data items:

• Alphabetic

• Numeric

• Numeric-edited

8600 0296-000 6-5

Data Concepts

6-6

• Alphanumeric

• Alphanumeric-edited

• Kanji

• Kanji-edited

These seven categories of data items are grouped into the following three classes:

• Alphabetic

• Numeric

• Alphanumeric

For alphabetic and numeric data items, the classes and categories are synonymous. The
alphanumeric class includes the categories of alphanumeric-edited, numeric-edited,
alphanumeric (without editing), Kanji, and Kanji-edited. Every elementary item, except
an index data item, belongs to one of the classes and also to one of the categories. The
class of a group item is treated at execution time as alphanumeric regardless of the class
of the elementary items subordinate to that group item.

Table 6-4 depicts the relationship of the claSses and categories of data items.

Level of Item

Elementary

Group

Table 6-4. Classes and Categories of Data Items

Class

Alphabetic

Numeric

Alphanumeric

Alphanumeric

Category

Alphabetic

Numeric

Numeric-edited

. Alphanumeric

Alphanumeric-edited

Kanji

Kanji-edited

Alphabetic

Numeric

N umeric-edited

Alphanumeric

Alphanumeric-edited

Kanji

Kanji-edited

8600 0296-000

Data Concepts

Qualifying Data to Ensure Uniqueness

Every user-specified identifier that defines an element in a COBOL source program must
be unique. The user-specified identifier can be unique if it meets one of the following
two conditions:

• No other name has the identical spelling and hyphenation.

• The name exists within a hierarchy of names. You can make a name unique by
mentioning one or more of the higher levels of the hierarchy when you refer to the
name.

The higher-level names in the hierarchy are called qualifiers. The process that ensures
uniqueness is called qualification. You must provide enough qualification to make the
name unique. Unless it is necessary to make the name unique, you do not need to
specify all the levels of the hierarchy.

In the DATA DIVISION, you must associate all data-names used for qualification with
a level indicator or a level-number. Therefore, two identical data-names must not
appear as entries subordinate to a group item unless they can be made unique through
qualification.

In the hierarchy of qualification, names associated with a level indicator, such as a file
description (FD), are the most significant. The next most significant names are those
associated with level-number 01, then level-number 02, and so on through 49.

The most significant name in the hierarchy must be unique and cannot be qualified.

You can make subscripted or indexed data-names, conditional variables,
procedure-names, and data-names unique by qualification. Regardless of the available
qualification, no name can be both a data-name and a procedure-name.

You can qualify a data-name, a condition-name, a paragraph-name, or a text-name by
specifying one or more phrases composed of an IN or an OF keyword followed by a
qualifier. The keywords IN and OF are logically equivalent.

Each qualifier must be of a successively higher level and must be within the same
hierarchy as the name it qualifies.

The same name must not appear at two levels in a hierarchy.

Qualification has three formats. These formats are used as follows:

8600 0296-000

Format

1

2

3

Explanation

Qualifies a data-name or a condition-name.

Qualifies a paragraph-name.

Qualifies a COPY library-name.

6-7

Data Concepts

6-8

Format 1

The Format 1 qualification is as follows:

{ data-name-l } [{OF} d t 2] a a-name- ...
condition-name IN

Explanation of Format 1

The rules for qualifying a data-name or condition-name are as follows:

• You can use the name of a conditional variable as a qualifier for any of the
condition-names of the variable.

• If a data-name or a condition-name is assigned to more than one data item in a
source program, you must qualify the data-name or a condition-name each time it is
referenced in the PROCEDURE, ENVIRONMENT, and DATA DIVISIONs (except
in the REDEFINES clause where qualification is unnecessary and must not be used).

• A data-name cannot be subscripted when it is being used as a qualifier.

• A name can be qualified even if it does not require qualification. If more than one
combination of qualifiers ensures uniqueness, any partial set of qualifiers for another
set of qualifiers for a data-name must not be the same as any partial set of qualifiers
for another data-name. Qualified data-names can have up to 49 qualifiers, inclusive.

The following example illustrates qualified names:

01 EMP-FULL-NAME
03 LAST-NAME
03 FIRST-NAME
03 MIDDLE-NAME

01 EMP-NAME
03 LAST -NAME
03 FIRST-NAME
03 MIDDLE-INITIAL

In this example, because LAST-NAME is not unique, it must be used with a
qualifier to specify either LAST-NAME OF EMP-FULL-NAME or LAST-NAME
OF EMP-NAME. Because MIDDLE-INITIAL is unique, it can be used without
qualification. However, qualifying MIDDLE-INITIAL as MIDDLE-INITIAL OF
EMP-NAME is also correct.

8600 0296--000

Data Concepts

Format 2

The Format 2 qualification is as follows:

paragraph-name [{~} section-name]

Explanation of Format 2

A section-name is the highest and only qualifier available for a paragraph-name.

You must not duplicate a paragraph-name in a section. When you qualify a
paragraph-name with a section-name, do not include the word SECTION. You do not
have to qualify a paragraph-name if you refer to it within the same section.

Format 3

The Format 3 qualification is as follows:

text-name [{~:} library-name]

Explanation of Format 3

IT text-name is unique, it defaults to the library it is in. Otherwise, you must qualify the
text-name each time you refer to it. You must also qualify the text-name if more than
one COBOL library is available to the compiler during compilation.

Aligning Data

The positioning of data within an elementary item by using a move operation depends
on the data category of the receiving item. Table 6-5 describes the alignment rules that
apply for each category of data item.

8600 0296-000 6-9

Data Concepts

Table ~5. Alignment Rules for Move Operation by Data Categories

Data Category

Numeric

Numeric-edited

Alphanumeric (other than a
numeric-edited data item),
alphanumeric-edited, or
alphabetic

Kanji or Kanji-edited

Alignment Rules

Aligns the data by decimal point and moves it to the
receiving character positions with zero-fill or truncation on
either end, as required. If you do not specify an assumed
decimal point, the compiler treats the data item as if it had
an assumed decimal point immediately following its
rightmost character and aligns it as previously described.

Aligns the data that was moved to the edited data item; the
data is aligned by decimal point with zero-fill or truncation at
either end, as required, within the receiving character
positions of the data item, except where editing requirements
cause replacement of the leading zeros.

Moves the sending data to the receiving character positions
and aligns it at the leftmost character position in the data
item with space-fill or truncation to the right, as required.

Moves the sending data to the receiving character poSitions
and aligns it at the leftmost character position in the data
item. Fills the receiving data item on the right with Kanji
space characters or truncates it from the right to fully occupy
the field.

See Also

For information on aligning data in the receiving field of an alphanumeric move

operation, refer to "JUSTIFIED Clause" in Section 7, "DATADMSION."

Tables
A table is a set oflogica1ly consecutive data items that you specify in the DATA

DIVISION with an OCCURS clause. By using a table, you can do the following with your

data:

• Define contiguous data items.

• Access an item by its position in the table.

• Specify the number of repetitions for an item.

• Identify each item with a subscript or an index.

• Access items in multidimensional, variable-length tables.

• Specify ascending or descending keys.

• Search a dimension of a table for an item that satisfies a specified condition.

6-10 86000296-000

Data Concepts

You can define a table composed of contiguous data items by including the OCCURS
clause in a data-description entry. The OCCURS clause specifies that the item is to be
repeated the number of tiIDes you designate.

The item is considered a table element, and the name and description of the item apply
to each repetition or occurrence. Because each table element does not have a unique
cIata-name, you must refer to a desired occurrence by specifying the table element
data-name and the desired occurrence number. You can specify an occurrence number
with subscripting or indexing.

See Also

For information about how to define the number of items in a table, refer to "OCCURS
Clause" in Section 7, "DATA DIVISION."

Defining Tables

To define a one-dimensional table, you must use an OCCURS clauE!e as part of the
data description of the table element. The OCCURS clause must not appear in the
description of group items that contain the table element.

Example 6-3 shows a one-dimensional table definition.

01 TABLE-I.
03 TABLE-ELEMENT

05 NAME
05 SSAN

OCCURS 20 TIMES
PIC X(30)
PIC 3(6).

Example 6-3. Defining a One-Dimensional Table

To create a two-dimensional table, you need to define a one-dimensional table within
each occurrence of an element of another one-dimensional table. To accomplish this,
include an OCCURS clause in the data description of the element of the table and in
the description of only one group item that contains that table element. To define a
three-dimensional table, you must include the OCCURS clause in the data description of
the element of the table and in the description of two group items that contain that table
element. In COBOL, you can define tables of up to 48 dimensions.

Example

Example 6-4 is a table with the following dimensions:

• One dimension for CONTINENT-NAME. The CONTINENT-NAME occurs eight
times within the table.

• Two dimensions for COUNTRY-NAME. The COUNTRY-NAME occurs 15 times
within each CONTINENT-NAME.

• Three dimensions for CITY-NAME and CITY-POPULATION. The CITY-NAME and
the CITY-POPULATION occur 20 times within each COUNTRY-NAME.

8600 0296-000 6-11

Data Concepts

The table includes 4,928 data items grouped as follows:

Number of Data Items

8

120

2,400

2,400

Dimension

CONTINENT-NAME

COUNTRY-NAME

CITY-NAME

CITY-POPULATION

Example 6-4 shows the data-description entries for a three-dimensional table definition.

01 CENSUS-TABLE.
05 CONTINENT-TABLE

10 CONTINENT-NAME
10 COUNTRY-TABLE

15 COUNTRY-NAME
15 CITY-TABLE

20 CITY-NAME
20 CITY-POPULATION

OCCURS 8 TIMES.
PIC X(16).

OCCURS 15 TIMES.
PIC X(18).

OCCURS 20 TIMES.
PIC X(10)
PIC X (12)

Example 6-4. Defining a Three-Dimensional Table

In this example, CITY-NAMEC3,7,19) refers to the nineteenth city of the seventh
country of the third continent.

Accessing Tables

Whenever a program refers to a table element, the reference must indicate the intended
occurrence of the element. For access to a one-dimensional table, the occurrence
number of the desired element provides complete information. For access to tables of
more than one dimension, an occurrence number must be supplied for each dimension of
the table accessed.

In Example 6-4, shown earlier in this section, a reference to the fourth CONTINENT
NAME is complete, but a reference to the fourth COUNTRY-NAME is not. To refer to
the dimension COUNTRY-NAME, which is an element of a two-dimensional table, the
fourth COUNTRY-NAME within a particular CONTINENT-NAME must be referenced.

Subscripting

6-12

A subscript is an integer or a data-name whose value refers to an individual element in a
list or table of like elements that have not been assigned individual data-names.

To use a subscript, you must first provide an OCCURS clause to define multiple
occurrences of a data item. The data items to be repeated must all have the same
format.

8600 0296-000

Data Concepts

The format for subscripting follows:

{ data~~e } (subscript-1 [, subscript-2 [, subscript-3] ...])
conditIon-name - -

Explanation of Format

The subscript identifies the table element that is to be accessed.

Mter the table element data-name, you must delimit the subscript or the set of
subscripts that identifies the table element by enclosing the subscripts in parentheses.
The table element data-name with its appended subscript is called a subscripted
data-name or an identifier.

When more than one subscript is required, write the subscripts in descending order of
inclusive dimensions of the data organization.

You can use a subscript in a PERFORM statement. If you use the VARYING option,
the compiler initializes, increments, and tests the subscript during execution of the
procedure. If you use the UNTIL or TIMES option, you must provide additional code to
initialize and increment the subscript.

You can represent the subscript either by a numeric literal that is an integer or by
a data-name that is a numeric elementary item representing an integer. When you
represent the subscript with a data-name, you can qualify the data-name but not
subscript it.

In the REPORT SECTION of Report Writer, you cannot use a sum counter or the special
registers LINE-COUNTER and PAGE-COUNTER as subscripts.

The subscript can be signed; if signed, it must be positive. The lowest possible subscript
v~ue is 1, which points to the first element of the table. Subscripts whose values are
2: 3, and so on point to subsequent sequential elements of the table. The highest
permissible subscript value is the maximum number of occurrences of the item, as
specified in the OCCURS clause.

When a program executes a statement that refers to subscripted table elements, the
compiler tests each subscript specified (except a numeric literal) to ensure that its value
is not less than 1 or greater than the maximum number of occurrences specified by the
corresponding OCCURS clause (as modified by the DEPENDING ON clause, if one
exists.) If the subscript value is not in this range, the program ends abnormally.

At compilation time, if a subscript is a numeric literal and its value is not in the range,
the compiler issues the proper warning. An invalid index occurs at run time if the
program attempts to access an item beyond the end of the 01-level record.

8600 0296-000 6-13

Data Concepts

See Also

For information on defining the number of items in a table, refer to "OCCURS Clause"
in Section 7, "DATA DMSION."

Indexing

An index, like a subscript, also identifies the individual elements in a table of like
elements. The compiler assigns an index to the level of the table when the program
defines the table with an INDEXED BY phrase in the OCCURS clause. The name
given in the INDEXED BY phrase is called an index-name and refers to the assigned
index. The value of an index corresponds to the occurrence number of an element in the
associated table.

To assign a value to an index-name, the program must execute a SET statement, a
SEARCH ALL statement, or a Format 4 PERFORM statement.

The general format for indexing follows:

{data~~e } ~ {~dex-name-l} [{ +} literal-2]
conditIOn-name literal-l -

literal-3 -

[

,{~dex-name-2} [{ + } literal-4] OJ

. [,{::::ne
-
3

} [C} ~teral-6]] ... 2

6-14

Explanation of Format

An index-name has the same internal representation as an index data item. If a value
to be stored in an index-name or an index data-name exceeds the largest value that can
be held in that index-name or index data-name, the value is truncated. The truncation
is executed according to the rules for size error conditions in an arithmetic statement
without a SIZE ERROR phrase. (This is a Unisys extension.)

An index-name assigned to one table cannot be used to index another table .. (This is a
Unisys extension.)

You can specify direct indexing by using an index-name in the form of a subscript. You
can specify relative indexing by following the index-name with the operator plus sign
(+) or minus sign (-), followed by an unsigned integer numeric literal, all of which
are delimited by parentheses following the table element data-name. The compiler
determines the occurrence number resulting from relative indexing by incrementing
(when the operator + is used) or decrementing (when the operator - is used) the
occurrence number by the value of the literai. The occurrence number is represented

8600 0296-000

Data Concepts

by the value of the index. When more than one index-name is required, the names are
written in descending order of inclusive dimensions of the data organization.

When the program executes a statement that refers to an indexed table element, the
value of each direct or relative index should not be as follows:

• Less than a value that corresponds to the beginning of the first occurrence of the
table element

• Greater than a value that corresponds to the beginning of the last occurrence of the
table element (as determined by the OCCURS clause)

The index value need not precisely address the beginning of a table element to pass
the range check. For example, you can set an index-name to the value of an index data
item that has been set to the value of another index-name (such assignments are made
without conversion). A program ends if an attempt is made to access beyond the end of
the Ol-level record.

An indexed table reference can contain either an index or a subscript. (This is a U nisys
extension.) Object code is generated to verify the validity of subscripts on each table
reference (unless the OPTIMIZE compiler control option is set.)

In contrast, the contents of an index-name are not verified by the generated object code,
either during the execution of the SET statement that modifies the index-name or
during references to the table.

Thus, you must ensure that the contents of an index-name are valid for the table that
. it refers to at execution time. This applies to subscripts as well. Failing to observe
the table limits can produce unexpected results in those cases where the values of the
index-name are incorrect but do not cause access outside the bounds of the Ol-level
record. These same values can terminate a program abnormally.

U nisys strongly discourages the use of inappropriate index values to access parts of an
Ol-level record outside the bounds of the table.

See Also

• For information about specifying indexes, refer to "OCCURS Clause" in Section 7,
"DATA DIVISION."

• For information about specifying the format of a data item in storage, refer to
"USAGE Clause" in Section 7, "DATA DIVISION."

Editing
Editing is the process of using symbols in the PICTURE clause to specify the format of
data for output reports. The editing operation occurs as the data item is moved from the
sending field to the receiving field.

8600029~OO 6-15

Data Concepts

Some of the applications for which you might want to use editing include the following:

• Separating fields with delimiters such as zeros or spaces

• Adding asterisks for protection of amounts on checks

• Adding credit or debit symbols for accounting pUrposes

• Formatting monetary values with commas (,) and dollar signs ($)

• Indicating positive or negative values with plus (+) and minus (-) signs

• Preceding the fractional part of an amount with a decimal point (.)

Describing Elementary Items with Symbols

6-16

Elementary items are described in the PICTURE clause with the symbols shown in
Table 6-6.

Symbol

A

B

P

Table 6-6. Describing Elementary Items Using Symbols

Explanation

Each A in the character string represents a character position that can contain
only a letter of the alphabet or a space.

Each B in the character string represents a character position into which the
space character is inserted.

Each P indicates an assumed decimal scaling position and specifies the location
of an assumed decimal point when the point is not within the number that
appears in the data item. The scaling position character P is not counted in the
size of the data item, but scaling position characters are counted in determining
the maximum number of 23 digit positions in numeric-edited items or numeric
items.

The scaling position character P can appear only to the left or right as a
continuous string of Ps in a PICTURE description. Because the scaling position
character P implies an assumed decimal point to the left of the P characters if
these characters are the leftmost PICTURE characters, and to the right if the P
characters are the rightmost PICTURE characters, the assumed decimal point
symbol V is redundant as either the leftmost or the rightmost character in such
a PICTURE description. The character P and the insertion character period (.)
cannot both occur in the same PICTURE character string.

If, in any operation involving conversion of data from one form of internal
representation to another, the data item being converted is described with the
PICTURE character P, each digit position described by a P is considered to
contain the value 0 and the size of the data item is considered to include the
digit positions so described.

continued

8600 0296-000

Symbol

S

v

x

8600 0296-000

Data Concepts

Table 6-6. Describing Elementary Items Using Symbols (cont.)

Explanation

The letter S in a character string indicates the presence of an operational sign in
the internal representation of a numeric data item. The S must be the first
(leftmost) character in the character string ..

The symbol S can be used in the PICTURE character string of any data item
with the USAGE clause equal to DISPLAY, COMPUTATIONAL, or BINARY. The
SIGN clause can be used to specify the exact representation and position of the
operationa I sign.

When an operational sign is specified for a DISPLAY data item anda SIGN
clause is not specified,the sign is maintained and expected in the zone of the
least significant (rightmost) character. When the data item is in the receiving
field in an arithmetic statement and when the native character set is EBCDIC,
the four zone bits are set to binary ·1101 for negative values and to binary 1100
or 1111 for positive values.

When the data item is used in an algebraic comparison or operation to supply
an algebraic value, specification of the least significant zone as binary 1101
causes the value to be considered negative ..

Only the zone values 1100, 1101, and 1111 qualify the data item as
NUMERIC if it is tested by the numeric class condition. For DISPLAY data
items, the presence or absence of an operational sign has no effect on the
amount of storage required to contain the data item, unless the SIGN
SEPARATE clause is specified.

When an operational sign is specified for a COMPUTATIONAL data item and a
SIGN clause is not specified, the sign is maintained and expected as a leading,
separate 4-bit character to the left of the most Significant digit position.

When the native character set is EBCDIC, the binary pattern of the sign
character is 1101 for negative values and 1100 for positive values. Like
DISPLAY data items, only these values allow the item to be considered
NUMERIC in the class condition test. Unlike DISPLAY data items, the
specification of an operational sign for COMPUTATIONAL data items increases
by one the number of 4-bit character positions occupied by the data item in
storage.

The letter V in a character string indicates the location of the assumed decimal
point and can appear only once in a character string. The symbol V does not
represent a character position and, therefore, is not counted in the size of the
elementary item. When the assumed decimal point is to the right of the
rightmost character in the string, the V is redundant.

Each letter X in the character string represents a character position that
contains any allowable character from the· character set.

continued

6-17

Data Concepts

Symbol

z

9

o

/ (slash)

, (comma)

. (period)

+,-,CR,
DB

·6-18

Table 6-6. Describing Elementary Items Using Symbols (cont.)

Explanation

Each letter Z in a character string can represent only the leftmost leading
numeric ~haracter positions that are replaced by space characters when the
contents of the character positions are o. Each symbol Z is counted in the size
of the item.

Each numeral 9 in the character string represents a character position that
contains a numeral and is counted in the size of the item.

Each numeral zero (0) in the character string represents a character position in
which the numeral 0 is inserted. The numeral 0 is counted in the size of the
item.

Each slash (f) in the character string represents a character position into which
the slash character is inserted. The slash is counted in the size of the item.

Each comma (f) in the character string represents a character position into
which the comma character is inserted. This character position is counted in
the size of the item. The comma must not be the last character in the PICTURE
character string.

When the period (.) appears in the character string, it represents the decimal
point for alignment purposes and also represents a character position into
which the period character is inserted. The period is counted in the size of the
item.

For a given program, the functions of the period and comma are exchanged if
the clause DECIMAL-POINT IS COMMA is stated in the SPECIAL-NAMES
paragraph. In such an exchange, the rules for the period apply to the comma,
and the rules for the comma apply to the period wherever these characters
appear in a PICTURE clause.

A period immediately followed by a nonblank character is considered to be an
insertion character, even if the non blank character is not part of the PICTURE
character string. For a period in the last character position of the PICTURE
character string to be treated as an insertion character, it must be immediately
followed by another period. The second period ends the data-description entry.
Thus, a PICTURE clause must be the last clause in the data-description entry if
it has a period as an insertion character in the last character position of the
PICTURE character string.

These symbols are editing sign-control symbols. When used, these symbols
represent the character position into which the editing sign-control symbol is
placed. The symbols are mutually exclusive in any character string, and each
character used in the symbol is counted in determining the size of the data
item.

continued

8600 0296-000

Data Concepts

Table 6-6. Describing Elementary Items Using Symbols (cont.)

Symbol

* (asterisk)

$ (dollar
sign)

Insertion Editing

Explanation

Each asterisk (*) in the character string represents a leading numeric character
position into which an asterisk is placed when the content of that position is 0
(zero). Each asterisk is counted in the size of the item. Try to avoid the use of
an asterisk in a PICTURE character string for purposes other than as a
leading-zero-replacement mechanism. Although this use of an asterisk may
produce expected results under certain circumstances, it is not a supported
feature.

The dollar sign ($) in the character string represents a character position into
which a currency symbol is to be placed. The currency symbol in a character
string is represented by either the dollar sign or the single character specified in
the CURRENCY SIGN clause in the SPECIAL-NAMES paragraph. The currency
symbol is counted in the size of the item.

You can use the following four types of insertion editing:

• Simple insertion editing

• Special insertion editing

• Fixed insertion editing

• Floating insertion editing

You can also use another method, zero-suppression and replacement editing, which is
described later in this section.

Simple Insertion Editing

Simple insertion editing uses the space character (B), slash (f), and comma (,) as
insertion characters. Also, simple insertion editing uses any characters that are not
defined symbols as insertion characters. These characters include the right parenthesis,
left parenthesis, and any digits (other than 9) that are not used in the strict syntax to
indicate consecutive occUrrences of a preceding symbol. Precedence rules for these
characters and rules for determining data categories are the same as those for the simple
insertion character 0 (zero). (This is a Unisys extension.)

You might want to use simple insertion editing for formatting telephone numbers, dates,
Social Security numbers, and so on.

The insertion characters are counted in the size of the item and represent the position
in the item into which the character is inserted. Table 6-7 shows examples of valid
PICTURE clauses using simple insertion editing.

8600 0296-000 6-19

Data Concepts

Table 6-7. Simple Insertion Editing Examples

Picture

9RQ09

(900)

9)03)

Data.

47

5

8

Actual Representation

4RQ07

(500)

8)03)

Special Insertion Editing

Special insertion editing uses the period C.) as the insertion character. Besides being an
insertion character, the period represents the decimal point for alignment purposes. The
insertion character used for the actual decimal point is counted in the size of the item.
You cannot use both the assumed decimal point symbol (V) and the actual decimal point
symbol C.) in the same PICTURE character string. Special insertion editing results in
the insertion character appearing in the item in the same position as is shown in the
character string.

Table 6-8 illustrates the use of special insertion editing.

Table 6-8. Special Insertion Editing Example

Picture

9.9

99.9

9.9

Data

470

1257

38

Actual Representation

4.70

12.57

3.8

Fixed Insertion Editing

6-20

Fixed insertion editing uses the dollar sign ($) and the editing sign-control symbols, the
plus sign (+), the minus sign (-), the credit symbol (CR), and the debit symbol (DB) as
the insertion characters. Only one dollar sign and only one of the editing sign-control
symbols can be used in any PICTURE character string.

When the symbol CR or DB is used, it represents two character positions in determining
the size of the item, and Jt the symbol must represent the rightmost character position
that is counted in the size of the item. The plus and minus sign symbols, when used,
must be in either the leftmost or the rightmost character position to be counted in the
size of the item. The dollar sign must be the leftmost character position to be counted in
the size of the item, except that it can be preceded by either a plus or minus sign.

Fixed insertion editing results in the insertion character occupying the same character
position in the edited item as it occupied in the PICTURE character string. The results

8600 0296-000

Data Concepts

produced by editing sign-control symbols depend on the value of the data item, as shown
in Table 6--9. For example, if the edit symbol is the minus sign and the data item is
negative, the data item has a minus sign. However, if the edit symbol is the minus sign
and the data item is positive or 0 (zero), the data item has a space.

Table 6-9. Data Item Values and Results of Editing Sign Control Symbols

Editing Symbol in
PICTURE Character String

+

CR

DB

Floating Insertion Editing

Results If Data Item Is
Positive or Zero

+
Space

2 spaces

2 spaces

Results If Data Item Is
Negative

CR

DB

Floating insertion editing uses the dollar sign ($) and the two editing sign-control
symbols, the plus sign (+) and the minus sign (-) as insertion characters. These
insertion characters are mutually exclusive in the same PICTURE character string.

Floating insertion editing is indicated in a PICTURE character string by using a string of
at least two of the same floating insertion characters. This string of floating insertion
characters can contain any of the fixed insertion symbols or have fixed insertion
characters immediately to the right of the string. These insertion characters are part of
the floating string.

The leftmost character of the floating insertion string represents the leftmost symbol in
the data item. The rightmost character of the floating string represents the rightmost
limit of the floating symbols in the data item.

The second floating character from the left represents the leftmost limit of the numeric
data that can be stored in the data item. Nonzero numeric data can replace all .
characters at, or to the right of, this limit.

In a PICTURE character string, floating insertion editing can be represented in two
ways:

• Any or all of the leading numeric character positions to the left of the decimal point
can be represented by insertion characters.

• All numeric character positions in the PICTURE character string can be represented
by insertion characters.

If the insertion characters are present only to the left of the decimal point in the
PICTURE character string, a single floating insertion character is placed in the character
position immediately preceding either the decimal point or the first nonzero digit in the
data represented by the insertion symbol string, whichever is farther to the left in the

8600 0296-000 6-21

Data Concepts

PICTURE character string. The character positions preceding the insertion character
are replaced with spaces.

If all numeric character positions in the PICTURE character string are represented by
the insertion character, the result depends on the value of the data. If the value is 0
(zero) the entire data item contains spaces. If the value is not 0, the result is the same as
when the insertion character is present only to the left of the decimal point.

To avoid truncation, the minimum size of the PICTURE character string for the
receiving data item must be the number of characters in the sending data item plus the
number of nonfioating insertion characters being edited into the receiving data item plus
one for the floating insertion character.

Table 6-10 illustrates floating insertion editing.

Table 6-10. Floating Insertion Editing Examples

Editing Symbol in
PICTURE Character String Data Item Actual Representation

$$,$$$ 1234 $1,234

-(5) 0012 -12

-(5) 0123 -123

+++99 1234 +1234

+++99 001 +01

Zero~Suppression and Replacement Editing

6-22

Zero-suppression editing can replace zeros either with spaces or with asterisks.

The suppression of leading zeros in numeric character positions is indicated by the use
of the symbol Z or the asterisk (*) as the suppression symbol in a PICTURE character
string .. These symbols are mutually exclusive in any PICTURE character string. Each
suppression symbol is counted in determining the size of the item. If the letter Zis used,
the replacement character is the space; if the asterisk is used, the replacement character
is the asterisk. .

Zero-suppression and replacement is indicated in a PICTURE character string by using a
string of one or more allowable symbols to represent leading numeric character positions
that are replaced when each associated character position in the data contains a zero.
Any simple insertion characters embedded in the string of symbols or to the immediate
right of this string are part of the string.

8600 0296-000

Data Concepts

In a PICTURE character string, zero-suppression can be represented in two ways:

• Any or all leading numeric character positions to the left of the decimal point can be
represented by suppression symbols.

• All numeric character positions in the PICTURE character string can be represented
by suppression symbols.

If the suppression symbols appear only to the left of the decimal point, any leading zero
in the data is replaced by the replacement character. Suppression ends at the first
nonzero digit in the data represented by the suppression symbol string or at the decimal
point, whichever is encountered first.

If all numeric character positions in the PICTURE character string are represented by
suppression symbols and the value of the data is not 0 (zero), the result is the same as if
the suppression characters were located only to the left of the decimal'point. (If the value
of the data is the number 0 (zero) and the suppression symbol is Z, the entire data item
consists of spaces. If the value of the data is 0 (zero) and the suppression symbol is an
asterisk, then the data item consists of all asterisks except for the actual decimal point.

The asterisk, when used as the zero-suppression symbol, cannot appear in the same
entry as a BLANK WHEN ZERO statement.

Table ~ 11 illustrates zero-suppression and replacement editing.

Table 6-11. Zero-Suppression and Replacement Editing Examples

Picture

ZZZ

ZZ3

Z99

Editing Methods and Data Categories

Data

123

001

001

012 '

Actual Representation

123

1

**1

12

The type of editing that can be performed on an item depends on the category to which
the item belongs.' Table ~ 12 specifies the type of editing that can be performed on a
give~ item ~tegory.

8600 0296-000 6-23

Data Concepts

Table 6-12. Data Categories and Editing Methods Allowed

Category

Alphabetic

Numeric

Alphanumeric

Alpha numeric-edited

Numeric-edited

Kanji

Kanji-edited

Type of Editing Allowed

Simple insertion using the space character
(B)

None

None

Simple insertion using the space character
(B), the number 0 (zero) and the slash (f)

All (subject to the following note)

None

Simple insertion using the space character
(B), the number 0 (zero), and the slash (f)

Note: Floating insertion editing and zero-suppression and replacement
editing are mutually exclusive in a PICTURE clause. Only one type
of replacement can be used with zero-suppression in a PICTURE
clause.

Editing Application of the PICTURE Clause

Table 6-13 provides various examples of the editing function of the PICTURE ·clause.

Table 6-13. Editing Application of the PICTURE Clause

Sending Area Receiving Area

Editing PICTURE
PICTURE Clause Data Clause Edited Data

9(5) 12345 $ZZ,ZZ9.99 $12,345.00

V9(5) 12345 $$$,$$9.99 $0.12

V9(5) 12345 $ZZ,ZZ9.99 $ 0.12

9(5) 00000 $$$,$$9.99 $0.00

9(3)V99 12345 $ZZ,ZZ9.99 $ 123.45

9(5) 00000 $$$,$$$.$$

9(5) 01234 $$$,$$$.$$ $1,234.00

continued

6-24 8600 0296-000

Data Concepts

Table 6-13. Editing Application of the PICTURE Clause (cont.)

Sending Area Receiving Area

Editing PICTURE
PICTURE Clause Data Clause Edited Data

9(5) 00000 $** *** ** ******* ** , .
9(5) 00123 $** *** ** , . $***123.00

9(3)V99 00012 $ZZ,ZZ9.99 $ 0.12

9(3)V99 12345 $$$,$$9.99 $123.45
l

9(3)V99 00001 $ZZ,ZZZ.99 $.01

9(5) 12345 $$$,$$9.99 $12,345.00

9(5) 00000 $ZZ,ZZZ.ZZ

9(3)V99 00001 $$$,$$$.$$ $.01

89(5) (+)12345 ZZZZ9.99+ 12345.00+

89(5) (-).00123 -99999.99 -00123.00

9(3)V99 12345 999.00 123.00

89(5) (-) 12345 ZZZZ9.99- 12345.00~

89(5) (+)12345 ZZZZ9.99- 12345.00

9(5) 12345 88899.99 45.00

89(5)V (-) 12345 -ZZZZ9.99 -12345.00

89(5) (-) 12345 $$$$$$.99CR $12345.00CR

899V9(3) (-) 12345 -.99 -12.34

89(5) (+)12345 $$$$$$.99CR $12345.00

9(3)V99 12345 999.88 123.

9(5) 12345 00999.00 00345.00

8600 0296-000 . 6-25

6-26 8600 0296-000

Section 7
DATA DIVISION

The third division ofa source program, the DATADMSION, describes the data that the
object program accepts as input to manipulate, create, or produce as output. Data to be
processed falls into one of three categories:

• Data that is contained in files and that enters or leaves the internal memory of the
computer from a specified area or areas

• Data developed internally and placed in intermediate or working storage or in a
specific format for output-reporting purposes

• Constants that you define

Sections of the DATA DIVISION
The DATA DMSION, one of the required divisions in a program, is subdivided into
seven sections:

• The FILE SECTION defines the structure of data files.

• The DATA-BASE SECTION, a Unisys extension, describes one or more databases
that can be used by the COBOL program.

• The WORKING-STORAGE SECTION describes records and noncontiguous data
items that are not part of external data files but are developed and processed
internally.

• The LOCAL-STORAGE SECTION, a Unisys extension, describes parameters to be
received by separate tasks or by procedures to be bound from another program.

• The LINKAGE SECTION appears in the called program and describes data iteins to
be referenced by the calling program and the called program.

• The COMMUNICATION SECTION describes the data items in the source program
that serve as the interface between the data communications interface (DCn library
and the program. '

• The REPORT SECTION describes the contents and format of generated formats.

See Also

• For information about the REPORT SECTION, refer to Section 12, "Report Writer."

• For information about the LINKAGE SECTION, refer to Section 13, "ANSI
Inter-Program Communication (!PC)."

• For details about the COMMUNICATION SECTION, refer to Section 14,
"COMMUNICATION SECTION."

8600 0296--000 7-1'

DATA DIVISION

7-2

• For information about the DATA-BASE SECTION and the INVOKE clause, refer to
Volume 2 of this manual.

• For information ab.out the SAME RECORD AREA clause, refer to Volume 2 of this
manual.

'v

The general structure of the DATA DMSION is as follows. The sections FILE,
WORKING-STORAGE, and LOCAL-STORAGE are explained on the following pages.

DATA DMSION.

file-description-entry [record-description-entry] ...
[

FILE SECTION.]

[sort-merge-file-description-entry {record-description-entry} .. .l ...

[
DATA-BASE SECTION.]

[01 [internal-set-name] INVOKE set-name] ...

[

WORKING-STORAGE SECTION.]
[77-level-description-entry]

[record-description-entry] ...

[

LINKAGE SECTION.]
[77-level-description-entry]

[record-description-entry] ...

[

COMMUNICATION SECTION.]

[
communication-description-entry]

[record-description-entry] ...

loca1-storage-description-entry
[

LOCAL-STORAGE SECTION.]

[[record-description-entry 1 .. .]

[

REPORT SECTION.]
report-description-entry

[{ report-group-description-entry} .. .J

8600 0296-000

DATA DIVISION

FI LE SECTION
The FILE SECTION defines the structure of data files used in the program. These files
have been previously named and assigned to a device in the SELECT clause. Typically,
each file is defined by a file-description (FD) entry and one or more record descriptions.
Record descriptions are written immediately following the FD entry.

When the file description (FD) specifies a file to be used as a Report Writer output
file, this file is defined by a FD entry, but no record-description entries are permitted.
Report-description entries appear in the REPORT SECTION.

File-Description (FD) Entry

The file-description (FD) entry identifies a file previously declared in the SELECT clause
and provides information about its physical structure. Record descriptions for the file
immediately follow its file description.

There are two formats for describing files. These formats are used as follows:

86000296-000

Format

1

2

Explanation

This format describes input and output files.

This format describes sort and merge files.

7-3

DATA DIVISION

7-4

Format 1: File Description (FD) Entry

FD file-name

[; BLOCK CONTAINS [integer-l TO] integer-2 {RECORDS' }]
-- CHARACTERS

[
; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

[DEPENDING ON data-name-l] .

[{
RECORD IS } {STANDARD }]

; LABEL RECORDS ARE OMITTED
data-name-2 [, data-name-3] ...

. {VALUE} OF
'VA -

{

mnemonic-file-attribute-name IS mnemOniC-attribute-Value}

{
alPhanumeric-file-attribute-name} IS .{data-name-2}
numeric-file-attribute-name literal-l

[{

mnemonic-file-attribute-name IS mnemoniC-attribute-Value}]
, {alPhanumeric-file-attribute-name} IS {data-name-3} ...

numeric-file-attribute-name literal-2

[{
RECORD IS }] ;DATA RECORDS ARE data-name-4 [, data-name-5] ...

; LINAGE IS {~ta-name-6} LINES
mteger-5

[,WITH FOOTING AT {~ta-name-7}]
mteger-6

[,LINES AT TOP {~ta-name-8}]
-- mteger-7

[,LINES AT BOTTOM {~ta-name-9}]
mteger-8

[; CODE-SET IS alphabet-name] .

8600 0296-000

DATA DIVISION

Explanation of Format 1

In a COBOL74 program, the file-description (FD) entry represents the highest level
of organization in the FILE SECTION. The FILE SECTION header is followed by a
file-description (FD) entry consisting of a level indicator (FD), a file-name, and a series
of independent clauses. An FD identifies the beginning of a file description and must
provide the file-name.

The FD clauses specify the size of the logical and physical records, the presence or
absence of label records, the value of file attributes, the names of the data records that
make up the file, the character code set, the number of lines to be written on a logical.
printer page, and the name or names of the reports pertaining to a given file. The
clauses that follow the name of the file are optional in many cases, and their order of
appearance is immaterial. The FD clauses are described on the following pages.

One or more record description entries must follow the file-description (FD) entry,
except when the REPORT clause in Report Writer is specified.

Format 2: Sort Merge Description (SD) Entry

SD file-name

[; BLOCK CONTAINS [integer-l TO] integer-2 {RECORDS } 1
-- CHARACTERS

[; RECORD CONTAINS [integer-l TO] integer-2 CHARACTERS]

[{
RECORD IS } 1 ; DATA RECORDS ARE data-name-l [, data-name-2] ...

; VALUE OF

.{ mnemoniC-file-attribu.te-name IS mnemoniC-attribute-Value}

{
alPhanumeric-file-attribute-name } IS {data-name-l }
numeric-file-attribute-name literal-2

[.{

mnemonic-file-attribute-name IS mnemonic-attribute-value }]

{
alPhanumeriC-file-attribute-name} IS {data-name-l }
numeric-file-attribute-name literal-2

Explanation of Format 2

A sort merge description (SD) entry gives information about the size and names of the
data records associated with the file to be sorted. No label procedures can be controlled

8600 0296-000 7-5

DATA DIVISION

by users, and the rules for blocking and internal storage are peculiar to the SORT
statement.

The level indicator SD identifies the beginning of the sort-merge description entry and
must precede the file-name. Other clauses that follow the name of the file are optional~
and their order of appearance is immaterial. The SD clauses are described on the
following pages.

One or more record-description entries must follow the SD entry; however, no I/O
statements (except RELEASE and RETURN) can be executed for this file.

BLOCK CONTAINS Clause

7-6

The BLOCK CONTAINS clause specifies the size of a physical record, also known as the
blocking factor.

This clause is required when the physical record contains more than one logical record.
If this clause is not specified, the physical record is assumed to contain one logical record
as large as the largest record specified for the file. (This is a Unisys extension.)

This clause is not required in an SD file entry and has no. effect on the SD file entry if
specified.

The general format of this clause is as follows:

[BLOCK CONTAINS [integer-l TO] integer-2 {RECORDS }].
-- CHARACTERS

Explanation of Format

If only integer-2 is shown, it represents the exact number of records or characters in the
physical record. If integer-l and integer-2 are. both shown, they refer to the minimum
and maximum size of the physical record, respectively.

When the word RECORDS is not specified, the value ofinteger-2 must not be less than
the largest record specified for the file.

When RECORDS is specified, the physical record size is considered to be integer-2
multiplied by the size of the largest record specified for this file.

When the word CHARACTERS is specified, the physical record size is considered to be
integer-2. Ifinteger-2 is not a multiple of the size of the largest record specified for the
file, the physical record size is adjusted to be a multiple of the size of the largest record
specified, not to exceed the value ofinteger-2. (This is a Unisys extension.)

If logical records of differing sizes are grouped into one physical record, the amount of
data transferred from the record area to the physical record depends on the size of the

8600 0296-000

DATA DIVISION

record named in the WRITE or REWRITE statement. In this case, the logical records
are aligned on maximum record-size boundaries. If the size of the record named does
not equal the maximum record size specified for the file, the data is transferred to the
physical record according to the rules specified for the MOVE statement without the
CORRESPONDING phrase. The sending area is considered to bea group item.

. If variable-length records are specified, then the physical record size is determined as
follows:

• If the word RECORDS is shown and only integer-2 is shown, the physical record size
equals integer-2 multiplied by the maximum record size. '

• If the word RECORDS is shown and integer-! and integer-2 are both shown, the
physical record size equals integer-! multiplied by the maximum record size or
integer-2 multiplied by the minimum record size, whichever is larger.

• If the word CHARACTERS is shown, the physical record size equals integer-2 or the
maximum record size, whichever is larger. If the maximum record size is larger, a
warning is issued. Integer-! is'shown for documentation only.

In the, case of relative file organization, the physical record size is adjusted by the I/O
subsystem to be integer-2 multiplied by a value that is 6 bytes larger than that which
would be determined by the previously stated methods.

See Also

• For more information about specifying record size, refer to "RECORD CONTAINS
Clause," in this section.

• For information about record~blocking techniques, refer to the I/O Subsystem
Programming Guide.

RECORD CONTAINS Clause

The RECORD CONT AINSclause specifies the size of the data records. It can be used to
specify variable-length records.

The general fonruit of this clause is as follows:

[
RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

[DEPENDING ON data-name-!]

Explanation of Format

The DEPENDING ON clause is valid only if the integer-3 TO clause is present. The
integer-3 TO clause is ignored for indexed or relative files; the DEPENDING ON clause
is not allowed for indexed or relative files.

8600 0296-000 7-7

DATA DIVISION

If the data-name-! option is in the record of the file, then it must reference an
elementary unsigned numeric item of USAGE IS DISPLAY (4 characters long) which is
the first item in the record. If data-name-! is not in the record of the file, then it must be
an elementary unsigned numeric item.

The size of each data record is completely defined in the record-description entry;
therefore, the RECORD CONTAINS clause is never required. When this clause is
present, however, the following rules apply:

• For fixed-length records, use integer-4 alone when all data records in the file have
the same size. In this case, integer-4 represents the exact number of characters in
the data record. For fixed-length records, do not use the TO clause.

• The record size is specified in terms of the number of character positions required
to store the logical record, regardless of the types of characters used to represent
the items in the logical record. The size of a record is determined by the sum of the
number of characters in any variable-length item subordinate to the record. This
sum can be different from the actual size of the record.

• For variable-length records, integer-3 and integer-4 are both used. They refer,
respectively, to the minimum number of characters in the smallest data record and
the maximum number of characters in the largest data record. The following rules
apply: .

If the DEPENDING ON clause is not specified, the logical-record h~ngth is
supplied by the system and is written to the record as the first four characters of
the record. This length cannot be referenced by the program. The format of the
length depends on the USAGE value of the first O!-level record of the FD. For
DISPLAY, the length is four EBCDIC characters; for COMP, four packed decimal
characters; for BINARY, one binary word. The length is part of the record when
the type of the file is DISK or TAPE, but is not written if the file is REMOTE,
PRINTER, PUNCH, or PORT.

If the DEPENDING ON clause is specified, the logical-record length is supplied
by the program at run time in data-name-l. Data-name-! must follow the

. previously stated syntax rules. If data-name-! is in the record, the logical-record
length of data-name-! must include the four bytes of data-name-!.

When a READ statement is executed, the . contents of the data item referred to
by data-name-! indicate the maximum record size of the record just read. At
end-of-file (EOF), data-name-! is set to 0 (zero).

LABEL RECORDS Clause

The LABEL RECORDS clause specifies the presence or absence of label information.

The general format of this clause is as follows:

[LABEL{:gg~~~} {~~~ }]
data-name-! [, data-name-2] ...

7-8 8600 0296-000

DATA DIVISION

Explanation of Format

STANDARD

The STANDARD phrase should be used if you wish to take advantage of the automatic
file allocation and handling procedures in the operating system. (Disk devices maintain a
directory instead of a system of labels.) The format of labels is dependent upon the
device containing the file.

If the LABEL RECORDS clause is not used, the STANDARD phrase is assumed.

OMITTED

The OMITTED phrase must be used if an input file does not have standard labels or if
labels are not desired on output files.

data-name-!

All references to data-name-! also apply to data-name-2 and so on.

You should use the data-name-! option to include header and trailer records in the
standard tape label. This format can be used only with magnetic tape files. A maximum
of nine label records can be specified.

Data.,name-! identifies the tape label user record descriptions to be used by the label
USE procedures for a given file. The file handling routine of the operating system
performs the USE statement when the file is opened, closed, or when a volume is
switched.

Data-name-! must be defined in the file-description (FD) entry for which it is defined or
must be in the WORKING-STORAGE SECTION. The subordinate items identify the
fields to be accessed in the label records and must add up to a total record size of 80
characters. The first four characters of every label record are reserved for use by the
operating system.

8600 0296-000 7-9

DATA DIVISION

Example

Example 7-1 shows a file-description (FD) entry with a LABEL RECORDS clause using
the data-name-1 option. TAPE-LABEL is a record description in the file TAPE-FILE.
The record description identifies the label to be used in the USE procedures.

FD TAPE-FILE
LABEL RECORD IS TAPE-LABEL
VALUE OF FILENAME IITAPELABEL1"
DATA RECORD IS TAPE-DATA.

01 TAPE-LABEL.
03 LABEL-RESERVE
03 DATE-OF-CREATION
03 FORMAT-TYPE
03 REMAINING-DATA

01 TAPE-DATA.

PIC X(4).
PIC 9(6).
PIC XX.
PIC X(68).

Example 7-1. Coding the LABEL RECORDS Clause

See Also

• For information about the format of the USE procedures, refer to Format 2 of the
USE statement in Section 9, "PROCEDURE DMSION Statements."

• For information about label formats, refer to the I/O Subsystem Programming
Guide.

VALUE OF Clause

7-10

The VALUE OF clause defines the initial values for the attributes of a file.

The descriptive clauses and phrases of the INPUT-OUTPUT SECTION and the file
record descriptions (other than the VALUE OF clause) implicitly determine the initial
values for appropriate attributes of a file. These attribute values, however, can be
overridden, or other attributes can be specified, by the VALUE OF clause.

Note: File attributes provide you with access to functionOlity not othenvise
available within the language. Also, file attributes can be used to
declare and access files. When both a file attribute and the standard
COBOL syntax are available to accomplish a desired function, it
is always preferable to use the standard COBOL syntax because
changing the attribute can lead to unexpected results in cases when
the attribute is also used or altered by the compiler.

This clause is not required in a sort merge description (SD), and has no effect on the sort
merge description if specified.

8600 0296-000

DATA DIVISION

The general format of this clause is as follows:

{VALUE} OF
VA -

{

mnemonic-file-attribute-name IS mnemonic-attribute-value }

{
alPhanumeric-file-attribute-name} IS {data-name-2 }
numeric-file-attribute-name literal-l'

[{

mnemOniC-.file-attrib.ute-name IS mnemoniC-attribute-Value}]
, {alPhanumeric-file-attribute-name } IS {data-name-3 }

numeric-file-attribute-name literal-2

Explanation of Format

A mnemonic file attribute must be assigned a mnemonic-attribute-value. An
alphanumeric or numeric file attribute can be assigned a value that is either a data-name
or a literal.

The mnemonic-attribute-value must be associated with the attribute specified.
(Mnemonic-attribute-value is a Unisys extension.)

If an alphanumeric file attribute is specified, literal-l, literal-2, and so on must be
nonnumeric literals, and the identifier must be a nonnumeric DISPLAY data item. If a
numeric file attribute is specified, the literal must be a numeric literal and the identifier
must be a numeric data item that represents an integer.

When an attribute is equated to a literal value, the value becomes a part of the
file description given by the file when the file is first referenced at run time. Any
specification in this file description (FD) can be overridden bya file equation.

When an attribute is equated to a data-name value, the attribute is implicitly changed to
this value just before execution of any explicit OPEN, SORT, or MERGE statement that
references the file.

Data-name-2, data-name-3, and so on can be qualified but cannot be subscripted or
indexed.

If an alphanumeric file attribute is specified, the contents of data-name must be followed
by a period.

File titles must not contain special characters.

8600 0296-000 7-11

DATA DIVISION

Port Files

Using data-name-2 in file descriptions for port files is not recommended for programs
specifying subfiles that are to be opened independently and are to remain open
simultaneously. The compiler explicitly sets all dynamic attributes for the entire file on
each OPEN statement. An OPEN statement for a subfile of a port file is rejected by the
operating system if any other subfile of the port file is open and if the file declaration
contains a dynamic file attribute that can be modified only when the file is closed.

Using the CHANGE statement is recommended for dynamically changing attributes
of port files that have multiple subfiles explicitly opened. Note that the CHANGE
statement must still be executed while the port file is closed.

This restriction does not apply to programs that open the entire port file, to programs
that have only one subfile of a port file open at any given time, or to file attributes that
are not limited as to when they can be modified.

Example

Example 7-2 shows the coding of the VALUE ~F clause.

026000 FILE SECTION.
028000 FD INFIL
030000 LABEL RECORDS ARE STANDARD
032000 VALUE OF FILENAME IS "TAPEIN II
034000 SAVEFACTOR 30
036000 AREAS IS 10
038000 AREASIZE IS 1000.
040000 01 TAPE-REC PIC X(80).
042000 FD WORK-FILE
044000
046000
048000
050000 01
052000
054000

See Also

VALUE OF FAMILYNAME IS IIPACK01"
VALUE OF AREAS IS 20
VALUE OF FILENAME IS "TEMP0l".
WORK-REC.
05 KEY-REC
05 REM-WORK

PIC 9(8) COMPo
PIC X (76) .

Example 7-2. Coding the VALUE OF Clause

• For general information about files, refer to Section 3, "File and Task Concepts."

• For more information about the CHANGE statement, a Unisys extension that
enables you to modify a file attribute or a task attribute, refer to the CHANGE
statement in Section 9, "PROCEDURE DIVISION Statements."

• For a description of available attributes and their values, refer to the File Attributes
Reference Manual.

• For information about using file attributes, refer to the I/O Subsystem Programming
Guide.

7-12 86000296-000

DATA DIVISION

DATA RECORDS Clause

The DATA RECORDS clause is an optional clause that documents the names of data
records associated with a file.

The general format of this clause is as follows:

[{
RECORD IS } 1 DATA RECORDS ARE data-name-4 [, data-name-5]

Explanation of Format

Data-name-4 and data-name-5 are the names of data records that should have Ol-level
record descriptions (with the same names) associated with them.

The presence of more than one data-name indicates that the file contains more than one
type of data record. These records can be different (for example, in size or in format),
and their listed order is not significant.

Conceptually, all data records in a file share the same area, even if more than one type of
data record is present in the file.

Example

Example 7-3 shows the coding of an FD and the DATA RECORDS clause.

FD INPUT -FI LE.
DATA RECORDS ARE PRODUCTION,

01 PRODUCTION.
SALES, INVENTORY.

03 REC-TYPE-1
03 REC-PROD

01 SALES.
03 REC-TYPE-2
03 REC-SALES

01 INVENTORY.
03 REC-TYPE-3
03 REC-INVEN

PIC 99.
PIC X(78).

PIC 99.
PIC X(78).

PIC 99.
PIC X(78).

Example 7-3. Coding the DATA RECORDS Clause

8600 0296-000 7-13

DATA DIVISION

LINAGE Clause

7-14

The LINAGE clause enables you to specify the number of lines per page, the size of the
top and bottom margins on the logical page, and the line number within the page body at
which the footing area begins.

Each logical page is contiguous to the next; no additional spacing is provided.

The general format of this clause is as follows:

LINAGE IS {~ata-name-6} LINES
mteger-5

[,WITH FOOTING AT {~ta-name-7 } 1
mteger-6

[
LINES AT TOP {~ata-name-8 } 1

' -- mteger-7

[, LINES AT BOTTOM {~ata-name-9} 1
mteger-8

Explanation of Format

The LINAGE clause enables you to specify the size (number of lines) of a logical page.
The logical page size is the sum of the values referenced by each phrase except the
FOOTING phrase. IT the LINES AT TOP or LINES AT BOTTOM phrase is not
specified, the value for this function is O. IT the FOOTING phrase is not specified, the
assumed value is equal to integer-5 or the contents of the data item referenced by
data-name-6, whichever is specified.

No particular relationship exists between the size of the logical page and the size of a
physical page.

LINAGE IS

The value of integer-5 or of the data item referenced by data-name-6 specifies the
number of lines that can be written, spaced, or both written and spaced on the logical
page. The value must be greater than O. The part of the logical page in which these lines
can be written, spaced, or both written and spaced is called the page body. This value is
used for all logical pages written for the file during a given execution of the program. IT a
WRITE ... ADVANCING PAGE statement is executed, or if a Page-Overflow condition
occurs, the value specifies the number of lines for the next logical page.

LINES AT TOP

The value ofinteger-7 or of the data item referenced by data-name-8 specifies the
number of lines desired for the top margin on the logical page. Integer-7 must be in the -
range from 0 through 65,535. If the value of data-name-8 is less than the number 0,

86000296--000

DATA DIVISION

the results are unpredictable. Data-name-8 can be in the range from 0 through
549,755,813,887. This value is used for all logical pages written for the file during a given
execution of the program. If a WRITE ... ADVANCING PAGE statement is executed,
or when a Page-Overflow condition occurs, the value specifies the top margin for the next
logical page.

LINES AT BOTTOM

The value of integer-8 or of the data item referenced by data-name-9 specifies the
number of liries desired for the bottom margin on the logical page. Integer-8 must be in
the range from 0 through 65,535. If the value of data-name-9 is less than 'the number
0, the results are unpredictable. Data-name-9 can be in the range from 0 through
549,755,813,887. This value is used for all logical pages written for the file during a given
execution of the program. If a WRITE ... ADVANCING PAGE statement is executed,
or if a Page-Overflow condition occurs, the value specifies the bottom margin for the next
logical page.

WITH FOOTING AT

The value ofinteger-6 or of the data item referenced by data-name-7 specifies the line
number in the page body at which the footing area begins. The value must be greater
than 0, and less than or equal to the value of integer-5 or the data item referenced by
data-name-6.

The footing area consists of the area of the logical page between the line represented
by the value of integer-6 or the data item referenced by data-name-7 and the line
represented by the value of integer-5 or the data item referenced by data-name-6,
inclusive. This value is used for all logical pages written for the file during a given
execution of the program. Ifa WRITE ... ADVANCING PAGE statement is executed,
or if a Page-Overflow condition occurs, the value specifies the footing area for the next
logical page.

LINAGE·COUNTER Special Register

The LINAGE-COUNTER, a ,special register, is generated by the presence of a LINAGE
clause. The value in the LINAGE-COUNTER register at any time represents the line
number at which the device is positioned in the current page body. The rules governing
the LINAGE-COUNTER register are as follows:

• A separate LINAGE-COUNTER register is supplied for each file described in the
FILE SECTION that has a LINAGE clause.

• The data-name, LINAGE-COUNTER, can be referenced, but not modified, by
PROCEDURE DMSION statements. Because more than one LINAGE-COUNTER
can exist in a program, you must qualify LINAGE-COUNTER by using a file-name
when necessary.

8600 0296--000 7-15

DATA DIVISION

• The LINAGE-COUNTER register is automatically modified according to the
following rules during the execution of a WRITE statement to an associated file:

If the ADVANCING PAGE phrase of the WRITE statement is specified, the
LINAGE-COUNTER register is automatically reset to 1.

If the ADVANCING identifier-6 or integer phrase of the WRITE statement is
specified, the LINAGE-COUNTER register is incremented by integer or by the
value of the data item referenced by identifier-6.

If the ADVANCING phrase of the WRITE statement is not specified, the
LINAGE-COUNTER register is incremented by 1.

The value of the LINAGE-COUNTER register is automatically reset to 1 when
the device is repositioned to the first line on which writing can occur for each of
the succeeding logical pages.

• The value of the LINAGE-COUNTER register is automatically reset to 1 when the
file is opened.

CODE-SET Clause

The CODE-SET clause specifies the character code set used to represent data on the
external media.

The general format of this clause is as follows:

[CODE-SET IS alphabet-name]

7-16

Explanation of Format

If the CODE-SET clause is specified, alphabet-name specifies both the character code
set used to represent data on the external media and the algorithm for converting the
character codes on the external media to or from EBCDIC. This code conversion occurs
during execution of an input or output operation.

If the CODE-SET clause is not specified, the native character code set (EBCDIC) is
assumed for data on the external media.

When the CODE-SET clause is specified for a file, all data in that file must be described
(because USAGE IS DISPLAy) and any signed numeric data must be described with the
SIGN IS SEPARATE clause.

The alphabet-name referenced by the CODE-SET clause must not specify the literal
phrase.

The CODE-SET clause can be specified only for files that are not on a mass-storage
device.

8600 0296-000

DATA DIVISION

See Also

For information about specifying an alphabet-name, refer to "SPECIAL-NAMES" in
Section 5, "ENVIRONMENT DIVISION."

Record Description

One or more record descriptions must follow each file description (FD). A record
description consists of a set of data-description entries that describe the characteristics
of a particular record. Each data-description entry consists of a level-number (followed
by a data-name, if required) followed by a series of independent clauses, as required. A
record description has a hierarchic structure; therefore, the clauses used with an entry
can vary considerably, depending on whether or not the entry is followed by subordinate
entries.

A data-description entry specifies the characteristics of a particular data item. The
following four formats are used for the data-description entry:

Format

1

2

3

4

See Also

Use

Defi nes a record.

Renames entries.

Specifies condition-names.

Invokes a dictionary. (Refer to Volume 2 for more information).

• For information about the structure of a record description, refer to "Levels" in
Section 6, "Data Concepts."

• For information about the elements allowed in a record description, refer to "Data"
in Section 6, "Data Concepts."

Data-Description Entry for Record Structure

The following general format shows the complete syntax for defining a record. The
optional clauses are described on the following pages.

Note: Refer to Volume 2 for information about the USER and VERSION
clauses.

8600 0296-000 7-17

DATA DIVISION

Format 1: Record Structure

level-number {~=e-l }

[; REDEFINES data-name-2]

[{r } IS ~ader rumg]

[I
~~~~~D~~~ ) [ {CONVENTION OF {literal-l } } ] 1 

; TYPE IS NUMERIC-DATE USING . {lit ~~name}-3 000 

NUMERIC-TIME LANGUAGE OF da
er 4 

LONG-TIME ta-name-

[;{Ei:}] 
BINARY [ TRUNCATED] 
COMPUTATIONAL 
COMP 
CMP 
CONTROL-POINT 

; USAGE IS CP 
DISPLAY 
EVENT 
INDEX 
LOCK 
TASK 

[;~IS {~~ } [SEPARATE CHARACTER 1] 

[ 

0 {OCCURS} {integer-l TO integer-2 TIMES DEPENDING ON data-name-5 } 1 
' OC integer-2 TIMES 

[ {:~~~~~G} KEY IS data-name-6 [ • data-name-71 ... J ... 
[ INDEXED BY index-name-l [ , index-name-2Jo 0 oj 

[ ; {=HRONIZED } [ {~ } ]] 
[;{~}RIGHTJ 
[ ; BLANK WHEN ZERO] 

[; {~UE } IS literal-a] 

[ ; WITH {~=::g=s } ] 
[ 

; RECEIVED BY {=ERENCE } ] 
) CONTENT 

7-18 8600 0296-000 



DATA DIVISION 

Explanation of Format 1 

The level-number can be any number from 01 through 49, or 77. Each record of a file 
begins with the level-number 01. This number is reserved for the record-name only, 
because it is the most inclusive grouping for a record. Less inclusive groupings are given 
higher numbers; these numbers are not necessarily successive. 

The clauses of the data-description entry can be written in any order, with the following 
exceptions: 

• The data-name-l or FILLER clause must immediately follow the level-number. 

• The REDEFINES clause must immediately follow the data-name-l clause. 

The PICTURE clause must be speCified for every elementary item except an index data 
item. The PICTURE clause cannot be used for an index data item . 

. The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN ZERO 
must not be specified except for an elementary data item. 

Multiple Ol-level entries in a given file description (FD) of the FILE SECTION represent 
redefinition of the same memory area. 

If a file is selected using Format 5 of the SELECT statement, only record descriptions 
or form libraries invoked from the dictionary are allowed; record descriptions coded 
as usual are not permitted. If the file is not selected with Format 5 of the SELECT 
statement, then its record descriptions can be either coded as usual or invoked from the 
dictionary. 

See Also 

• For more information about defining the hierarchic structure of a record, refer to 
"Levels" in Section 6, "Data Concepts." 

• For Format 5 of the SELECT statement and for information about the rules and 
syntax for invoking the dictionary in order to use a previously defined data item, 
refer to Volume 2~ 

Data-Name or FILLER Clause 

A data-name specifies the name of the data being described. The keyword FILLER 
specifies an elementary item of the logical record that cannot be referenced explicitly. 

The general format is as follows: 

{
data-name} 
FILLER 

8600 0296-000 7-19 



DATA DIVISION 

Explanation of Format 

In the FILE, COMMUNICATION, LINKAGE, and WOh.i:aNG-STORAGE sections, a 
data-name or the keyword FILLER must be the first word following the level-number in 
each data-description entry. 

The keyword FILLER can be used to name an elementary item in a record. A FILLER 
item can never be referenced explicitly. However, the keyword FILLER can be used as a 
conditional variable because such use does not require explicit reference to the FILLER 
item, but instead requires reference to the value of the FILLER item. 

BLANK WHEN ZERO Clause 

This clause is used with the PICTURE clause to print spaces if the value of the data item 
is o. 

The general format of this clause is as follows: 

BLANK WHEN'ZERO 

7-20 

Explanation of Format 

The BLANK. WHEN ZERO clause can be used only for an elementary item with the 
PICTURE clause specified as numeric or numeric-edited. 

When the BLANK. WHEN ZERO clause is used, the item contains nothing but spaces if 
the value of the item is o. 

When the BLANK WHEN ZERO clause is used for an item that has a numeric picture, 
the category of the item is considered to be numeric-edited. 

Example 

Example 7-4 illustrates the effect of the BLANK. WHEN ZERO clause. 

Input File Output File 

PICTURE Data PICTURE Data 
Clause Clause 

9V99 000 $.99 $.00 
9V99 000 $.99 BLANK 

WHEN ZERO 

Example 7-4. Effect of the BLANK WHEN ZERO Clause 

8600 0296-000 



DATA DIVISION 

GLOBAL Clause (Unisys Extension) 

The GLOBAL clause allows COBOL programs compiled at lexicographic level 3 or higher 
to use untyped procedures, files, and certain variables in the outer block of the host 
program by declaring these items as global items. 

The general format of this clause is as follows: 

GLOBAL 

Explanation of Format 

Level-77 data items with BINARY, REAL, DOUBLE, EVENT, LOCK, or TASK usage, 
or 01-level items that are declared in the WORKING-STORAGE SECTION of a host 
program can be passed as parameters. These items can be declared global in a bound 
procedure by using the GLOBAL clause in the operand or item data-description entry. 
GLOBAL declarations are matched by name and type to the GLOBAL directory of the 
host. The GLOBAL clause must not be specified in the host program. 

Index-names generated for a global array are not themselves global items, but are 
treated as if they had been described with an OWN clause. Index-names for a local array 
are treated as local variables. 

If most or all of the variables declared in the WORKING-STORAGE SECTION need to 
be declared global, the compiler control option GLOBAL can be used. The compiler 
control option can be assigned the value TRUE throughout the compilation, although 
this designation affects only variables that are candidates for GLOBAL declaration and 
that are in the WORKING-STORAGE SECTION. The LOCAL or OWN clause can be 
used to override the compiler control option. 

Examples 
I 

Example 7-5 shows how to declare data items to be global in the WORKING-STORAGE 
SECTION. 

77 GLASTATUS GLOBAL BINARY PIC 9(11). 
77 BL-EVENT GLOBAL EVENT. 
01 GL-EBCRAY GLOBAL. 

03 CMP-ITM COMP PIC 9(11) OCCURS 100 INDEXED BY I. 

Example 7-5. Coding the GLOBAL Clause 

In Example 7-6, the GLOBAL compiler option declares G 1, G2, and G3 to be global. L1 
is declared as local because the LOCAL clause overrides the GLOBAL compiler option. J 
is declared with an OWN clause because it is an index-name. 

8600 0296--000 7-21 



DATA DIVISION 

$ SET GLOBAL 

77 Gl BINARY PIC 9(11). 
77 G2 BINARY· PIC 9(11). 
77 Ll LOCAL COMP PIC 9(11). 
01 G3. 

03 FLO PIC 9(11) COMP OCCURS 10 INDEXED BY J. 

Example 7-6. Using the GLOBAL Compiler Option 

JUSTIFIED Clause 

The JUSTIFIED clause changes the rules for alphanumeric move operations. N orma11y, 
data that is moved is left-justified. The JUSTIFIED clause causes alphanumeric data to 
be right-justified in the receiving data item. 

When the JUSTIFIED clause is omitted, the standard rules for data alignment in an 
elementary item apply. 

The general format of this clause is as follows: 

{
JUSTIFIED} RIGHT 
JUST 

7-22 

Explanation of Format 

The JUSTIFIED clause can be specified only at the elementary item level. 

JUST is an abbreviation for JUSTIFIED. 

The JUSTIFIED clause cannot be specified for any data item described as numeric or for 
any data item for which editing is designated. 

When a receiving data item is described with the JUSTIFIED clause and the sending 
data item is larger than the receiving data item, the leftmost characters are truncated. 
When the receiving data item is described with the JUSTIFIED clause and is larger than 
the sending data item, the data is aligned at the rightmost character position in the data 
item with space-fill for the leftmost character positions. 

See Also 

For information about data alignment, refer to Section 6, "Data Concepts. " 

8600 0296-000 



DATA DIVISION 

LOCAL Clause (Unisys Extension) 

A local data-name is referenced in the same procedure in which it is declared. Any value 
stored in it is lost upon exit from that procedure. 

The general format of this clause is as follows: 

LOCAL 

In COBOL procedures compiled at level 3 or higher, data-names are implicitly declared 
as local unless the GLOBAL or the OWN clause is specified. 

LOWER-BOUNDS Clause (Unisys Extension) 

The LOWER-BOUNDS clause permits bound or host COBOL74 programs to pass or 
receive array parameters compatible with the FORTRAN and ALGOL constructs that 
generate a lower-bound stack item. 

The general format of this clause is as follows: 

{
LOWER-BOUND } 

WITH LOWER-BOUNDS 

Explanation of Format 

This clause is used in the data description of a Ol-level item in the LINKAGE SECTION 
. (if array parameters are received) or the LOCAL-STORAGE SECTION (if array 
parameters are to be passed). 

The LOWER-BOUNDS clause is not meaningful for 77-level items. A warning is issued 
if a 77 -level data item is declared with the WITH LOWER-BOUNDS clause. 

The LOWER-BOUNDS clause affects only bound procedures. The purpose of this 
clause is to declare formal parameters for binding that are compatible with FORTRAN 
and ALGOL. The clause must always be used when communicating with FORTRAN 
programs and must be used when communicating with ALGOL programs that contain 
formal array parameters declared with a variable lower-bound description (that is, 
ARRAYNAME [*]). The actual lower-bound parameter passed by a COBOL program to 
another program always has a value of O. 

The actual lower-bound parameter received by a COBOL program is not used in 
addressing the array. 

8600 0296--000 7-23 



DATA DIVISION 

Table 7-1 shows the matching of parameters between the COBOL74 and ALGOL 
programming languages. 

Table 7-1. COBOL74 and ALGOL Parameter Matching 

COBOL Parameter 

01 BINARY 

01 BINARY WITH LOWER-BOUNDS 

01 COMP 

01 COMP WITH LOWER-BOUNDS 

01 DISPLAY 

01 DISPLAY WITH LOWER-BOUNDS 

01 DOUBLE 

01 DOUBLE WITH LOWER-BOUNDS 

01 REAL 

01 REAL WITH LOWER-BOUNDS 

Corresponding ALGOL Parameter 

REAL array [ < integer> ] 

REAL array [*] 

EBCDIC character array [ < integer> ] 

EBCDIC character array [*] 

EBCDIC character array [<integer>] 

EBCDIC character array [*] 

REAL array [ < integer> ] 

REAL array [*] 

REAL array [ < integer> ] 

REAL array [*] 

Note: The < integer> variable, in ALGOL, is the specified lower-bound 
parameter. 

For library calls and tasking calls, the LOWER-BOUNDS clause is ignored. 

For COBOL74 tasks, parameters with or without lower-bounds can be passed to 
COBOL74 programs and received from COBOL74 programs; the operating system 
handles the coercion. COBOL74 does not use the value of the lower-bound parameter in 
addressing the array. 

, When a user program passes an'array parameter with a lower-bound to a COBOL74 
library, the user program actually sends two parameters: a by-reference array followed 
by a by-value integer. The COBOL74 program must declare an extra parameter, a 
77-level PIC 9(11) BINARY item, to receive the lower-bound parameter. 

OCCURS Clause 

7-24 

The OCCURS clause defines tables and other homogeneous data items. If the OCCURS 
clause is used, the data-name that is the subject of this entry must be either sUbscripted 
or indexed whenever it is referenced in a statement other than the SEARCH or USE 
FOR DEBUGGING statement. In addition, if the subject of this entry is the name of a 
group item, then all data-names belongirig to the group must be subscripted or indexed 
whenever they are used as operands, except when the data-names are the objects of a 
REDEFINES clause. 

8600 0296--000 



DATA DIVISION 

The OCCURS clause eliminates the need for separate entries for repeated data items 
and supplies information required to apply subscripts or indexes. 

Except for the OCCURS clause itself, all data-description clauses associated with an 
item that has an OCCURS clause in its description apply to each occurrence of the item 
described. 

The OCCURS clause has the following two formats: 

Format Explanation 

Specifies that an item occurs an exact number of times. 1 

2 Specifies that an item occurs a variable number of times, depending on 
the data item referenced by data-name-l. 

Format 1 

The general format of this clause is as follows: 

{
OCCURS} . OC mteger-2 TIMES 

[ {
ASCENDING } ] 
DESCENDING KEY IS data-name-2 [, data-name-3] ... 

[ INDEXED BY index-name-! [ , index-name-2 J •.• J 

Explanation of Format 1 

Format! of the OCCURS clause cannot be specified in a data-description entry that 
meets either of the two following conditions: 

• The entry has a 01, 66, 77, or 88 level-number. 

• The entry describes an item of variable size. The size of an item is considered 
variable if the data description of any subordinate item contains Format 2 of the 
OCCURS clause. 

OCCURSorOC 

OC is an abbreviation for OCCURS. (This is a Unisys extension.) 

integer-2 

Integer-2 cannot exceed the maximwn record size. 

8600 0296-000 7-25 



DATA DIVISION 

KEY IS 

The KEY IS phrase indicates that the repeated data is arranged in ascending or 
descending order according to the values contained in data-name-2 and data-name-3. 
The data-names are listed in descending order of significance. 

Data-name-2 and data-name-3 can be qualified. 

INDEXED BY 

An INDEXED BY phrase is required if the subject of the entry or an entry subordinate 
to this entry is referenced by indexing. The index-name identified by this clause is not 
defined elsewhere because its allocation and format depend on the hardware, and the 
index-name cannot be associated with any data hierarchy because it is not a data item. 

Index-name-! and index-name-2 must be unique words in the program. 

Note: When the OCCURS clause is used on a group item, the sum of the 
number of index-names in any associated INDEXED BY clause and 
the number of data-names declared subordinate to the group item 
cannot exceed 511. 

Format 2 

The general format of this clause is as follows: 

{:CURS } integer-l TO integer-2 TIMES DEPENDING ON data-name-l 

[{
ASCENDING} 1 DESCENDING KEY IS data-name-2 [ , data-name-3 J ••• 

[INDEXED BY index-name-! [ , index-name-2] ... J 

7-26 

Explanation of Format 2 

Format 2 specifies that the subject of this entry has a variable number of occurrences. 
The value of integer-2 represents the maximum number of occurrences, and the value of 
integer-! represents the minimum number of occurrences. The length of the subject of 
the entry is not variable, but the number of occurrences is variable. 

A data-description entry that contains Format 2 of the OCCURS clause can be followed 
in that record description only by data-description entries that are subordinate to it. 

8600 0296-000 



DATA DIVISION 

integer-1 TO integer-2 

The value of integer-l must be less than the value of integer-2. Integer-l and integer-2 
cannot exceed the maximum record size. A syntax error results if the limit is exceeded .. 

DEPENDING ON 

The value of data-name-l is used to determine the last table element that can be 
referenced. When the value of data-name-l is less than integer-2, the data items with 
occurrence numbers exceeding the value of data-name-l are inaccessible. Reducing the 
value of the data item referenced by data-name-l has no effect on the contents of data 
items with occurrence numbers that exceed the value of the data item referenced by 
data-name-l. (This is a Unisys extension.) 

When a table element is referenced, the value of data-name-l must fall in the range 
integer-l through integer-2, inclusive. If the value of data-name-l is outside this range, 
the program ends abnormally. 

Data-name-l can be qualified. 

The data description of data-name-l must be that of ari unsigned integer. Integer-l can 
be 0, which is a relaxation of the ANSI-74 standard rule requiring a minimum of one 
occurrence. If data-name-l takes on a value of 0 at run time, then no occurrences exist 
until the value of data-name-l becomes nonzero. Any attempt to refer to an occurrence 
outside the current range produces an error. 

The data item defined by data-name-l must not occupy a character position in the range 
between the first character position defined by the data-description entry containing the 
OCCURS clause and the last character position defined by the record-description entry 
containing that OCCURS clause. 

KEY IS 

IT data-name-2 is not the subject of this entry, then the following three conditions apply: 

• All items identified by the data-names in the KEY IS phrase must be in the group 
item that is the subject of this entry. 

• Items defined by' the data-name in the KEY IS phrase must not contain an OCCURS 
clause. 

• No entry can contain an OCCURS clause between the items identified by the 
data-names in the KEY IS phrase and the subject of this entry. 

When a group item is referenced that has a subordinate entry that uses Format 2 of the 
OCCURS clause, only that part of the table area specified by the value of data-name-l is 
used in the operation. 

The KEY IS phrase indicates that the repeated data is arranged in ascending or 
descending order according to the values contained in data-name-2 and data-name-3. 
The data-names are listed in descending order of significance. 

8600 0296-000 7-27 



DATA DIVISION 

Data-name-2 and data-name-3 can be qualified. 

INDEXED BY 

An INDEXED BY phrase is required if the subject of the entry or an entry subordinate 
to this entry is referenced by indexing. The index-name identified by this clause is not 
defined elsewhere because its allocation and format depend on the hardware, and the 
index-name cannot be associated with any data hierarchy because it is not a data item. 

Index-name-! and index-name-2 must be unique words in the program. 

Note: When the OCCURS clause is used on a group item, the sum of the 
number of index-names in any associated INDEXED BY clause and 
the number of data-names declared subordinate to the group item 
cannot exceed 511. 

OWN Clause (Unisys Extension) 

COBOL procedures compiled at level 3 or higher can declare certain variables to be 
OWN. These variables retain their values or states throughout repeated exits and 
reentries of the procedure in which they are declared. 

The general format of this clause is as follows: 

Any item declared in the WORKING-STORAGE SECTION can be made OWN by using 
the OWN clause or the compiler control option OWN. 

I 

All related index-names and copy descriptors for OWN items are also OWN; redefinitions 
of OWN items are implicitly OWN and need not use the OWN clause. 

7-28 

Use of the compiler control option OWN throughout the compilation causes all stack 
locations obtained in the WORKING-STORAGE SECTION to be OWN, unless 
overridden temporarily by a GLOBAL or LOCAL clause on an individual item. 

Example 

Example 7-7 shows the declaration of OWN data items in the WORKING-STORAGE 
SECTION. 

77 X PIC X(10) OWN. 
77Y REDEFINES X PIC 9(10). 
01 A OWN. 

03 CMP-ITEM COMP PIC 9(11) OCCURS 100 INDEXED BY J. 

Example 7-7. Coding the OWN Clause 

8600 0296-000 



DATA DIVISION 

PICTURE Clause 

The PICTURE clause describ~s the type of data item, the size of a data item, and the 
editing requirements of an elementary data item. 

The following two methods exist for performing editing with the PICTURE clause: 

• Insertion editing 

• Zero-suppression and replacement editing 

The general format of the PICTURE clause is as follows: 

{

PICTURE} 
:~C IS character string 

Explanation of Format 

A PICTURE clause can be specified only at the elementary item level and must be 
specified for every elementary data item except an index data item. The PICTURE 
clause cannot be specified for an index data item. 

A character string consists of certain allowable combinations of characters in the COBOL 
character set that are used as symbols. The allowable combinations determine the 
category of the elementary item. The maximum number of characters allowed in the 
character string is 30. 

PIC and PC are abbreviations for PICTURE. (pC is a Unisys extension.) 

The asterisk, when used as the zero-suppression symbol, and the clause BLANK WHEN 
ZERO cannot appear in the same entry. 

See Also 

Insertion editing and zero-suppression and replacement editing are described in Section 
6, "Data Concepts." 

Defining Data Categories. 

The following seven categories of data can be described with a PICTURE clause: 
alphabetic, numeric, alphanumeric, alphanumeric-edited, numeric edited, Kanji, and 
Kanji-edited. 

Table 7-2 shows the rules for defining the seven categories of data. 

8600 0296-000 7-29 



DATA DIVISION 

7-30 

Data Type 

Numeric 

Alphabetic 

Alphanumeric 

Alphanumeric
edited 

Numeric-edited 

Table 7-2. Defining Items with the PICTURE Clause 

Rules for Defining the Data Type 

The character string can contain only the symbols P, S, V, and 9. The 
number of digit positions that can be described by the character string 
must be from 1 to 23. 

If unsigned, the contents of the item (when represented in standard data 
format) must be a combination of the numerals 0 through 9; if signed, 
the item can also contain a plus sign (+), a minus sign (-), or any other 
representation of an operational sign. 

The character string of the item can contain only the symbols A and B. 

The contents of the item (when represented in standard data format) 
must be a combination of the 26 letters of the alphabet and the space 
from the COBOL character set. 

The character string of the item is restricted to certain combinations of 
the symbols A, X, and 9; the item is treated as if the character string 
contained all Xs. A PICTURE character string that contains all As or 9s 
does not define an alphanumeric item. 

The contents of the item (when represented in standard data format) are 
allowable characters in the character set. 

The character string is restricted to certain combinations of the symbols 
A, B, X, 9, 0 (zero), and slash (f). In addition, one of two conditions 
must apply as follows: 

• The character string must contain at least one B and one X, at least 
one o (zero) and one X, or at least one slash (f) and one X. 

• The character string must contain at least one 0 (zero) and one A, 
or at least one slash and one A. 

The contents of the item (when represented in standard format) are 
allowable characters in the character set. 

The character string of the item is restricted to certain combinations of 
the symbols B, P, V, Z, 9, 0 (zero), slash (f), comma (,), period (.), plus 
sign (+), minus sign (-), CR, DB, asterisk (*) and dollar sign ($). The 
allowable combinations are determined from the order of precedence of 
symbols and the editing rules. In addition, both of the following 
conditions must apply: 

• The number of digit positions that can be represented in the 
character string must be from 1 through 23. 

• The character string must contain at least one B, Z, 0 (zero), slash 
(f), comma (,), period (.), plus sign (+), minus sign (-), CR, DB, 
asterisk (*), or dollar sign ($). 

The contents of the character positions of symbols that are allowed to 
represent a digit in standard data format must be one of the numerals. 

continued 

8600 0296-000 



DATA DIVISION 

Table 7-2. Defining Items with the PICTURE Clause (cont.) 

Data Type 

Kanji 

Kanji-edited 

See Also 

Rules for Defining the Data Type 

The character string can contain only the symbol X. 

The contents of the item (when represented in standard data format) are 
represented in a 2-byte (16-bit) format. 

The character string of the item is restricted to certain combinations of 
the symbols X, B, 0 (zero), and slash (f). In addition, the character string 
must contain at least one B and one X, at least one 0 (zero) and one X, 
or at least one slash (f) a nd one X. 

The contents of the item (when represented in standard format) are 
represented in a 2-byte (l6-bit) format. 

For information about specifying an operational sign for numeric data, refer to "SIGN 
Clause" later in this section. 

Determining the Size of the Elementary Item 

The size of an elementary item is the number of character positions it occupies in 
standard data format. You indicate the size of an elementary item by using the number 
of allowable symbols that represent character positions. For example, 9999 indicates a 
field with four digits. 

The symbols A, B, P, X, Z, 9,0 (zero), slash (j), plus sign (+), minus sign (-), asterisk 
(*) or dollar sign ($) can appear more than once in a given PICTURE clause. You can 
specify a number of consecutive occurrences of a symbol by using an integer enclosed 
in parentheses after the symbol. For example, X(8) indicates eight alphanumeric 
characters. 

Using Symbols to Describe Data 

Table 7-3 provides a brief description of the functions of each symbol used to describe an 
elementary item. Refer to Section 6, "Data Concepts," for a complete description of the 
purpose of each symbol. 

8600 0296-000 7-31 



DATA DIVISION 

Symbol 

X 

9 

A 

V 

S 

P 

Z 

+ 

$ 

CR 

DB 

* 

B 

o 
/ 

Table 7-3. Using Symbols to Describe Elementary Items 

Meaning 

Alphanumeric field 

Numeric field 

Alphabetic field 

Assumed decimal point; used only in numeric fields 

Operational sign; used only in numeric fields 

. Decimal scaling position; used only in numeric fields 

Zero-suppression symbol 

Period 

Plus sign 

Minus sign 

Dollar sign or currency symbol 

Comma 

Credit symbol 

Debit symbol 

Check protection symbol 

Space insertion character or field separator 

Zero insertion character 

Slash character 

The following symbols can appear only once in a given PICTURE clause: 

• S 

• V 

• . (period) 

• CR 

• DB 

Understanding Precedence Rules 

7-32 

v 

The chart in Figure 7-1 shows the order of precedence when characters are used as 
symbols in a character string. An X at an intersection indicates that the symbol or 
symbols at the top of the column can precede the symbol or symbols left· of the row in a 
character string. Arguments appearing in braces indicate that the symbols are mutually 
exclusive. 

8600 0296-000 



DATA DIVISION 

At least one of the symbols A, X, Z, 9, or asterisk (*), or at least two of the symbols, plus 
sign (+ ), minus sign (-), or dollar sign ($), must be present in a PICTURE string. 

Nonfioating insertion symbols plus sign ( + ), minus sign (-), and floating insertion 
symbols Z, asterisk (*), plus sign (+), minus sign (-) and dollar sign ($), and another 
symbol P appear twice in Figure 7-1. The leftmost column and uppermost row for 
each symbol represent the use of the symbol to the left of the decimal point position; 
the second appearance of the symbol in the chart represents its use to the right of the 
decimal point position. 

~ 
Nonfloating Insertion Floating Insertion Other Symbols 

. Symbol Symbols Symbols 

Secon B 0 / + + CR $ Z Z + + $ $ 9 A S V P P Symbol . DB * * - - - - X 

B X X X X X X X X X X X X X X X X X 

0 X X X X X X X X X X X X X X X X X 
c 
0 / X X X X X X X X X X X X X X X X X 
+' s-
a) X X X X X X X X X X X X X X X X III . 
C 

0-0111 

cn'O X X X X X X X X X X 
coO 

.,.... S 
+'>. 
«SCI) + 
0 -

:;:: 
! X X X X X X X X X X X X X X c 

0 
z: 

CR X X X X X X X X X X X X X X DB 

$ X 

Z X X X X X X X c * 0 

:;; 
Z s- X X X X X X X X X X X a) III * en·,.... 

co 
0-0.0 

+ cn~ - X X X X X X 
CCl) 

:;; ! X X X X X X X X X X «S 
0 ,.... 

I.J... $ X X X X X X 

$ X X X X X X X X X X 

9 X X X X X X X X X X X X X X X 

III A X X X X X '0 X 
.0 s-
» S en 
s-
a) V X X X X X X X X X X X X ..c 
+' 
0 

P X X X X X X X X X X X X 

p X X X X X 

Figure 7-1. PICTURE Character Precedence Chart 

8600 0296-000 7-33 



DATA DIVISION 

RECEIVED Clause (Unisys Extension) 

The RECEIVED clause identifies those items that are received as parameters by name 
or by value from another procedure, or items that are to be passed to another procedure 
by name. 

The general format of this clause is as follows: 

{

REFERENCE} 
RECEIVED BY REF 

CONTENT 

7-34 

Explanation of Format 

The RECEIVED clause can appear only on a 77-level data item in the 
LOCAL-STORAGE, LINKAGE, or WORKING-STORAGE SECTION. 

When you do not specify the RECEIVED BY clause, all items and files are received by 
reference to bound procedures except for 77-level parameters with the following usage: 
BINARY, DOUBLE, or REAL. For bound procedures, these parameters are received by 
content .. However, you can declare these parameters to be received by reference to allow 
passing by reference. For tasking calls, 77-level parameters with BINARY, DOUBLE, or 
REAL usage can be declared as received by content to allow passing by value. 

A data-description entry containing the RECEIVED clause must not contain a VALUE 
clause. 

RECEIVED BY REFERENCE 

The RECEIVED BY REFERENCE clause allows two or more procedures to share an 
item. Any reference to the identifier in one of the procedures that shares the identifier 
specifies the same common data area as the other procedures. REF is synonymous with 
REFERENCE. 

RECEIVED BY REFERENCE 77-level items with BINARY, DOUBLE, or REAL 
usage are a special case of parameter passing. Parameters declared in .this way refer 
to data declared in the hardware stack on A Series systems. All other RECEIVED 
BY REFERENCE parameters address items within an array. This special case of the 
RECEIVED BY REFERENCE clause allows COBOL74 programs to communicate with 
ALGOL programs and other COBOL programs that pass stack references instead of 
array references. 

RECEIVED BY CONTENT 

This clause identifies parameters passed by value. The current value of the identifier 
is received by procedure. Another procedure can change the value of that data-name, 

8600 0296-000 



DATA DIVISION 

but the change merely affects the copy of the item for that procedure. Likewise, the 
receiving procedure can make changes to data-names that do not affect the original item. 

The RECEIVED BY CONTENT clause cannot appear with any item that has usage 
described as TASK (CONTROL-POINT), EVENT, or LOCK or with any item described 
at the 0 I-level 

If an item declared as RECEIVED BY CONTENT is referred to in a PROCEDURE 
DIVISION USING declaration, the program cannot be used as a library and cannot be 
the subject of an Inter-Program Communication (IPC) CALL statement. The program 
can be used as a bound procedure, or it can be called from the Work Flow Language 
(WFL). 

REDEFINES Clause 

The REDEFINES clause allows the same computer storage area to be described by 
different data-description entries. This clause redefines the storage area, not the data 
items occupying the area. 

TIle general format of this clause is as follows: 

level-number data-name-I; REDEFINES data-name-2 

Note: Level-number, data-name-l, and the semicolon (,.) are shown 
for clarity. Level-number and data-name-l are not part of the 
REDEFINES clause. 

Explanation of Format 

The REDEFINES clause, when specified, must immediately follow data-name-I. The 
level-numbers of data-name-I and data-name-2 must be identical but must not be 66 or 
88. 

The clause must not be used in OI-level entries in the FILE SECTION or 
COMMUNICATION SECTION. The REDEFINES clause can be used at the OI-level in 
the WORKING-STORAGE SECTION. 

The data-description entry for data-name-2 cannot contain a REDEFINES clause. 
However, data-name-2 can be subordinate to an entry that contains a REDEFINES 
clause. In addition, the data-description entry for data-name-2 cannot contain an 
OCCURS clause; however, data-name-2 can be subordinate to an item that has an 
OCCURS clause in its data-description entry. In this case, the reference to data-name-2 
in the REDEFINES clause cannot be subscripted or indexed. Neither the original 
definition nor the redefinition can include an item of variable size as defined in the 
OCCURS clause. 

8600 0296-000 7-35 



DATA DIVISION 

7-36 

No entry with a level-number numerically lower than the level-numb~r of data-name-2 
and data-name-l can occur between the data-description entries of data-name-2 and 
data-name-l. 

Redefinition starts at data-name-2 and ends when a level-number less than or equal to 
that of data-name-2 is encountered. . 

Multiple redefinitions of the same character positions are permitted. The entries giving 
the new descriptions of the character positions must follow the entries for the area being 
redefined, without intervening entries that define new character positions. Multiple 
redefinitions of the same character positions must all use the data-name of the entry that 
originally defined the area. 

The entries that give the new description of the character positions must not contain any 
VALUE clauses except in condition-name entries. 

Multiple Ol-level entries subordinate to any given level indicator represent implicit 
redefinitions of the same area. 

The following paragraphs refer to Unisys extensions. 

The REDEFINES clause specifies the redefinition of a storage area, not the data items 
occupying the area. Therefore, the usage of data-name-l need not be the same as 
the usage of data-name-2, except that DISPLAY or group data items cannot redefine 
elementary COMPUTATIONAL or INDEX data items that do not begin on a byte 
boundary. When redefinition occurs at a level other than the Ol-level, the amount of 
storage allocated for data-name-2 must be the same as the amount of storage implied by 
the declared size and usage of data-name-l, with the following exceptions: 

• A DISPLAY or group data item can redefine an elementary COMPUTATIONAL 
data item that begins, but does not end, on a byte boundary if the difference in size 
results from the generation of a 4-bit filler so that the redefining item ends on a byte 
boundary. 

• A DISPLAY or group item can be redefined by an elementary COMPUTATIONAL 
data item, although the actual size (including sign position, if described) is one 
4-bit character less than the number of 4-bit characters in the storage area. The 
redefining item is aligned to begin on a byte boundary and end at the middle of the 
last byte of storage. 

See Also 

Refer to Volume 2 for information about using the REDEFINES clause with form 
libraries. 

8600 0296--000 



DATA DIVISION 

SIGN Clause 

The SIGN clause specifies the position and mode of representation of the operational 
sign when these properties must be described explicitly. 

The general format of this clause is as follows: 

Explanation of Format 

SIGN 

The optional SIGN clause specifies the position and mode of representation of the 
operational sign for the numeric data-description entry to which the clause applies or for 
each nwneric data-description entry subordinate to the group to which the group applies. 
The SIGN clause applies only to numeric data-description entries with the character S in 
the PICTURE clause. The letter S indicates the presence of, but not the representation 
or position of, the operational sign. 

A numeric data-description entry with an S in the PICTURE clause, but to which no 
optional SIGN clause applies, has an operational sign that is positioned and represented 
according to the standard default position and representation of operational signs. 

Every numeric data-description entry with the character S in the PICTURE clause is 
a signed, numeric data-description entry. If a SIGN clause applies to such an entry 
and conversion is necessary for computation or comparisons, conversion takes place 
automatically. 

The SIGN clause can be specified only for a numeric data-description entry with the 
character S in the PICTURE clause or for a group item containing at least one such 
numeric data-description entry. 

The numeric data-description entries to which the SIGN clause applies must be 
described as USAGE IS DISPLAY or USAGE IS COMPUTATIONAL. (Use of the SIGN 
clause with USAGE IS COMPUTATIONAL is a Unisys extension.) 

At most, one SIGN clause can apply to any given numeric data-description entry. 

8600 0296-000 7-37 



DATA DIVISION 

If a SIGN clause without a SEPARATE CHARACTER phrase applies to a numeric 
data-description entry, then the following rules apply: 

• When the data-item usage is DISPLAY, the operational sign is maintained and 
expected as binary number 1100 or 1101 in the zone of the leading or trailing 
character and does not cause additional storage to be allocated for the data item. 

• If the data-item usage is COMPUTATIONAL, the operational sign is maintained and 
expected as binary number 1100 or 1101 leading or trailing 4-bit character. This sign 
increases by one 4-bit character the amount of storage allocated for the data item, in 
addition to that storage allocated for an unsigned COMPUTATIONAL data item. 
The presence or absence of the SEPARATE CHARACTER phrase has no effect on 
the position or representation of the operational sign for COMPUTATIONAL data 
items. 

SEPARATE CHARACTER 

If the CODE-SET clause is specified, any signed numeric data-description entries 
associated with that file must be described with the SIGN IS SEPARATE clause. 

If a SIGN clause with a SEPARATE CHARACTER phrase applies to a numeric 
data-description entry, then the following rules apply: 

• If data-item usage is DISPLAY, the operational sign is maintained and expected as a 
leading or trailing character separate from, and in addition to, the numeric character 
positions. The operational sign for negative values is the minus sign (-) and for 
nonnegative values is the plus sign (+). 

• When the data item usage is COMPUTATIONAL, the operational sign is maintained 
and expected as a binary 1100 for positive values or a binary 1101 for negative values 
in the zone of the leading or trailing character. The sign increases by one 4-bit 
character the amount of storage allocated for an unsigned COMPUTATIONAL 
data item. The binary number 1111 is also allowed as a positive value because 
any combination that is neither 1101 nor a digit is interpreted by the hardware as 
positive. The operators produce 1100 for a positive sign and 1101 for a negative sign. 
The SEPARATE CHARACTER phrase does not affect the position or representation 
of the operational sign for COMPUTATIONAL data items. 

SYNCHRONIZED Clause 

The SYNCHRONIZED clause specifies the aligrunent of an elementary item on the 
natural boundaries of the computer memory. 

The general format of this clause is as follows: 

{
SYNCHRONIZED } [{LEFT }] 
SYNC RIGHT 

7-38 8600 0296-000 



DATA DIVISION 

Explanation of Format 

This clause can appear only with an elementary item. 

SYNC is an abbreviation for SYNCHRONIZED. 

This clause cannot appear with items of type INDEX, TASK, EVENT, or LOCK. 

If the subject data item is of type COMPUTATIONAL, it is aligned on a byte boundary. 
If the data item is a BINARY type, it is aligned on a word boundary. If the previous 
data item did not end on a byte (or word) boundary, an implicit FILLER keyword is 
generated. This unused FILLER keyword is included in the size of any group item or 
items to which the elementary item belongs. 

The RIGHT or LEFT option following SYNCHRONIZED is treated as a comment entry. 

Whenever a SYNCHRONIZED item is referenced in the source program, the original 
size of the item, as shown in the PICTURE clause, is used in determining any action that 
depends on size, such as justification, truncation, or overflow. 

If the data description of an item contains the SYNCHRONIZ~D clause and an 
operational sign, the sign of the item appears in the normal operational sign position, 
regardless of whether the SYNCHRONIZED LEFT or SYNCHRONIZED RIGHT clause 
is used with the item. 

BINARY, DOUBLE, and REAL data items subordinate to a data-description entry 
containing an OCCURS clause are not synchronized. 

In all other cases, when the SYNCHRONIZED clause ~ specified in a data-description 
entry of a data item that also contains an OCCURS clause, or in a data-description entry 
of a data item subordinate to a data-description entry containing an OCCURS clause, the 
following rules apply: 

• Each occurrence of the data item is synchronized. 

• Any implicit FILLER keyword generated for other data items in that same table is 
generated for each occurrence of those data items. 

TYPE Clause (Unisys Extension) 

The TYPE clause provides automatic date and time editing based on the CONVENTION 
option, LANGUAGE option, or CONVENTION and LANGUAGE options you specify. 
This clause can be used only for internationalization purposes. 

8600 0296-000 7-39 



DATA DIVISION 

7-40 

The general format of the TYPE clause is as follows: 

SHORT-DATE 
LONG-DATE 

; TYPE IS NUMERIC-DATE 
NUMERIC-TIME 
LONG-TIME 

[ 
USING I CONVENTION OF t!!.:'~e-3}) ... J 

LANGUAGE OF {literal-.2 } 
data-name-4 

Explanation of Format 

Data items can be declared to be one of the following date or time types: 

Example 

Fri, Aug 31, 1990 

Friday, August 31, 1990 

08/31/90 

13:37:20 

Type 

SHORT-DATE 

LONG-DATE 

NUMERIC-DATE 

NUMERIC-TIME 

LONG-TIME 14 hours 37 minutes 20 seconds 

Data items can also be declared with an associated LANGUAGE or CONVENTION 
option. 

Each convention defined by Unisys has a specified format for the five date or time 
data items. The program formats an item declared to be one of the five date or 
time types according to the predefined format of the specified convention. For the 
SHORT-DATE, LONG-DATE, and LONG-TIME options, the specified language is also 
used in formatting the output. If the convention or language is not specified, the system 
determines the language, the convention, or the language and convention to be used 
based on system-defined hierarchy. 

The only clauses that can be used with the TYPE clause are the PICTURE clause and 
the USAGE clause. If the USAGE clause is specified, it can only designate USAGE IS 
DISPLAY. If the date or time items are edited in the PICTURE clause, the TYPE clause 
overrides the edit and the compiler issues a warning message. 

The total length of the data item must be greater than or equal to the length required by 
the format of the specified convention. If the length ofa data item is shorter than the 
required length, the compiler issues a truncation warning message. 

8600 0296-000 



DATA DIVISION 

Example 

Example 7-8 shows coding of the TYPE clause. NUM-DATE-ITEM is declared to be 
of type NUMERIC-DATE, and is formatted using the ASERIESNATIVE convention. 
LONG-DATE-ITEM has data formatted according to the convention and language 

. determined by the system hierarchy. LONG-TlME-ITEM is declared to be of type 
LONG-TIME, and is formatted using the UNITEDKINGDOMI convention and the 
ENGLISH lan~e. 

01 NUM-DATE-ITEM 

01 LONG-DATE-ITEM 
01 LONG-TIME-ITEM 

USAGE Clause 

PIC X(8) TYPE IS NUMERIC-DATE 
·USING CONVENTION OF "ASERIESNATIVE". 

PIC X(20) TYPE IS LONG-DATE. 
PIC X(20) TYPE IS LONG-TIME 

USING CONVENTION OF "UNITEDKINGDOM1 11 

LANGUAGE OF IIENGLISH II . 

Example 7-8. Coding the TYPE Clause 

The USAGE clause specifies the format of a data item .. 

If the USAGE clause is specified at a group level, it applies to each elementary item in 
the group. 

The USAGE clause can appear in any data-description entry with a level-number other 
than 66 or 88. (This is a Unisys extension.) 

If the USAGE clause is written in the data-description entry for a: group item, it can also 
be written in the data-description entry for any subordinate elementary item of the 
group item, but the same USAGE clause must be specified by both entries. Items with 
different USAGE clauses can appear in the same record. (This is a Unisys extension.) 

8600 0296-000 7-41 



DATA DIVISION 

7-42 

The general format of this clause is as follows: 

[USAGEIS] 

BINARY [ TRUNCATED] 
COMPUTATIONAL 
COMP 
CMP 
CONTROL-POINT 
CP 
DISPLAY 
DOUBLE 
EVENT 
INDEX 
KANJI 
LOCK 
REAL 
TASK 

Explanation of Format 

BINARY (Unisys Extension) 

The USAGE IS BINARY clause indicates that data is in a binary-coded format. A binary 
item is capable of representing a value to be used in computations and therefore is 
always numeric. 

Binary items occupy memory as follows: 

• When the declared size is less than or equal to 11 decimal digits, the actual size is 
equal to 1 computer word; however, the item is not necessarily aligned on a word 
boundary. (This size is equivalent to 6 DISPLAY digits or 12 COMPUTATIONAL 
digits.) 

• When the declared size is greater than 11 digits, the actual size is equal to 2 
computer words (the equivalent of 12 DISPLAY digits); however, the item is not 
neces~ily aligned on a word boundary. 

• The size of the record is determined by the actual size of the item (1 or 2 computer 
words). 

Note: In some cases, the compiler issues a warning because an elementary 
item declared at 01-level with USAGE IS BINARY is treated as if the 
TRUNCATED phrase had been specified for the item. In a future 
release, this inconsistency will be eliminated. 

Although BINARY items are not required to start at a word boundary, faster execution 
results when these items start at a word boundary. 

8600 0296-000 



DATA DIVISION 

BINARY TRUNCATED (Unisys Extension) 

If the TRUNCATED phrase is specified for an item, the contents of the PICTURE clause 
are used for high-order digit truncation, and when the item is used as a destination, for 
size-error determination. 

If the TRUNCATED phrase is not specified for an item, no truncation of high-order 
digits occurs, and when the item is used as a destination, size-error determination is 
limited to arithmetic faults such as integer-overflow conditions. 

COMPUTATIONAL, CMp, or COMP 

CMP and COMP are abbreviations for COMPUTATIONAL. 

Elementary COMPUTATIONAL data items are represented internally as contiguous 
4-bit digits. 

A COMPUTATIONAL item can represent a value to be used in computations and must 
be numeric. A numeric literal is a character string with characters selected from the 
digits "0" through "9", the plus sign (+), the minus sign (-), and the decimal point. Digits 
"A" through "F" are NOT numeric. COMPUTATIONAL fields on the A Series system are 
packed-decimal numeric items, not hexadecimal strings. 

Ifa group item is described as COMPUTATIONAL, the elementary items in the group 
are COMPUTATIONAL. The group itself is not COMPUTATIONAL and cannot be used 
in computations. 

CONTROL-POINT, Cp, or TASK 

The USAGE IS CONTROL-POINT clause is a synonym for USAGE IS TASK. CP is an 
abbreviation for CONTROL-POINT. 

If a group item is described with the USAGE IS TASK clause, the elementary items in 
the group are all task items. The group itself is not a task item and carmot be used in 
any statement except the USING phrase or within a parameter list. Elementary TASK 
items are data descriptors and, as such, occupy a single word of memory. 

An elementary TASK item can be referred to directly only in an ATTACH, CALL, 
DETACH, RUN, EXECUTE, PROCESS, CHANGE, or SET statement, or in the USING 
phrase in a task-attribute expression, or in a parameter list. Further explanation of 
TASK items can be found in the descriptions of statements that reference them and in 
the task-attribute descriptions. 

When a data usage is declared as TASK, the item can be a 77-level or a Ol-level item or 
can be subordinate to' a Ol-level item declared with USAGE IS TASK. 

Task items cannot be doubly subscripted. That is, a task item with an OCCURS clause 
cannot have a subordinate task item with an OCCURS clause. Task items cannot be 
redefined by items of any other usage. No other clauses are allowed on an item with -
USAGE IS TASK. 

8~OO 0296~OOO 7-43 



DATA DIVISION 

7-44 

DISPLAY 

DISPLAY data items are depicted internally as contiguous 8-bit characters represented 
in the EBCDIC character set. 

The group item is considered to be a group data item that has an alphanumeric class, 
USAGE IS DISPLAY, and can be referenced at any place in the syntax acceptable for 
such an item. The size of the group item is in terms of DISPLAY characters aligned 
according to the rules for the DISPLAY phrase. The rule is that one character exists for 
every two 4-bit digits that form a part of the group item. (This is a Unisys extension.) 

The USAGE IS DISPLAY clause indicates that data is in a standard data format. 

If the USAGE clause is not specified for an elementary item or for any group to which 
the item belongs, the usage is implicitlyDISPLAY. 

Every occurrence of a DISPLAY data item begins and ends on a byte boundary. In a 
record description, the declaration of a DISPLAY data item immediately following a 
COMPUTATIONAL or INDEX data item that does not end on a byte boundary causes 
automatic generation of a 4-bit filler between the two items. This filler area between the 
two data items is not included in the size of either item, but is included in the size of all 
group items to which the two items are subordinate. ~imilarly, if the last item declared 
in a group item at the next-lowest hierarchic level is a COMPUTATIONAL or an INDEX 
data item that does not end on a byte boundary, automatic generation of a 4-bit filler 
occurs. This filler is included in the size of the group item. 

The PICTURE and USAGE clauses are the only clauses valid when the TYPE clause is 
specified. When the USAGE clause is used with the TYPE clause, the usage must be 
DISPLAY. (This paragraph is a Unisys extension.) 

DOUBLE or REAL 

The USAGE IS REAL and USAGE IS DOUBLE clauses indicate that data is in an 
internal floating-point format. A REAL or DOUBLE item is capable of representing a 
value to be used in computations and is always numeric. Neither the PICTURE clause 
nor the SIGN clause are permitted for REAL or DOUBLE items. 

REAL and DOUBLE items occupy memory as follows: 

• A REAL item is single precision; the actual size is equal to 1 computer word. 

• A DOUBLE item is double precision; the actual size is equal to 2 computer words. 

• Both REAL and DOUBLE items are not necessarily word-aligned. 

Although REAL or DOUBLE items are not required to start at a word boundary, faster 
execution results when these items do start at a word boundary. 

EVENT 

Items described with the USAGE IS EVENT clause are used as a common interlock 
between two or more processes, thus providing an efficient means of correlating the 

86000296-000 



DATA DIVISION 

activities of one process with its related processes. Elementary EVENT items occupy 2 
words of memory. For information and syntax for controlling and testing event-names, 
refer to the CAUSE, RESET, IF, and WAIT statements. 

EVENT usage is allowed only on a 77-level or a OI-level item; if used on a OI-level item, 
a subordinate OCCURS clause is allowed. No other entries are permitted with an 
event-name. EVENT items cannot be redefined by items of any other type. 

INDEX 

An INDEX data item (an elementary item described with the USAGE IS INDEX clause) 
contains a value that must correspond to the occurrence number of a table element. The 
elementary item cannot be a conditional variable. If a group item is described with the 
USAGE IS INDEX clause, the elementary items in the group are all index, data items. 
The group itself is not an index data item and cannot be used in the SEARCH or the 
SET statement, or in a relation condition. 

An index data item can be referenced explicitly only in a SEARCH or a SET statement, a 
relation condition, the USING phrase of a PROCEDURE DMSION header, or the 
USING phrase of a CALL statement. 

A group item is also considered to be a group data item if its class is numeric, if it has 
index usage, and if it can be referenced at any place in the syntax that is acceptable for 
such an item. The size of the group item is considered in terms of DISPLAY characters 
(4 characters for each subordinate index data item). 

An index data item can be part of a group that is referenced in a MOVE or I/O 
statement; in this case, no conversion takes place. 

An index data item can contain a signed value. An index data item occupies the same 
space and has the same alignment as an item declared PICTURE S9(7) USAGE IS 
COMPUTATIONAL. 

The SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE, and BLANK WHEN ZERO 
clauses cannot be used to describe group or elementary items declared with the USAGE 
IS INDEX clause. 

KANJI (Unisys Extension) 

Kanji data items are depicted internally as contiguous l6-bit characters represented in 
the Japanese Kanji character set. Each Kanji character consists of 16 bits and occupies 2 
bytes of memory. 

When the Kanji phrase'is specified for a group item, it implies that all subordinate 
elementary items are declared as USAGE IS KANJI. Any Kanji group item is regarded 
as an alphanumeric item whose frame size is 8 bits (DISPLAY), except when a Kanji 
group item is compared with a figurative constant and when a figurative constant is 
moved to a Kanji group item. If a usage is specified for a data item that is subordinate to 
the group item, the usage for both items must be identical~ An item with a KANJI clause 
contains Kanji items. 

86000296--000 7-45 



DATA DIVISION 

All Kanji data items belong to the class alphanumeric, and the Kanji category is 
subdivided into Kanji and Kanji-edited. 

Kanji usage is a type of double-octet usage. 

LOCK 

The same rules apply to declaring data usage as LOCK as those declaring data usage as 
EVENT. 

For information and syntax for controlling and testing LOCK items, refer to the LOCK 
and UNLOCK statements in Section 9, "PROCEDURE DMSION Statements." 

Elementary LOCK items occupy 2 words of memory. 

This item does not affect the use of the data item, although the specifications for some 
statements in the PROCEDURE DMSION can restrict the USAGE clause of the 
reference operands. The USAGE clause can affect the radix or type of character 
representation of the item. 

See Also 

• For information on using the CAUSE statement to initiate communication between 
processes in an asynchronous processing environment, refer to "CAUSE (Unisys 
extension)" in Section 9, "PROCEDURE DMSION Statements." . 

• For information about evaluating conditions, refer to "IF" in Section 9, 
"PROCEDURE DMSION Statements." 

• For information on using the LOCK statement to deny related processes access 
to a common storage area, refer to "LOCK (Unisys extension)" in Section 9, 
"PROCEDURE DMSION Statements." 

• For information on using the RESET statement to control communication between 
processes in an asynchronous processing environment, refer to "RESET (Unisys 
Extension)" in Section 9, "PROCEDURE DMSION Statements." 

• For information on using the UNLOCK statement to unlock a previously locked 
common storage area, refer to "UNLOCK (Unisys Extension)" in Section 9, 
"PROCEDURE DMSION Statements." 

• For information on using the WAIT statement to suspend program execution for a 
specified time or until one or more conditions are TRUE, refer to "WAIT (Unisys 
Extension)" in Section 9, "PROCEDURE DMSION Statements." 

VALUE Clause 

7-46 

The VALUE clause defines the value of constants, the value of REPORT SECTION 
printable items, the initial value of WORKING-STORAGE items, the initial value of 
data items in the COMMUNICATION SECTION, and the values associated with a 
condition-name. 

The VALUE clause cannot be stated for any items of variable size. 

8600 0296-000 :J 



DATA DIVISION 

The VALUE clause cannot be used with the GLOBAL or OWN clause. 

The VALUE clause has the following formats: 

Format Explanation 

1 Specifies the value of constants, the initial value of WORKING-STORAGE 
items, the value of REPORT SECTION printable items, and the initial 
value data of items in the COMMUNICATION SECTION. 

2 

3 

Format 1 

Permits alternative, overlapping groupings of elementary items. 

Specifies values associated with a condition-name. 

The general format of this clause is as follows: 

{~UE } IS literal 

Explanation of Format 1 

VALUE or VA 

VA is an abbreviation for VALUE. (This is a Unisys extension.) 

literal 

A signed numeric literal must have a signed numeric PICTURE character string 
associated with it. 

A numeric literal must have a value in the range of values indicated by the PICTURE 
clause and must not have a value that requires truncation of nonzero digits. A 
nonnumeric literal must not exceed the size indicated by the PICTURE clause. 

A figurative constant can be substituted for the literal. 

The VALUE clause must not conflict with the category of the data item as described in 
the PICTURE clause. Table 7-4 shows the rules that apply. 

8600 0296-000 7-47 



DATA DIVISION 

Table 7-4. VALUE Clause Rules by Data Category 

Data Category 

. Numeric 

Alphabetic, alphanumeric, 
alphanumeric- edited, or 
numeric-edited 

Kanji or Kanji-edited . 

Rules 

The literal must be numeric. If the literal defines the value of 
a WORKING-STORAGE item, the literal is aligned in the data 
item according to the standard rules for data alignment. 

The literal must be a nonnumeric literal. The literal is 
aligned in the data item as if the data item were described 
as alphanumeric. Editing characters in the PICTURE clause 
are included in determining the size of the data item but 
have no effect on initialization of the data item., Therefore, 
the VALUE clause for an edited item is presented in an 
ed ited form. 

The literal clause must be a Kanji literal. If the VALUE 
clause is specified for an edited item, no edit operation 
occurs. 

The VALUE clause must not conflict with other clauses.in the data description of the 
item or in the data description within the hierarchy of the item. The following rules 
apply: 

• Initialization occurs independently of the BLANK WHEN ZERO and the 
JUSTIFIED .clause. 

• The VALUE clause must not be stated in a data-description entry that contains 
an OCCURS clause or in an entry that is subordinate to an entry containing an 
OCCURS clause. This rule does not apply to condition-name entries. 

• The VALUE clause must not be stated in a data-description entry that contains 
a REDEFINES clause or in an entry that is subordinate to an entry containing a 
REDEFINES clause. This rule does not apply to condition-name entries. 

• If the VALUE clause is used in an entry at the group level, the literal must be a 
figurative constant or a nonnumeric literal, and the group area is initialized without 
consideration for the individual elementary or group items contained within this 
group. The VALUE clause cannot be stated at the subordinate levels within this 
group. 

• The VALUE clause must not be written for a group containing items for which 
USAGE (other than USAGE IS DISPLAY) is explicitly or implicitly specified. 

7-48 86000296-000 



DATA DIVISION 

Table 7-5 shows the rules that govern the use of the VALUE clause in each section of 
the DATA DMSION. 

Table 7-5. VALUE Clause Rules by Section 

Section 

FILE 

WORKING-STORAGE and 
COM M UNICATION 

LINKAGE 

REPORT 

Rules 

The VALUE clause can be used only in condition-name 
entries. 

The VALUE clause must be used in condition-name entries. 

The VALUE clause can also be used to specify the initial 
value of any other data item; in this case, the clause causes 
the item to assume the specified value at the start of the 
object program. If the VALUE clause is not used in the 
description of an item, the initial value is undefined. 

The VALUE clause can be used only in condition-name 
entries . 

. If the elementary report entry containing the VALUE clause 
does not contain a GROUP INDICATE clause, then the 
printable item assumes the specified value each time the 
report group is printed. However, when the GROUP 
INDICATE clause is included, the specified value is presented 
only when certain execution-time conditions are met. 

In bOWld procedures, the VALUE clause cannot be used for any item declared explicitly 
in the data: declaration, or declared implicitly by using the GLOBAL or OWN compiler 
control options. . 

See Also 

• For information on determining the category of a data item, refer to "PICTURE 
Clause" earlier in this section. . 

• For information on condition-names, refer to "Data-Description Entry for 
Condition-Names" later in this section. 

Data-Description Entry for Renaming Entries 

Format 2 of the data-description entry uses the RENAMES clause. The RENAMES 
clause permits alternative, possibly overlapping, groupings of elementary items. 

One or more RENAMES clauses can be written for a logical record. 

All RENAMES clauses that refer to data items in a given logical record must immediately 
follow the last data-description entry of the associated record-description entry. 

8600 0296-000 7-49 



DATA DIVISION 

Format 2: Renaming Entries 

[ {
THROUGH } ] 66 data-name-l; RENAMES data-name-2 THRU data-name-3. 

7-50 

Note: Level-number 66, data-name-l, and the semicolon (,-) are shown in the 
preceding format for clarity. Level-number 66 and data-name-l are 
not part of the RENAMES clause. 

Explanation of Format 2 

Data-name-l cannot be used as a qualifier and can be qualified only by the names of the 
associated Ol-level, field description (FD), communication description (CD), and sort 
merge description (SD). Neither data-name-2 nor data-name-3 can have an OCCURS 
clause in the data-description entry or be subordinate to an item that has an OCCURS 
clause in the data-description entry. 

Data-name-2 and data-name-3 must be names of elementary items or groups of 
elementary items in the logical record and cannot be the same data-name. A 66-level 
entry cannot rename another 66-level entry, nor can it rename a 77-,88-, or Ol-level 
entry. 

The beginning of the area described by data-name-3 must not be to the left of the 
beginning of the area described by data-name-2. The end of the area described by 
data-name-3 must be to the right of the end of the area described by data-name-2. 
Data-name-3, therefore, cannot be subordinate to data-name-2. 

Da~a-name-2 and data-name-3 can be qualified. 

Th~ words THRU and THROUGH are equivalent. 

N one of the items in the range, including data-name-2 and data-name-3 (if specified), can 
be an item of variable size as defined in the OCCURS clause. 

When data-name-3 is specified, data-name-l is a group item that 

• Includes all elementary items starting with data-name-2 if data-name-2 is an 
elementary item 

• Includes the first elementary item in data-name-2 if data-name-2 is a group item 

• Concludes With data-rulme-3 if data-name-3 is an elementary item 

• Concludes with the last elementary item in data-name-3 if data-name-3 is a group 
item 

When data-name-3 is specified and data-name-2 is an elementary COMPUTATIONAL 
or INDEX data item, data-name-3 must be positioned to begin at an 8-bit character 
boundary. (This is a Unisys extension.) 

8600 0296-000 



DATA DIVISION 

When data-name-3 is specified and is an elementary COMPUTATIONAL or INDEX data 
item, data-name-3 must be positioned to end at the end of an 8-bit character boundary. 
(This is a U nisys extension.) 

When dat.a-name-3 is not specified, data-name-2 can be either a group or an elementary 
item. When data-name-2 is a group item, data-name-! is treated as a group item; 
when data-name-2 is an elementary item, data-name-! is treated as an elementary 
item. Data-name-! assumes all characteristics of data-name-2 as determined from the 
data description of data-name-2, including usage, justification, synchronization, editing 
requirements, and so forth. 

Data-Description Entry for Condition-Names 

Format 3 of the data-description entry assigns values to condition-names. A 
condition-name is a name assigned to a specific value, a set of values or a range of values 
within a complete set of values that a data item can assume. The data item itself is 
called a conditional variable. The general format of the data-description entry for a 
condition-name is as follows: 

Format 3: Condition-Names 

1 
VALUE IS 1 

88 condition-name; ~~S ARE literal-l [ {=UGH } literal-2] 

VA ARE 

[, literal-3 [ G=~UGH} literal4]] ... 

Explanation of Format 3 

Each condition-name requires a separate entry with level-number 88. Format 3 contains 
the name of the condition and the value, values, or range of values associated with the 
condition-name. The condition-name entries for a particular conditional variable must 
follow the entry describing the item with which the condition-name is associated. 

A condition-name can be associated with any data-description entry that contains a 
level-number except the following: 

• Another condition-name. 

• A level-66 item. 

• A group item containing items for which USAGE (other than USAGE IS DISPLAY) 
is explicitly or implicitly specified. (This is a Unisys extension.) 

• An index data item. 

8600 0296-000 7-51 



DATA DIVISION 

In a condition-name entry, the VALUE clause is required. The VALUE clause and the 
condition-name itself are the only two clauses permitted in the entry. The characteristics 
of a condition-name are implicitly those of the conditional variable. 

Wherever the THROUGH phrase is used, literal-! must be less than literal-2, literal-3 
less than literal-4, and so forth. 

The words THROUGH and THRU are equi~alent. 

Example 

Example 7-9 shows the coding of condition-names. THIS-YEAR is the conditional 
variable, and the months JANUARY through DECEMBER are the condition-names. 
If JUNE has the assigned value 6, the following entry could be written using the 
condition-name JUNE: 

IF JUNE PERFORM ••• 

This coding is logically equivalent to using the conditional variable TillS-YEAR and 
writing: 

IF THIS-YEAR IS EQUAL TO 1991 PERFORM 
The coding condition-names for this example are shown in Example 7-9. 

01 THIS-YEAR 
88 JANUARY 
88 FEBRUARY 
88 MARCH 
88 APRIL 
88 MAY 
88 JUNE 
88 JULY 
88 AUGUST 
88 SEPTEMBER 
88 OCTOBER 
88 NOVEMBER 
88 DECEMBER 
88 SPRING 
88 THIRTY DAYS 

See Also 

PIC 9999. 
VALUE 1. 
VALUE 2. 
VALUE 3. 
VALUE 4. 
VALUE 5. 
VALUE 6. 
VALUE 7. 
VALUE 8. 
VALUE 9. 
VALUE 10. 
VALUE 11. 
VALUE 12. 
VALUE 3 THRU 5. 
VALUE 9, 4, 6, 11. 

Example 7-9. Coding Condition-Names 

• Refer to "VALUE Clause",earlier in this section for the details on this clause. 

• Refer to "Condition-Name Condition" in Section 8, "PROCEDURE DIVISION 
Concepts," for information on this simple relation condition. 

7-52 86000296-000 



DATA DIVISION 

WORKING-STORAGE SECTION 
The WORKING-STORAGE SECTION is composed of the section header followed by 
data-description entries for noncontiguous data items, record-description entries, or both 
entries. Each WORKING-STORAGE SECTION record-name and noncontiguous item 
name must be unique because these names cannot be qualified. Subordinate data-names 
need not be unique if they can be made unique by qualification. 

Noncontiguous WORKING-STORAGE Items 

Items and constants in the WORKING-STORAGE SECTION have no hierarchic 
relationship to one another need not be grouped into records, provided that they do not 
need-to be further subdivided. Instead, these items and constants are classified and 
defined as noncontiguous elementary items. Each of these items is defined in a separate 
data-description entry, beginning with the special level-number 77. -

The general format of this section is as follows: 

77 data-name {PICTURE } 
USAGE IS INDEX 

[ Any other data-description clauses ] . 

WORKING-STORAGE Records 

Data elements and constants in the WORKING-STORAGE SECTION that bear a 
definite hierarchic relationship to one another must be grouped into records according to 
the rules for formation of record descriptions. All clauses used in record descriptions in 
the FILE SECTION can be used in record descriptions in the WORKING-STORAGE 
SECTION. 

8600 0296-000 7-53 



DATA DIVISION 

Example 
Example 7-10 shows the coding of the WORKING-STORAGE SECTION. 

WORKING-STORAGE SECTION 
77 MASTER-KEY PIC 9(8) COMPo 
77 TOTAL-SALES PIC 9(10) COMPo VALUE ZEROS. 
01 STATE-TABLE. 

03 STATES. 
05 CALIF PIC 9(5). 
05 MICH PIC 9(5). 
05 FLORIDA PIC 9(5). 
05 ARIZONA PIC 9(5). 

03 STATE-KEY REDEFINES STATES OCCURS 4 TIMES. 
05 STATE-CODE PIC 99. 
05 COUNTY PIC 99. 
05 CAPITAL-CODE PIC 99. 

01 HEADING-LINE. 
03 FILLER PIC X(52) VALUE SPACES. 
03 FILLER PIC X(l7) VALUE 

II SALES PERFORMANCES II • 

03 FILLER PIC X (l0) VALUE SPACES. 
03 PAGE-NO PIC 9999. 
03 FILLER PIC X(49) VALUE SPACES. 

Example 7-10. Coding the WORKING-STORAGE SECTION 

LOCAL·STORAGE SECTION (Unisys Extension) 
The optional LOCAL-STORAGE SECTION describes parameters to be received, 
allowing separate tasks or procedures to be bound from another program. These 
parameters are described with USE EXTERNAL statements. 

The general format of items in this section is as follows: 

LD loca1-storage-name. [.Any data description clauses] . 

7-54 

Explanation of Format 

The local-storage-description (LD) entry is followed by item descriptions used in the 
WORKING-STORAGE SECTION. 

Local-storage items are associated with a specific procedure by being listed in the WITH 
clause of the USE statement for the procedure. Allloca1-storage-names must be unique. 
An LD entry is required for each procedure that receives data as parameters. That is, a 
USING clause is present in both the invocation of the procedure and the USE statement 
in the section header. 

8600 0296-000 



DATA DIVISION 

See Also 

Refer to the Binder Reference Manual for program samples that show binding. 

8600 0296-000 7-55 



7-56 8600 0296-000 



Section 8 
PROCEDURE DIVISION Concepts 

The fourth and last division of a source program, the PROCEDURE DMSION, must 
be included in every COBOL source program. This division can contain declarative and 
nondeclarative procedures. 

PROCEDURE DIVISION Header 
The PROCEDURE DIVISION is identified by, and must begin with, the following 
format: 

[ I data-name II file-name 
PROCEDURE DIVISION USING task-name . . . . 

event-name 
lock-name 

Explanation of Format 

The optional USING clause names the identifiers received as parameters· in a tasking, 
bound procedure, library, or Inter-Program Communication (!PC) environment. 

When the USING clause is present, the object program operates as if each identifier in 
the list were replaced by the corresponding identifier from the USING clause of the 
CALL, PROCESS, or RUN statement of the calling program. 

A data-name, file-name, task-name, event-name, or lock-name in the USING clause of 
the PROCEDURE DIVISION header must be defined in the LINKAGE SECTION of 
the program in which this header occurs, and must have a 01 or 77 level-number and 
must not be a redefined item. 

When the RECEIVED BY REFERENCE clause appears in a data description for an 
identifier, the corresponding identifier refers to a single set of data available to both the 
calling and the called program. 

When the data-name is RECEIVED BY CONTENT, the invocation of the procedure 
initializes the corresponding data-name in the USING clause of the called program to the 
current value in the initiating program. The correspondence is by position and not by 
symbolic name. Only the tasking and bound-procedure environments support by value 
parameters. 

8600 0296-000 8-1 



PROCEDURE DIVISION Concepts 

See Also 

• For information about the USING clause with IPC, refer to "PROCEDURE 
DIVISION in the IPC Module" in Section 13, "ANSI Inter-Program Communication 
(IPC)." 

• For a description of the USING clause with libraries, refer to Section 15, "Libraries." 

PROCEDURE DIVISION Body 

8-2 

The body of the PROCEDURE DIVISION must conform to one of the following two 
formats: 

Format 1 

[ 

DECLARATIVES. 

{ 
section-~e SECTION [ segment-number] . declarative-sentence. 

[paragraph-name. [sentence] ... J ... 

END DECLARATIVES . 

{
section-name SECTION [segment-number J . } ... 

[paragraph-name. [sentence] ... J ... 

Format 2 

{paragraph-name. [sentence] ... } ... 

Explanation of Format 1 and Format 2 

} ... J 

DECLARATIVES SECTIONs must be grouped at the beginning of the PROCEDURE 
DIVISION and must be preceded by the keyword DECLARATIVES and followed by the 
keywords END DECLARATIVES. 

A section consists of a section header followed by one or more successive paragraphs. A 
section ends as follows: 

• Immediately before the next section 

• At the end of the PROCEDURE DIVISION 

• At the keywords END DECLARATNES in the DECLARATIVES SECTION of the 
PROCEDURE DIVISION 

8600 0296--000 



PROCEDURE DIVISION Concepts 

A procedure is composed of a paragraph, a group of successive paragraphs, a section, or a 
group of successive sections in the PROCEDURE DIVISION. If one paragraph is in a 
section, then all paragraphs must be in sections .. A procedure-name is a word used to 
refer to a paragraph or a section in the source program in which the name occurs. The 
procedure-name consists of a paragraph-name (which can be qualified) or a section-name. 

A paragraph consists of a paragraph-name followed by a period and by one or more 
successive sentences. A paragraph ends as follows: 

• Immediately before the next paragraph-name or section-name 

• At the end of the PROCEDURE DIVISION 

• At the keywords END DECLARATIVES in the DECLARATIVES SECTION of the 
PROCEDURE DIVISION 

A sentence consists of one or more statements and ends in a period. 

A statement is a syntactically valid combination of words and symbols beginning with a 
COBOL74 verb. 

The end of the PROCEDURE DIVISION and the physical end of the program is the 
physical position in a COBOL source program after which no further procedures appear. 

Example 

Example 8-1 is a sample program that illustrates the use of declaratives. 

IDENTIFICATION DIVISION. 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT INPUT-FILE ASSIGN TO DISK 
FILE STATUS IS INPUT-STATUS. 

DATA DIVISION. 
FILE SECTION. 
FD INPUT-FILE 

VALUE OF TITLE IS "DISK-FILE". 
01 INPUT-REC PIC X(80). 

WORKING-STORAGE SECTION. 
77 INPUT-STATUS PIC XX. 

PROCEDURE DIVISION. 
DECLARATIVES. 
DECL-1 SECTION. 

USE AFTER STANDARD ERROR PROCEDURE ON INPUT. 
0-0010. 

DISPLAY "1/0 ERROR READING FILE". 

Example 8-1. Use of Declaratives 

8600 0296-000 8-3 



PROCEDURE DIVISION Concepts 

DISPLAY "FILE STATUS IS II INPUT-STATUS. 
STOP RUN. 

END DECLARATIVES. 

MAIL-1000 SECTION. 
P-10I0. 

MOVE "00" TO INPUT-STATUS. 
OPEN INPUT INPUT-FILE. 
READ INPUT -FI LE. 
STOP RUN. 

Example 8-1. Use of Declaratives (cont.) 

Categories of Statements and Sentences 
Statements and sentences can be of the following three types: 

• Conditional 

• Compiler-directing imperative 

• Program-directing imperative 

Conditional Statements and Sentences 

8-4 

A conditional statement contains a condition that can be TRUE or FALSE, and specifies 
actions to be taken that depend on the truth value of the condition. The program 
performs a test to determine the value of the condition and performs a specified action 
when the condition is TRUE and another specified action when the condition is FALSE. 
For example, the IF condition THEN imperative-statement statement directs the 
program to perform the THEN statement when the specified condition is TRUE. 

A conditional sentence can contain several imperative statements associated with a 
condition. A conditional sentence must end with a period. 

The conditional statements are listed in Table 8-8 at the end of this section. 

8600 0296-000 



PROCEDURE DIVISION Concepts 

Compiler-Directing Imperative Statements and Sentences 

A compiler-directing imperative statement causes the compiler to take a specific action 
during the compilation process. The compiler-directing imperative statements include 
the following statements: 

• The COPY statement, which directs the compiler to incorporate text from a library 
program into the program that contains the COpy statement 

• The USE statement, which 

Specifies procedures to be used for I/O exception handling 

Identifies a separately compiled program to be used as a task or to be bound into 
the COBOL74 host program 

Specifies a declarative as an interrupt procedure 

A compiler-directing sentence is a single compiler-directing statement ending in a period. 

Program-Directing Imperative Statements and Sentences 

A program-directing imperative statement causes the program to take a specific 
unconditional action. An imperative" statement can consist of a sequence of imperative 
statements. 

The program-directing imperative statements are listed in Table 8-8 at the end of this 
section. 

When the user-defined word imperative-statement appears in a general format notation, 
it refers to one of the following: 

• A sequence of consecutive imperative sentences ended by a period 

• An ELSE phrase associated with a previous IF statement 

• A WHEN phrase associated with a previous SEARCH statement 

An imperative sentence is an imperative statement ending in a period. 

8600 0296-000 8--5 



PROCEDURE DIVISION Concepts 

Arithmetic Expressions 
An arithmetic expression can be one of the following: 

• An identifier of a numeric elementary item 

• A numeric literal 

• A numeric function or an extended function with a numeric result 

• Identifiers and literals separated by arithmetic operators 

• Two arithmetic expressions separated by an arithmetic operator 

• An arithmetic expression enclosed in parentheses 

Any arithmetic expression can be preceded by a unary operator. 

Identifiers and literals appearing in an arithmetic expression must represent either 
numeric elementary items or numeric literals on which arithmetic can be performed. 

In a conditional expression, the use of a simple variable in parentheses, particularly when 
that simple variable is subscripted, can have undesirable results. U nisys recommends 
that you avoid this type of coding. . 

Arithmetic Operators 

8-6 

Five binary and two unary arithmetic operators can be used in arithmetic expressions 
and are listed in Tables 8-1 and 8-2. 

Symbol 

+ (plus sign) 

- (minus sign) 

* (asterisk) 

I (slash) 

** 

Symbol 

+ (plus sign) 

- (minus sign) 

Table 8-1. Binary Arithmetic Operators 

Meaning 

Addition 

Subtraction 

Multiplication 

Division 

Exponentiation 

Table 8-2. Unary Arithmetic Operators 

Meaning 

The effect of multiplication by +1 

The effect of multiplication by-1 

8600 0296-000 



PROCEDURE DIVISION Concepts 

Formation and Evaluation Rules 

Parentheses in arithmetic expressions define the order in which elements are evaluated. 
Expressions in parentheses are evaluated first; in nested parentheses, evaluation . 
proceeds from the least inclusive set. When parentheses are not used, or when 
parenthesized expressions are at the same level of inclusiveness, the following order of 
procedure is implied: 

1. Unary operation 

2. Exponentiation 

3. Multiplication and division 

4. Addition and subtraction 

Parentheses either eliminate ambiguities in logic where consecutive operations of 
the same procedure appear or modify the normal hierarchic sequence of execution 
in expressions where deviation from the normal precedence is necessary. When 
the sequence of execution is not specified by parentheses, the execution order for 
consecutive operations of the same procedure is from left to right. 

An arithmetic expression can begin only with a left parenthesis, a plus sign ( + ), a minus 
sign (-) , or a variable. A one-to-one correspondence must be maintained between left 
and right parentheses of an arithmetic expression so that each left parenthesis is to the 
left of its corresponding right parenthesis. 

The COBOL operator for exponentiation (**) causes any operand less than 12 digits 
long to be converted to double-precision representation before the operation. The 
exponentiation is performed on the double-precision operands. The result is truncated 
to single precision for any receiving field that is less than 12 digits long. 

The valid combinations of operators, variables, and parentheses that can be arranged 
in an arithmetic expression are summarized in Table 8-3. If a combination is shown as 
not valid, it means that the symbols cannot occur next to each other in an arithmetic 
expression. 

Table 8-3. Combination of Symbols in Arithmetic Expressions 

First Symbol Second Symbol 

Identifier or Unary + or 
Literal */**-+ - ( ) 

*/**+- p N P P N 

Unary + or- P N N P N 

Legend continued 
P Combination of symbols is permitted. 
N Combination of symbols is not valid. 

8600029~OO 8-7 



PROCEDU RE DIVISION Concepts 

Table 8-3. Combination of Symbols in Arithmetic Expressions (cant.) 

First Symbol Second Symbol 

I dentifler or Unary + or 
Literal * 1** - + - ( ) 

( P N P P N 

) N P N N P 

Legend 
P Combination of symbols is permitted. 
N Combination of symbols is not valid. 

Numeric Functions 

DIV 

A numeric function can be specified as a sending operand in an arithmetic statement, a 
MOVE statement, or an arithmetic expression. 

The functions described in the following text are U nisys extensions. An extended 
function can be specified as an arithmetic expression in the COMPUTE statement. 

Refer to Volume 2 for information about the FORM-KEY function. 

The DIV function is an integer division function that returns an integer equal to the 
integer part of the quotient after division. 

The format for the DIY function is as follows: 

FUNCTION DIY ~argument-l, argument-22 

8-8 

Explanation of Format 

Argument-l represents the dividend, and argument-2 the divisor. Argument-l and 
argument-2 can be any language-defined arithmetic expression, including a valid function 
call that returns a numeric value. The result returned can be a real or an integer value, 
depending on the argument type. The result of argument-2 must not be 0 (zero). 

8600 0296-000 



PROCEDURE DIVISION Concepts 

Example 

In the three COMPUTE statements in Example 8-2, the DIV function returns the 
integers 5, 3, and 30, respectively. 

COMPUTE A = FUNCTION DIV(10,2). 

COMPUTE A = FUNCTION DIV(10,3). 

COMPUTE A = FUNCTION DIV(10,.33). 

Example 8-2. Coding the DIV Function 

FORMATTED-SIZE 

The FORMATTED-SIZE function returns as a value the formatted size of the 
data-name. The returned value is equal to the following: 

Length of the data-name in bytes + 
(number of Kanji data items subordinate to the data-name * 2) 

The format for the FORMATTED-SIZE function is as follows: 

FUNCTION FORMATTED-SIZE 1data-name2 

Explanation of Format 

The number of Kanji data items subordinate to the data-name is determined according 
to the same rules that are used for record formatting in the WRITE DELIMITED 
statement. 

The data-name can be qualified. It cannot be subscripted or indexed, nor can the 
data-name be a RENAMES entry. 

The data-name must be either a group item or any category of elementary item 
described implicitly or explicitly as USAGE IS DISPLAY or USAGE IS KANJI. 

Example 

Example 8-3 shows the results returned by the FORMATrED-SIZE function. 

000200 IDENTIFICATION DIVISION. 
000300 ENVIRONMENT DIVISION. 
000400 DATA DIVISION. 
000500 WORKING-STORAGE SECTION. 

Example 8-3. Results of FORMATTED-SIZE Function 

8600 0296-000 8-9 



PROCEDURE DIVISION Concepts 

MOD 

8-10 

000600 77 . 
000700' 01 
000800 
000900 
001000 
001100 

THE-SIZE PIC 9(8). 
ACCOUNT-FILE-RECORD. 
03 ACCT-NO PIC 9(8). 
03 NUMBER-OF-DETAILS PIC 99. 
03 TRANSACTION-DETAILS OCCURS 1 TO 100 

DEPENDING ON NUMBER-OF-DETAILS. 
001200* The physical size of TRANSACTION-DETAILS is 138 bytes. 
001300* The formatted size of the same group item is 142 
001400* bytes because of the leading and trailing delimiters 
001500* accounted for around each Kanji elementary item. 
001600 05 DETAIL-IDENT . PIC 9(8). 
001700 05 DETAIL-TEXT PIC X(20) KANJI. 
001800 05 DETAIL-AMOUNT PIC S9(8)V99. 
001900 05 DETAIL-DESCRIPTION PIC X(40) KANJI. 
002000 PROCEDURE DIVISION. 
002100 ONLY-HEADER. 
002200 MOVE 1 TO NUMBER-OF-DETAILS. 
002300* 
002400* 
002500 
002600 
002700 

Function FORMATTED-SIZE (account-file-record) should now 
return a value of 152: 10 + (1 * (138 + (2 * 2») 

COMPUTE THE-SIZE = 
FUNCTION FORMATTED-SIZE (ACCOUNT-FILE-RECORD). 

DISPLAY THE-SIZE. 
002800* . Function FORMATTED-SIZE (account-file-record) should now 
002900* return a value of 2850:· 10 + (20 * (138 + (2 * 2») 
003000 MOVE 20 TO NUMBER-OF-DETAILS. 
003100 
003200 
003300 
003400 

COMPUTE THE-SIZE = 
FUNCTION FORMATTED-SIZE (ACCOUNT-FILE-RECORD). 

DISPLAY THE-SIZE. 
STOP RUN. 

Example 8-3. Results of FORMATTED-SIZE Function (cont.) 

See Also 

For information about the WRITE DELIMITED statement, refer to "WRITE" in 
Section 9, "PROCEDURE DIVISION Statements.". 

The MOD function returns the modulus value of argument-1 divided byargument-2. 
The modulus value is equal to the following: 

argument-l - [argument-2 * INTEGER(argument-1/argument-2)] 

The INTEGER function, implicit in the MOD function, is defined as the largest integer 
less than or equal to the argument. For example, INTEGER( + 1.5) returns 1, and 
INTEGER(-1.5) returns -2. 

86000296--000 



PROCEDURE DIVISION Concepts 

The format for the MOD function is as follows: 

FUNCTION MOD iargument-l, argument-22 

Explanation of Format 

The arguments must be integer literals or data-names of type numeric. The scale should 
be equal to 0 (zero). No numbers can follow the character V in the character string 
declaration. The specifications follow the CODASYL proposal for the MOD function. 
Argument-2 must not be 0 (zero). 

Example 

Example 8-4 shows four COMPUTE statements that use the MOD function and shows 
their results. The accompanying calculations show how each result was obtained. 

COMPUTE A = FUNCTION MOD(10,3). 
= 1 

COMPUTE A = FUNCTION MOD(11,-5). 
= 11 - ( -5 * FUNCTION INTEGER (11 / -5) 
= 11 - ( -5 * FUNCTION INTEGER (-2.2) ) 
= 11 - ( -5 * -3) 
= 11 - 15 = -4 

COMPUTE A = FUNCTION MOD (-11,5). 
= -11 - ( 5 * FUNCTION INTEGER (-11 / 5) ) 
= -11 - ( 5 * FUNCTION INTEGER (-2.2) ) 
= -11 - ( 5 * -3 ) 
= -11 + 15 = 4 

COMPUTE A = FUNCTION MOD(10,0.33). 

8600 0296-000 

= 10 - ( 0.33 * FUNCTION INTEGER (10 / 0.33) ). 
= 10 - ( 0.33 * FUNCTION INTEGER (30.303030 ••• ) 
= 10 - ( 0.33 * 30 ) . 
= 10 - 9.9 = 0.1 

Example 8-4. Coding the MOD Function 

8-11 



PROCEDURE DIVISION Concepts 

OFFSET 

The OFFSET function returns a value equal to the number of characters that precede 
data-name in the logical record in which data-name is defined. 

The format for the OFFSET function is as follows:. 

OFFSET (data-name2 

REM 

ExpianatioD10f Format 

If data-name refers to a packed numeric data item that is not aligned on a character 
boundary, then the returned value is equal to the number of characters preceding the 
character with which data-name begins. If data-name is a record-name or a 77-level 
item, the value returned is O. Data-name can be qualified. 

Example 

In Example 8-5, ifY is a 05-level data item within a OI-level group, the COMPUTE 
statement returns a value to Z that is the sum of the number of characters of the fields 
preceding Y in the same OI-level group data structure. 

COMPUTE Z = OFFSET (Y). 

Example 8-5. .Coding the OFFSET Function 

The REM function returns as a value the remainder of a division. 

The format for the REM function is as follows: 

FUNCTION REM ~ argument-I, argument-22 

8-12 

Explanation of Format 

Argument-I represents the dividend, and argument-2 the divisor. Argument-I and 
argument-2 can be any language-defined arithmetic expression, including a valid function 
call that returns a numeric value. The result returned can be either a real or an integer 
value depending on the argument type. The result of argument-2 must not be 0 (zero). 

8600 0296-000 



PROCEDURE DIVISION Concepts 

Example 

In Example &-6, the four uses of the REM function return the values 1, 1, -1, and 0.1, 
respectively. 

COMPUTE A = FUNCTION REM(10,3). 

COMPUTE A = FUNCTION REM(II,-5). 

COMPUTE A = FUNCTION REM(-11,5). 

COMPUTE A = FUNCTION REM(10,0.33). 

Example 8-6. Coding the REM Function 

Multiple Function Calls in an Expression 

Example &-7 shows the way in which functions can be combined in a COMPUTE 
statement to form an arithmetic expression. 

000200* The first example shows that the values returned by 
000300* the DIV and REM functions are used in an addition operation. 
000410* 
000500 COMPUTE A = FUNCTION DIV(10,2) + FUNCTION REM(10,3). 
000600 = 5 + 1 = 6 
000610* 
000700* In the next example, X and Yare numeric variables: 
000800 COMPUTE A = 10 + FUNCTION DIV(10,X + V). 
000810* 
000900* In the next example, values returned by DIV and REM functions 
000100* are used as the arguments for a DIV function: 
000105* 
000110 COMPUTE A = FUNCTION MOD(-11,5) + 
000120 FUNCTION DIV((FUNCTION REM(10,3) *10) , 
000130 FUNCTION DIV(10,FUNCTION DIV(10,3) ) ). 
000140 = 4 + 
000150 FUNCTION DIV(FUNCTION REM(10,3) * 10, 
000160 FUNCTION DIV(10,3) ) 
000170 = 4 + FUNCTION DIV( (1 * 10) ,3) 
000180 = 4 + FUNCTION DIV( (1 * 10) ,3) 
000190 = 4 + 3 
002000 = 7 

Example 8-7. Coding Multiple Function Calls in an Expression 

Conditional Expressions 
Conditional expressions identify conditions that are tested so that the object program 
can choose between paths of control that depend on the truth value of the condition. 
Conditional expressions are specified in IF, PERFORM, and SEARCH statements. The 

8600 0296-000 8-13 



PROCEDURE DIVISION Concepts 

two categories of conditions associated with conditional expressions are simple conditions 
and complex conditions. Each can be enclosed in any number of paired parentheses; the 
paired parentheses do not change the category of the condition. 

Simple Conditions 

Simple conditions are relation, class, condition-name, sign, and event-identifier 
conditions~ A simple condition has a truth value of TRUE or FALSE. The inclusion of 
parentheses in simple conditions does not change the simple truth value. 

There is a permanent restriction on the use of parentheses in relational conditions. This 
restriction is not always enforced by a syntax error. Violating the following rule can 
result in an unexpected program failure or an incorrect program execution. 

Parentheses in conditional expressions in COBOL74 should not be used to surround 
simple variables, particularly when the simple variables are subscripted. 

Example 

Example 8-8 shows correct and incorrect uses of parentheses. In the following code the 
first two statements are legitimate, but the third statement should be avoided. 

IF A (I) IS EQUAL TO 8 (J) .•• 
I F (A (I) IS EQUAL TO 8 (J» •.. 
IF {A (I» IS EQUAL TO (8 (J» .•. 

In the following code, the first line is technically correct, but it is better represented by 
the second or third line of code. 

IF (C) IS EQUAL TO (D) 
IF C IS EQUAL TO D 
IF (C IS EQUAL TO D) 

In the following code, the first line is technically correct, but it is better represented by 
the second or third line of code. 

IF (LITERAL-I) IS EQUAL TO (LITERAL-2) 
IF LITERAL-I IS EQUAL TO LITERAL-2 
IF (LITERAL-I IS EQUAL TO LITERAL-2) 

Example 8-8. Parentheses Restrictions in Simple Conditions 

Relation Condition 

8-14 

A relation condition causes a comparison of two operands that can be data items 
referenced by an identifier, literals, or values resulting from' an arithmetic expression. A 
relation condition has a truth value of TRUE if the relation exists between the operands. 
Comparison of two numeric operands is permitted regardless of their respective USAGE 
clauses. However, for all other comparisons, the operands must have the same usage. If 
either of the operands is a group item, the nonnumeric comparison rules apply. 

8600 0296-000 



PROCEDURE DIVISION Concepts 

The general format ofa relation condition is as follows: 

{ 

identifier-l } 
literal-l . 
arithmetic-expression-l 

{ 

identifier-2 } 
literal-2 
arithmetic-expression-2 

IS [NOT 1 { ~REATER THAN } 

IS [NOT 1 {~SS THAN } 

IS [NOT 1 {~QUAL TO } 

Note: The required relational characters >, <, and = are not underlined 
to avoid confusion with other symbols, such as the symbol for 
"greater than or equal to." 

Explanation of Format 

The first operand (identifier-l, literal-l, or arithmetic-expression-l) is called the subject 
of the condition; the second operand (identifier-2, literal-2, or arithmetic-expression-2) is 
called the object of the condition. 

The relational operator specifies the type of comparison to be made in a relation 
condition. When used, NOT and the next keyword or relational character form one 
relational operator that defines the comparison to be executed for a truth value. For 
example, NOT EQUAL is a truth test for an unequal comparison, and NOT GREATER 
is a truth' test for an equal or less than comparison. Table 8-4 shows the meanings of the 
relational operators. 

Table 8-4. Meanings of Relational Operators 

Operator 

IS [ NOT] GREATER THAN 

IS [NOT] > 

IS [ NOT] LESS THAN 

IS [ NOT] < 

IS [ NOr] EQUAL TO 

IS [ NOT] = 

8600 0296--000 

Meaning 

Greater than or not greater than 

Less than or not less than 

Equal to or not equal to 

8--15 



PROCEDURE DIVISION Concepts 

Comparing Numeric Operands 

For nwneric operands, a co~parison is rriade with respect to the algebraic value of the 
operands. The length of the literal or the arithmetic expression operands, in terms 
of nwnber of digits represented, is not significant. Zero is considered a unique value 
regardless of the sign. 

A comparison of these operands is permitted regardless of the manner in which the 
usage is described. D nsigned numeric operands are considered positive for purposes of 
comparison. 

Comparing Nonnumeric Operands 

8-16 . 

For nonnumeric operands, or for one numeric and one nonnumeric operand, a 
comparison is made with respect to a specified collating sequence of characters. If one of 
the operands is specified as numeric, it must be an integer data item or an integer literal 
and the following conditions apply: 

• If the nonnumeric operand is an elementary data item or a nonnumeric literal, the 
nwneric operand is treated as if it were moved to an elementary alphanumeric 
data item of the same size as the numeric data item (in terms of standard data 
format characters). The numeric operand is then treated as if the contents of this 
alphanumeric data item were compared with the nonnumeric operand. 

• If the nonnumeric operand is a group item, the numeric operand is treated as if it 
were moved to a group item of the same size as the numeric data item (in terms of 
standard data format characters). The numeric operand is then treated as if the 
contents of this group item were compared with the nonnumeric operand. 

• A noninteger numeric operand cannot be compared to a nonnumeric operand. 

• If one of the operands is an undigit literal, then it cannot be compared to a numeric 
operand. Otherwise, it is treated as if it were moved to an elementary alphanumeric 
data item of the appropriate length. Each pair of hexadecimal digits represents one 
8-bit character. (This is a Dnisys extension.) 

The size of an operand is the total number of standard data-format characters in the 
operand. Numeric and nonnumeric operands can be compared only when the usage is 
the same. 

8600 0296-000 



PROCEDURE DIVISION Concepts 

Operands of equal size and operands of unequal size are described as follows: 

• If the operands are of equal size, comparison effectively proceeds by comparing 
characters in corresponding character positions, starting from the high-order end 
and continuing until either a pair of unequal characters is encountered or the 
low-order end of the operand is reached. The operands are determined to be equal if 
all pairs of characters compare equally through the last pair, when the low-order end 
of the operand is reached. 

The first pair of unequal characters encountered is compared to determine their 
relative position in the collating sequence. The operand that contains the character 
positioned higher in the collating sequence is considered to be the greater operand. 

• If the operands are of unequal size, comparison proceeds as if the shorter operand 
were extended on the right by sufficient spaces to make the operands of equal size. 

See Also 

• For a detailed description of move operations, refer to "MOVE" in Section 9, 
"PROCEDURE DMSION Statements." 

• For information about the collating sequence, refer to "OBJECT-COMPUTER" in 
Section 5, "ENVIRONMENT DMSION." 

• For information on the character P refer to "PICTURE Clause" in Section 7, "DATA 
DIVISION." 

Comparing Kanji Operands 

For Kanji operands, the relational operators are restricted to the following: 

IS [NOT] EQUAL TO 
IS [NOT] = 

If the operands are of unequal size, the right side of the shorter operand is filled with 
Kanji space characters to make both operands of equal size before the comparison is 
made. 

Comparing Index-Names and Index Data Items 

Relation tests can be made between the following: 

• Two index-names. The result is the same as.if the corresponding occurrence 
numbers were compared. 

• An index-name and a data item (other than an index data item) or literal. The 
occurrence number that corresponds to the value of the index-name is compared to 
the data item or literal. 

• An index data item and an index-name or another index data item. The actual 
values are compared without conversion. 

8600 0296-000 8-17 



PROCEDU RE DIVISION Concepts 

Any result of the comparison between an index data item and a data item or a literal that 
is not specified in the preceding list is not allowed. 

Class Condition 

8-18 

The class condition determines whether the operand is NUMERIC or ALPHABETIC. 
For example, you might want to use the class condition test to ensure that an item that is 
supposed to co~tain numeric data actually does contain numeric digits. You can code an 
IF statement to test for a class condition. The following is an example: 

IF NEW-NUM IS NUMERIC 
PERFORM CALC-ROUTINE 
ELSE PERFORM ERROR-ROUTINE. 

When the NUMERIC option is specified, the class condition tests whether the operand 
consists entirely of only the characters 0 through 9, with or without the operational sign. 

When the ALPHABETIC option is specified, the class condition tests whether the 
characters are contained entirely in the alphabetic truthset. For most application 
programs, the alphabetic truthset includes the characters A through Z and the space. 
For programs using) the internationalization features, the alphabetic truthset can be 
specified with respect to the system collating sequence. (The internationalization 
features are a Unisys extension.) 

The general format of the class condition is as follows: 

Explanation of Format 

The usage of the operand in a NUMERIC test must be DISPLAY or 
COMPUTATIONAL. (Allowing COMPUTATIONAL items in the class condition is 
a Unisys extension.) The usage of the operand in an ALPHABETIC test must be 
DISPLAY. 

When used, NOT and the next keyword specify a class condition that defines the class 
condition test to be executed for a truth value; for example, NOT NUMERIC is a truth 
test for determining that an operand is nonnumeric. 

The NUMERIC test cannot be used with an item described as alphabetic in its data 
description or with an item described as a group item composed of elementary items with 
one or more operational signs. 

If the data description of the item being tested does not indicate the presence of an 
operational sign, the item being tested is determined to be numeric only if the contents 
are numeric and an operational sign is not present. If the data description of the item 

8600 0296-000 



PROCEDURE DIVISION Concepts 

indicates the presence of an operational sign, the item being tested is determined to be 
numeric only if the contents are numeric and a valid operational sign is present. 

The ALPHABETIC test cannot be used with an item described as numeric in its data 
description. For most applications, the item being tested is determined to be alphabetic 
only if the contents consist of any combination of the alphabetic characters A through 
Z and the space. For applications using the internationalization features, the data 
item being tested is determined to be alphabetic only if the contents consist of any 
combination of the alphabetic characters in the truthset. To use a system collating 
sequence other than the characters A through Z and the space, the program must use 
the alphabet-name IS CCSVERSION phrase of the SPECIAL-NAMES paragraph. (The 
internationalization features are aUnisys extension.) 

SeeAlso . 

• The position and representation of valid operational signs are discussed under 
"PICTURE Clause" and "SIGN Clause" in Section 7, "DATA DIVISION." 

• Refer to Section 16, "Internationalization," for information about truthsets. 

Condition-Name Condition 

In a condition-name condition, a conditional variable is tested to determine whether or 
not its value is equal to one of the values associated with a condition-name. The general 
format of the condition-name condition is as follows: 

condition-name 

Explanation of Format 

If the condition-name is associated with a range or ranges of values, then the conditional 
variable is tested to determine whether its value falls in this range, which includes the 
end values. 

The rules for comparing a conditional variable with a condition-name value are the same 
as those specified for relation conditions. 

The result of the test is TRUE if one of the values corresponding to the condition-name 
equals the value of its associated conditional variable. 

Sign Condition 

The sign condition determines whether or not the algebraic value of an arithmetic 
expression is ~ess than, greater than, or equal to O. 

8600 0296-000 8-19 



PROCEDU RE DIVISION Concepts 

The general format of the sign condition is as follows: 

{

POSITIVE } 
arithmetic-expression IS [NOT] NEGATIVE. 

ZERO 

Explanation of Format 

When used, NOT and the next keyword specify a sign condition that defines the 
algebraic test to be executed for a trt;lth value; for example, NOT ZERO is a truth test 
for a nonzero (positive or negative) value. Ali operand is positive if its value is greater 
than 0, negative if its value is less than 0, and 0 if its value is equal to o. The arithmetic 
expression must contain at least one reference to a variable. 

Event-Identifier Cond ition 

In the event-identifier condition, an event variable, an event-valued file attribute, or an 
event-valued task attribute is tested to determine whether the condition is TRUE or 
FALSE. 

The general format of the event-identifier condition is as follows: 

event-identifier 

Explanation of Format 

The use of an event-identifier as a condition returns the value TRUE when the event has 
been caused and not reset. The event-identifier condition returns the value FALSE if 
the event is reset. 

Com plex Conditions 

8-20 

A complex condition is formed by combining simple conditions, combined conditions, 
and/or complex conditions with logical connectors (logical operators AND and OR) or by 
negating these conditions with a logical negator (the logical operator NOT). The truth 
value of a complex condition, whether parenthesized or not, is the truth value that 
results from the interaction of all the stated logical operators on the individual truth 
values of simple conditions or on the intermediate truth values of conditions logically 
connected or logically negated. 

8600 0296--000 



PROCEDURE DIVISION Concepts 

Table 8-5 shows the logical operators and explains their meanings. 

Logical Operator 

AND 

OR 

Table 8-5. Logical Operators and Their Meaning 

Explanation 

Logical conjunction. The truth value is TRUE if both of the conjoined 
conditions are true, and the truth value is FALSE if at least one of the 
conjoined conditions is FALSE. 

Logical inclusive OR. The truth value is TRUE if at least one of the 
included conditions is TRUE, and the truth value is FALSE if both 
included conditions are FALSE. 

NOT Logical negation or reversal of the truth value. The truth value is TRUE if 
the condition is FALSE, and the truth value is FALSE if the condition is 
TRUE. 

Negated Simple Conditions 

A simple condition is negated by using the logical operator NOT. 

The general format of a negated simple condition is as follows: 

. NOT simple-condition 

Explanation of Format 

The negated simple condition has a truth value opposite of the truth value for a simple 
condition. Thus, the- truth value of a negated simple condition is TRUE if the truth value 
of the simple condition is FALSE; the truth value of a negated simple condition is FALSE 
only if the truth value of the simple condition is TRUE. Enclosing a negated simple 
condition in parentheses does not change the truth value. 

Combined and Negated Combined Conditions 

A combined condition results from connecting conditions with one of the logical operators 
AND or OR. The general format of a combined condition is as follows: 

condition { :n} condition [ {:n} condition ] •.. 

86000296--000 8-21 



PROCEDURE DIVISION Concepts 

8-22 

A condition can be any of the following: 

• A simple condition 

• A negated simple condition 

• A combined condition 

• A negated-combined condition 

• A combination of the preceding conditions 

The negated-combined condition is created if the NOT logical operator is followed by a 
combined condition enclosed in parentheses. 

A combination of the preceding conditions must be specified according to the rules 
summarized in Table 8-6. 

Although parentheses need never be used when either AND or OR is used exclusively in 
a combined condition, parentheses can be used to establish the precedence of operators 
when a mixture of the logical operators AND, OR, and NOT is used. 

Table 8-6 shows the ways in which conditions and logical operators can be combined 
and parentlieses used. A one-to-one correspondence must exist between left and 
right parentheses so that each left parenthesis is to the left of its corresponding right 
parenthesis. 

Table 8-6. Combinations of Conditions, Logical Operators, and Parentheses 

Left-to-Right Element Sequence 

First in Last in 
Condi- Condi-
tional tional If Element not If Element not 
Expres- Expres- first, must be last, must be 

Base Element sion sion preceded by: followed by: 

Simple-condition Yes No OR, NOT, AND , ( OR, AND,) 

OR or AND No No simple-condition, simple-condition, 
) NOT, ( 

NOT Yes No OR, AND, ( simple-condition, 
( 

( Yes No OR, NOT, AND, ( simple-condition, 
NOT, ( 

) No Yes simple-condition, OR, AND,) 
) 

Thus, the element pair OR NOT is permissible, but the pair NOT OR is not permissible. 
NOT is permissible, but NOT NOT is not permissible. 

8600 0296-000 



PROCEDURE DIVISION Concepts 

Abbreviated Combined Relation Conditions 

Combined relation conditions can be abbreviated when one of the following occurs: 

• The sequence has no parentheses, and a succeeding relation condition with a subject 
is the same as the preceding relation condition. 

• The sequence has no parentheses, and a succeeding relation condition with a subject 
and a relational operator is the same as the preceding relation condition. 

One of the following abbreviations can be used for any relation condition except the first: 

• Omit the subject of the relation condition. 

• Omit the subject and relatioriaI operator of the relation condition. 

The format of an abbreviated combined relation condition is as follows: 

relation-condition { {~} [NOT 1 [relational-operator 1 o1!ject } ... 

Explanation of Format 

In a sequence of relation conditions, both of the previously mentioned forms of 
abbreviation can be used. Using such abbreviations has the same effect as inserting the 
last stated subject in place of the omitted subject, and the last stated relational operator 
in place of the omitted relational operator. The result of such an implied insertion must 
comply with the rules listed in Table 8-6. The insertion of an omitted subject, an omitted 
relational operator, or both ends when a complete simple condition is encountered within 
a complex condition. 

The interpretation applied to the use of the word NOT in an abbreviated combined 
relation condition is as follows: 

• If the word or symbol immediately following NOT is GREATER, >, LESS, <, 
EQUAL, or =, then NOT is part of the relational operator. 

• In any other situation, NOT is interpreted as a logical operator, causing the implied 
insertion of a subject or a relational operator to result in a negated relation 
condition. 

8600 0296-000 8-23 



PROCEDURE DIVISION Concepts 

Example 

Table 8-7 contains some examples of abbreviated combined relation conditions and their 
expanded equivalents. 

Table 8-7. Abbreviated Combined Relation Conditions and Their Expanded 
Equivalents 

Abbreviated Combined Relation Condition 

a > b AND NOT < e OR d 

a NOT EQUAL b OR e 

NOTa = bORe 

NOT (a GREATER b OR < e) 

NOT (a NOT> bAND e AND NOT d) 

Expanded Equivalent 

«a > b) AND (a NOT < e» 

OR (a NOT < d) 

(a NOT EQUAL b) OR (a NOT EQUAL e) 

(NOT (a = b» OR (a = e) 

NOT «a GREATER b) OR (a < e» 

NOT «(a NOT> b) AND (a NOT> e» 

AND (NOT (a NOT> d))) 

Condition Evaluation Rules 

8-24 

Parentheses can be used to define the order of evaluation for individual conditions of 
complex conditions when the implied evaluation precedence does not apply. Conditions 
in parentheses are evaluated first, and within nested parentheses, evaluation proceeds 
from the least inclusive condition to the most inclusive condition. When parentheses are 
not used, or parenthesized conditions are at the same level of inclusiveness, the following 
hierarchical order of logical evaluation is used until the final truth value is determined: 

1. Values are established for arithmetic expressions. 

2. Truth values for simple conditions are established in the following order: 

a. Relation (following the expansion of any abbreviated relation condition) 

b. Class 

c. Condition-name 

d. Switch-status 

e. Sign 

3. Truth values for negated simple conditions are established. 

4. Truth values for combined conditions are established: AND logical operators 
followed by OR logical operators. 

5. Truth values for negated combined conditions are established. 

If the sequence of evaluation is not completely specified by parentheses, then 
consecutive operations of the same hierarchical level are evaluated from left to right. 

8600 0296--000 



PROCEDURE DIVISION Concepts 

See Also 

For information on the order in which elements of an expression are evaluated, refer to 
"Formation and Evaluation Rules" earlier in this section. 

Common Phrases in Statements 
The ROUNDED phrase, the SIZE ERROR phrase, and the CORRESPONDING phrase 
can be used in a number of statements. Because the rules for these phrases are similar 
for each of the statements in which they are used, these phrases are explained only once. 
If there are unique aspects in the use of a phrase in a statement, the aspect is described 
in this section. 

In the following paragraphs, a resultant identifier is the identifier associated with a 
result of an arithmetic operation. 

ROUNDED Phrase 

Truncation occurs if, after decimal point alignment, the number of places in the 
fractional portion of the result of an arithmetic operation is greater than the number of 
places provided for the fraction in the resultant identifier. The truncation occurs relative 
to the size provided for the resultant identifier in its PICTURE clause. 

When rounding is requested, the absolute value of the resultant identifier is increased 
by adding the number 1 to its low-order digit whenever the absolute value of the next 
least-significant digit of the intermediate data item is greater than or equal to 5. 

When the low-order integer positions in a resultant identifier are represented by the 
character P in the PICTURE clause for that resultant identifier, then rounding or 
truncation occurs relative to the rightmost integer position for which storage is allocated. 

SIZE ERROR Phrase 

The SIZE ERROR phrase enables you to specify procedures to be executed when a Size 
Error condition occurs. Size Error conditions exist under the following circumstances: 

• If, after decimal point alignment, the absolute value of a result exceeds the largest 
value that can be contained in the associated resultant identifier. 

• Division by 0 (zero) always causes a Size Error condition. If division by 0 is the cause 
of the Size Error condition, the program ends abnormally. 

The Size Error condition applies only to the final results of an arithmetic operation 
and does not apply to intermediate results, except in the DIVIDE statement. If the 
ROUNDED phrase is specified, rounding takes place before checking for Size Error 
conditions. When such a Size Error condition occurs, subsequent action depends on 
whether or not. the SIZE ERROR phrase is specified. 

8600 0296--000 8-25 



PROCEDU RE DIVISION Concepts 

If the SIZE ERROR phrase is not specified and a Size Error condition occurs, the 
resultant value is stored in each of the receiving fields, and is left-truncated as required. 
If more than 23 significant digits are required, the program abnormally terminates with 
an error. Values of resultant identifiers for which no Size Error condition occurs are 
unaffected by size errors that occur for other resultant identifiers. 

If the SIZE ERROR phrase is specified and a Size Error condition occurs, then the values 
of resultant identifiers affected by the size errors are not altered. Values of resultant 
identifiers for which no Size Error conditions occur are unaffected by size errors that 
occur for other resultant identifiers. Mter the arithmetic operation is completely 
executed, the imperative statement in the SIZE ERROR phrase is executed. 

If an ADD CORRESPONDING or SUBTRACT CORRESPONDING statement produces 
a Size Error condition, the imperative statement in the SIZE ERROR pqrase is not 
executed until all the individual additions and subtractions are completed. 

CORRESPONDING Phrase 

8-26 

In the following description, AAA and BBB are identifiers that refer to group items. 
A pair of data items, one from AAA and one from BBB, correspond if all the following 
conditions are met: 

• A data item in AAA and a data item in BBB are not designated by the keyword 
FILLER, and these data items have the same data-name and the same qualifiers up 
to, but not including, AAA and BBB. 

• At least one of the data items is an elementary data item in a MOVE statement 
with the CORRESPONDING phrase. In an ADD or SUBTRACT statement with 
the CORRESPONDING phrase, both of the data items are elementary numeric data 
items. 

• The description of AAA and BBB must not contain level-numbers 66, 77, or 88, or 
the USAGE IS INDEX clause. 

• A data item subordinate to AAA or BBB that contains a REDEFINES, RENAMES, 
OCCURS, or USAGE IS INDEX clause is ignored, as are data items subordinate 
to the data item that contains the REDEFINES, OCCURS, or USAGE IS INDEX 
clause. However, AAA and BBB can have REDEFINES or OCCURS clauses, or can 
be subordinate to data items with REDEFINES or OCCURS clauses. 

See Also 

For information about repeated data items, refer to "OCCURS Clause" in Section 7, 
"DATA DIVISION." 

8600 0296-000 



PROCEDURE DIVISION' Concepts 

Common Rules for Arithmetic Statements 
The arithmetic statements ADD, COMPUTE, DMDE, MULTIPLY, and SUBTRACT 
have the following features in common: 

• The data descriptions of the operands need not be the same; any necessary 
conversion and decimal point alignment are supplied throughout the calculation. 

• The maximum size of each operand is 23 decimal digits. (This is a Unisys extension.) 

• Each arithmetic operation is evaluated using an intermediate data item for the result 
of the operation. If the number of significant digits in the result being developed is 
greater than the number of significant digits that can be held in an intermediate data 
item, the result is truncated to the size of an intermediate data item. The contents 
of the intermediate data item are moved to the resultant identifier according to the 
rules for the MOVE statement. Rounding is performed; the Size Error condition is 
determined only during this move. (This is a Unisys extension.) 

See Also 

• For details of the rules that govern move operations, refer to "MOVE" in Section 9, 
"PROCEDURE DIVISION Statements." 

• For information about the rounding of arithmetic result fields, refer to "ROUNDED 
Phrase" earlier in this section. 

• For information on Size Error conditions, refer to "SIZE ERROR Phrase" earlier in 
this section. 

Calculating Multiple Results with One Arithmetic Statement 

In COBOL, the ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements 
can produce multiple results. A single statement produces results as if it were written in 
one of the following ways: 

• As a statement that performs all arithmetic operations necessary to arrive at the 
results and that stores the results in a temporary storage location until it is stored in 
the receiving items. 

• As a sequence of statements that combines the value of the temporary location with 
a single result. The sequence of statements is considered to be written in the same 
left-to-right sequence in which the multiple results are listed. 

For example, the result of the statement ADD a, b, c TO c, d (c), e is equivalent to the 
following statement. Temp is an intermediate result item provided by the compiler. 

ADD a, b, e GIVING temp 
ADD temp TO e 
ADD temp TO d (e) 
ADD temp TO e 

8600 0296-000 8-27 



PROCEDURE DIVISION Concepts 

Handling Incompatible Data 

When the contents of a data item referenced in the PROCEDURE DIVISION are not 
compatible with the class specified for that data item in the related PICTURE clause 
(except for the class condition), the result of such a reference is undefined. 

See Also 

For information on how to determine whether an operand is numeric or alphabetic, refer 
to "Class Condition" earlier in this section. 

Functional Grouping of COBOL74 Verbs 

8-28 

Table 8-8 groups the COBOL74 verbs into categories based on their functions. Some 
verbs appear in more than one category. 

Category 

Arithmetic 

Compiler directing 

COMS interface 

Table 8-8. Categories of COBOL74 Verbs 

Verb 

ADD 

COMPUTE 

DIVIDE 

INSPECT 
(TALLYING) 

MULTIPLY 

SUBTRACT 

COpy 

USE 

ACCEPT MESSAGE 
COUNT 

DISABLE 

Function 

Sums two or more numeric operands and 
stores the result. 

Assigns the value of an arithmetic 
expression to one or more data items. 

Divides a numeric operand into one or 
more other operands, and stores the 
quotient and remainder. 

Searches for and tallies the occurrences of 
specified characters in a data item. 

Multiplies numeric operands and stores 
the result. 

Subtracts one or the sum of two or more 
numeric operands from one or more items 
and stores the result. 

Incorporates text from a library program 
into a COBOL source program. 

Specifies procedures for handling 
input-output errors in addition to the 
standard procedures provided by the 
input-output control system. 

Makes available the number of messages 
in a program application queue. 

Closes a direct window to a station or 
disconnects a station. 

continued 

8600 0296-000 



Category 

Conditional 

8600 0296-000 

PROCEDURE DIVISION Concepts 

Table 8-8. Categories of COBOL74 Verbs (cont.) 

Verb 

ENABLE 

RECEIVE 

SEND 

ADD (ON SIZE 
ERROR) 

COMPUTE (ON SIZE 
ERROR) 

DELETE (I NVALI D 
KEY) 

DIVIDE (ON SIZE 
ERROR)' 

IF 

MULTIPLY (ON SIZE 
ERROR) 

PERFORM (UNTIL) 

READ# (AT END, 
INVALID KEY) 

Function 

Opens a direct window to a station or 
checks the status of station attachment. 

Makes a message and pertinent 
information available to the program from 
a queue maintained by COMS. 

Releases a message or a message 
segment to one or more output queues 
maintained by COMS. 

Sums two or more numeric operands and 
stores the result. If a Size Error condition 
occurs, specified procedures are followed. 

Assigns the value of an arithmetic 
expression to one or more data items. If a 
Size Error condition occurs, specified 
procedures are followed. 

Removes a record logica lIy from a relative 
or indexed file. If the file does not contain 
the record indicated by the key, specified 

. proced u res a re followed. 

Divides a numeric operand into one or 
more other operands, and stores the 
quotient and remainder. If a Size Error 
condition occurs, specified procedures are 
followed. 

Evaluates a condition. Subsequent action 
of the object program depends on whether 
the value of the condition is TRUE or 
FALSE. 

Multiplies numeric operands and stores 
the result. If a Size Error condition occurs, 
specified procedures are followed. 

Transfers control to the specified 
subroutine until the condition in the 
UNTIL phrase is TRUE. 

For sequential access, makes available the 
next logical record from a sequential file. 
For random access, makes available a 
specific record from a mass-storage file If 
the end of the file is reached or if the file 
does not contain the indicated key, 
specified procedures are followed. 

continued 

8-29 



PROCEDURE DIVISION Concepts 

Table 8-8. Categor!es of COBOL74 Verbs (cont.) 

Category 

8-30 

Verb 

RETURN (AT END) 

REWRITE (INVALID 
KEY) 

SEARCH (AT END, 
WHEN) 

SORT (ON ERROR) 

START (INVALID 
KEY) 

STRING (ON 
OVERFLOW) 

SUBTRACT (ON 
SIZE ERROR) 

UNSTRING (ON 
OVERFLOW) 

Function 

Causes the next record in a sort-merge file 
to be read. If the end of the file is 
reached, specified procedures are 
followed. 

Replaces a record logically in a 
mass-storage file. If the file does not 
contain the record identified by the 
indicated key, specified procedures are 
followed. 

Searches a table for a table element that 
satisfies a specified condition, and adjusts 
the associated index-name to indicate that 
table element. The WHEN option imposes 
conditions for the search. The AT END 
option specifies processing to be carried 
out at the end of the search operation. 

Sorts the contents of one or more input 
files. If an error condition is encountered, 
specific procedures are followed. 

Positions records logically in a relative or 
an indexed file when the file is to be read 
sequentially. If the file does not contain 
the indicated key, specified procedures are 
followed. 

Concatenates the partial or complete 
contents of one or more data items into a 
single data item. If an overflow condition 
exists, specified procedures are followed. 

Subtracts one or the sum of two or more 
numeric operands from one or more 
items, and stores the result. If a Size Error 
condition occurs, specified procedures are 
followed. 

Causes contiguous data items in a sending 
field to be separated and placed into 
multiple receiving fields. If the value of 
the pointer is less than 1 or greater than 
the sending field, or if all the rec~iving 
fields have been acted upon and the 
sending field contains characters that 
have not been examined, specified 
procedures are followed. 

continued 

8600 0296-000 



Category 

Data movement 

DMSII interface 

8600 0296-000 

PROCEDURE DIVISION Concepts 

Table 8-8. Categories of COBOL74 Verbs (cant.) 

Verb 

WRITE (INVALID 
KEY, END-OF-PAGE) 

ACCEPT (DATE, DAY, 
TIME, TIMER, 
TO DAYS-DATE , 
TODAYS-NAME) 

INSPECT 
(REPLACING) 

MOVE 

STRING 

UNSTRING 

ABORT
TRANSACTION 

ASSIGN 

BEGIN
TRANSACTION 

CANCEL
TRANSACTION 
POINT 

CLOSE 

COMPUTE 

CREATE 

DELETE 

DMSTATUS 

DMTERMINATE 

Function 

Releases a logical record for an output or 
an input-output file. If the file does not 
contain the indicated key, or if an 
End-Of-Page condition exists, specified 
procedures are followed. 

Makes low-volume data available to a 
specified data item. Data from the DATE, 
DAY, TIME, TIMER, TODAYS-DATE, or 
TODAYS-NAM E register is moved to the 
specified item. 

Searches for and replaces occurrences of 
specified characters in a data item. 

Transfers data, according to the rules of 
editing, to one or more data areas. 

Concatenates the partial or complete 
contents of one or more data items into a 
single data item. 

Causes contiguous data items in a sending 
field to be separated and placed into 
multiple receiving fields. 

Discards updates made in a transaction 
after a BEGIN-TRANSACTION statement. 

Assigns the value pointed to by the current 
record from one data set to another. 

Places a program in transaction state. 

Discards updates in a transaction to an 
intermediate point or to the beginning of 
the transaction. 

Closes a database. 

. -Assigns a value to a Boolean item in the 
current record of a data set. 

Initializes the user work area of a data set 
record. 

Finds, locks, and deletes a record. 

Indicates whether an exception has 
occurred and identifies the exception. 

Terminates the program. 

continued 

8-31 



PROCEDURE DIVISION Concepts 

Table 8-8. Categories of COBOL74 Verbs (cont.) 

Category 

Imperative 

8-32 

Verb 

END-TRANSACTION 

FIND 

FREE 

GENERATE 

IF 

INSERT 

LOCK 

MODIFY 

OPEN 

RECREATE 

REMOVE 

SAVE-TRANSACTION 
POINT 

SECURE 

SET 

STORE 

ACCEPT 

ADD (without ON 
SIZE) 

ALLOW 

ALTER 

ATTACH 

CALL 

Function 

Takes a program out of transaction state. 

Transfers a record to the work area 
associated with a data set or global data. 

Unlocks the current record. 

Creates a subset in one operation. 

Tests an item for null value. 

Places a record in a manual subset. 

Finds a record and locks it against 
concurrent modification. 

Synonymous with the LOCK verb. 

Opens a database and designates the 
access mode. 

Partially initializes the user work area. 

Finds and locks a record, and removes it 
from the subset. 

Provides an intermediate point in an audit 
tra nsaction. 

Enables other programs to read a record 
but not update that record. 

Alters the current path or changes the 
value of an item in the current record. 

Places a new or modified record in a data 
set. 

Makes low-volume data available to a 
specified data item from an operator 
display terminal (ODn. 

Sums two or more numeric operands and 
stores the result. 

Executes an interrupt procedure that has 
been attached to an EVENT item. 

Modifies the destination of a labeled GO 
TO statement. 

Associates an interrupt procedure with an 
EVENT item. 

Transfers control to a separate task or 
procedure. 

continued 

8600 0296-000 



Category 

8600 0296-000 

PROCEDURE DIVISION Concepts 

Table 8-8. Categories of COBOL74 Verbs (cant.) 

Verb 

CAUSE 

CHANGE 

CLOSE 

COM PUTE (without 
ON SIZE ERROR) 

CONTINUE 

DELETE (without 
INVALID KEY) 

DETACH 

DISALLOW 

DISPLAY 

DIVIDE (without ON 
SIZE ERROR) 

EXECUTE 

EXIT 

EXIT PROCEDURE 

EXIT PROGRAM 

GO TO 

INSPECT 

Function 

Is used in communication between 
processes in an asynchronous processing 
environment to initiate specified events. 

Modifies a file or a task attribute. 

Ends the processing of a file, a reel or a 
unit of a file. Also specifies the disposition 
of the file and of the device to which the 
file is assigned. 

Assigns the value of an arithmetic 
expression to one or more data items. 

Passes control to a previously called and 
exited synchronous process. 

Removes a record logically from a relative 
or indexed file. 

Dissociates a procedure from a task item· 
or an EVENT item. 

Prevents execution of an interrupt 
procedure that has been attached to an 
event. 

Causes low-volume data to be transferred 
to an ODI 

Divides a numeric operand into one or 
more other operands, and stores the 
quotient and remainder. 

Is synonymous with the RUN verb. 

Indicates a logical end for a series of 
sections or paragraphs referenced by a 
PERFORM statement. 

Returns control from a bound procedure. 

Retu rnS control from a dependent task to 
the program that initiated it. 

Transfers control unconditionally from one 
procedure to another. Control is not 
implicitly returned to the statement 
following the GO statement. 

Searches for and tallies or replaces 
specified characters in a data item. 

continued 

8-33 



PROCEDURE DIVISION Concepts 

Table 8-8. Categories of COBOL74 Verbs (cont.) 

Category 

8-34 

Verb 

LOCK 

MERGE 

MOVE 

MULTIPLY (without 
ON SIZE ERROR) 

OPEN 

PERFORM 

PROCESS 

READ (without AT 
END or INVALID 
KEY) 

RELEASE 

RESET 

RETURN 

REWRITE (without 
INVALID KEY) 

RUN 

Function 

Enables a process to deny related 
processes access to a common storage 
area or to test a common storage area for 
a locked condition. 

Merges two or more identically sequenced 
files on a set of specified keys. The 
merged records then become available to 
an output procedure or an output file. 

Transfers data, according to the rules of 
editing, to one or more receiving data 
items. 

Multiplies numeric operands and stores 
the result. 

Makes a file available for processing. 

Transfers control unconditionally to one 
procedure or a group of consecutive 
procedures, and returns control to the 
statement following the PERFORM 
statement. 

Initiates the parallel execution of another 
task. 

For sequential access, makes available the 
next logical record from a sequential file. 
For random access, makes available a 
specific record from a mass-storage file. 

Transfers records to the initial phase of a 
sort operation, a nd writes records to a sort 
file. 

Causes a specified event to be turned off 
in an asynchronous processing 
environment. 

Obtains sorted records from a sort 
operation or merged records from a merge 
operation. 

ReplaceS a record logica"y in a 
mass-storage file. 

Initiates another program as an 
independent, asynchronous task. 

continued 

8600 0296-000 



PROCEDURE DIVISION Concepts 

Table 8-8. Categories of COBOL74 Verbs (cont.) 

Category Verb Function 

SEARCH (without AT Searches a table for a table element that 
END or WHEN) satisfies a specified condition, and adjusts 

the associated index-name to indicate that 
table element. 

SEEK Repositions a mass-storage file to a 
specified record. 

SET Establishes reference points for 
table-handling operations by setting 
indexes associated with table elements. 
Also can alter the value of external 
switches and conditional variables. 

SORT Sequences the records in a file on a set of 
specified keys, ~nd makes the sorted 
records available to output procedures or 
output files. 

START (without Positions records logically in a relative or 
INVALID KEY) an indexed file when the file is to be read 

sequentially~ 

STOP Suspends the execution of a program 
either permanently or temporarily. 

STRING (without ON Concatenates the partial or complete 
OVERFLOW) contents of one or more data items into a 

single data item. 

SUBTRACT (without Subtracts one or the sum of two or more 
SIZE ERROR) numeric operands from one or more 

items, and stores the results. 

UNLOCK Unlocks a common storage area so that 
related processes can access it. 

UNSTRING (without causes contiguous data items ina sending 
ON OVERFLOW) field to be separated and placed into 

multiple receiving fields. 

USE Specifies procedures for VO exception 
handling. 

WAIT Suspends program execution for a 
specified period of time. 

WRITE (without ON Releases a logical record for an output or 
OVERFLOW) an input-output file. 

Input-Output ACCEPT {identifier} Transfers low-volume data from an ODT to 
a specified data item. 

continued 

8600 0296-000 8-35 



PROCEDURE DIVISION Concepts 

Table 8-8. Categories of COBOL74 Verbs (cont.) 

8-36 

Category 

Inter-Program 
Communication 

Verb 

AWAIT-OPEN 

CLOSE 

DELETE 

DISPLAY 

OPEN 

READ 

RESPOND 

REWRITE 

SEEK 

START 

STOP (literal) 

WRITE 

CALL 

CANCEL 

EXIT PROGRAM 

Function 

Causes a port file subtile to wait for a start 
dialogue request from its correspondent 
endpoint. 

Ends the processing of a file, and specifies 
the disposition of the file and of the device 
to which the file is assigned. 

Removes a logical record from a relative 
or an indexed file. 

Cal:lses low-volume data to be transferred 
to an ODT. 

Makes a file available for processing. 

For sequential access, makes available the 
next logical record from a sequential file. 
For random access, makes available a 
specific record from a mass-storage file. 

Enables a program to accept or reject a 
request for a dialogue to be started or 
ended. 

Replaces a record logically in a 
mass-storage file. 

Repositions a file to a specified record. 

Provides a logical position for a relative or 
an indexed file when the file is to be read 
sequentially. 

Suspends the execution of a program. The 
literal is communicated to the operator, 
and execution continues with the next 
executable statement in the program. 

Releases a logical record for an output or 
an input-output file. 

Transfers control from one program to 
another during program execution. 

Ensures that the next time a program 
referenced in a CALL statement is called, 
the program will be in its initial state. 

Indicates the logical end of a called 
program. 

continued 

8600 0296-000 



PROCEDURE DIVISION Concepts 

Table 8-8. Categories of COBOL74 Verbs (cont.) 

Category 

No operation 

Ordering 

Report Writer 

Procedure branching 

8600 0296-000 

Verb 

CONTINUE 

EXIT 

MERGE 

RELEASE 

RETURN 

SORT 

GENERATE 

INITIATE 

TERMINATE 

USE BEFORE 
REPORTING 

ALTER 

CALL 

EXIT 

EXIT PROGRAM 

GO 

Function 

Indicates that no executable statement is 
present. 

I nd icates a logica I end to a series of 
sections or paragraphs referenced by a 
PERFORM statement. 

Merges two or more identically sequenced 
files on a set of specified keys. The 
merged records then become available to 
an output procedure or an output file. 

Transfers records to the initial phase of a 
sort operation, and writes records to a sort 
file .. 

Causes the next record in a sort-merge file 
to be read. 

sequences a file on a set of specified keys, 
and makes the sort file available to output 
procedures or output files. 

Links the PROCEDURE DIVISION to the 
Report Writer at process time. 

Starts processing of a report. 

Terminates processing of a report. 

Specifies PROCEDURE DIVISION 
statements to be executed before a report 
group is produced. 

Modifies the destination of a labeled GO 
TO statement. 

Transfers control from one program to 
another during program execution. 

Indicates a logical end to a series of 
sections or paragraphs referenced by a 
PERFORM statement. 

Indicates the logical end of a called 
program. 

Transfers control unconditionally to a 
procedure-name. Control is not implicitly 
returned to the statement following the GO 
statement. 

continued 

8-37 



PROCEDURE DIVISION Concepts 

Table 8-8. Categories of COBOL74 Verbs (cont.) 

Category Verb Function 

SDF interface DICTIONARY Identifies the dictionary to be used during 
compilation. 

READ FORM Reads specific and self-identifying forms. 

WRITE FORM Writes forms from a station to a program. 

SDF Plus interface READ FORM Reads a form record from a remote file. 

WRITE FORM Writes the contents of a form record to a 
. remote file. 

WRITE FORM TEXT Writes the contents of text arrays to a 
remote file. 

SIM interface DELETE Deletes selected entities from the 
database 

DISCARD Discards or terminates an active query. 

DMSTATE Returns a value that helps to identify 
errors that have occurred. 

END-TRANSACTION Takes a program out of transaction state. 

INSERT Creates an entity. 

MODIFY Updates existing entities. 

OPEN Opens a database. 

RETRIEVE Retrieves the query and makes the entities 
available to the program. 

SAVE-TRANSACTION Provides an intermediate transaction 
POINT point. 

SELECT Selects a set of entities and associates it 
with the query. 

SET Alters the level value expected in a 
retrieval involving a transitive closure. 

START INSERT Describes the type of selection, if any, and 
associates a querY name with the 
statement. 

START MODIFY Describes the selection and associates a 
query name with the statement. 

String handling INSPECT Searches for and tallies or replaces the 
(REPLACING, occurrences of specified characters in ~ 
TALLYING) data item. 

continued 

8-38 8600 0296-000 



Category 

Table handling 

8600 0296-000 

PROCEDURE DIVISION Concepts 

Table 8-8. Categories of COBOL74 Verbs (cant.) 

Verb 

STRING 

UNSTRING 

SEARCH 

SET 

Function 

Concatenates the partial or complete 
contents of one or more data items into a 
single data item. 

Causes contiguous data items in a sending 
field to be separated and placed into 
multiple receiving fields. 

Searches a table for a table element that 
satisfies a specified condition, and adjusts 
the associated index-name to indicate that 
table element. 

Establishes reference points for 
table-handling operations by setting 
indexes associated with table elements. 
Also alters the value of external switches 
and conditional variables. 

8-39 



8-40 8600 0296-000 



Section 9 
PROCEDURE DIVISION Statements 

This section describes the PROCEDURE DMSION statements in alphabetical order. 

ACCEPT 
The ACCEPT statement transfers low-volume data to a data item. 

The ACCEPT statement has the following three formats. 

Format 

1 

2 

3 

Format 1 

Explanation 

Transfers data from a hardware device to a data item 

Transfers data from date and time registers to a data item 

Transfers a formatted system date or time to a data item based on the type, 
convention, and language in effect 

ACCEPT/identifier [ FROM mnemonic-name] 

Explanation of· Format 1 

The ACCEPT statement transfers data from the hardware device. 

If the FROM phrase is not given, the device used is the ODT. 

The mnemonic-name must also be specified in the SPECIAL-NAMES paragraph of the 
ENVIRONMENT DIVISION and must be associated with the hardware-name ODT. 

Format 2 

DATE 
DAY 

ACCEPT identifier FROM ~ =R 

TODAYS-DATE 
TODAYS-NAME 

I 

8600 0296-000 9-1 



PROCEDU RE DIVISION Statements 

Explanation of Format 2 

The ACCEPT statement transfers the value of a special register to the data item that is 
specified by the identifier, according to the rules of the MOVE statement. 

Format 3 

ACCEPT identifier [ FROM g::} ] 

Explanation of Format 3 

Format 3 of the ACCEPT statement transfers the formatted system date or time to the 
data item specified by the identifier using the type, convention, and language in effect for 
the item. Format 3 is used when the identifier has an associated TYPE clause. If the 
convention or language have not been declared for the item, the system determines the 
convention and language based on a default hierarchy. 

The FROM clause is optional and is used only for documentation. The specification of 
either DATE or TIME should match the type of the identifier. The DATE specification 
should be used when the receiving item is of type SHORT-DATE, LONG-DATE, or 
NUMERIC-DATE. The TIME specification should be used when the item is of type 
LONG-TIME or NUMERIC-TIME. If the type of the item and the special register do not 
match, the compiler issues a warning message, continues the compilation, and assumes 
the special register is valid for the type declared for the receiving item. 

General Rules 

The following information applies to all three formats. 

The incoming data is left-justified in the identifier, without consideration for editing, 
decimal point alignment, or operational sign position. Fill characters are inserted on 
the right if the size of the identifier is greater than the size of the incoming data. For 
identifiers of USAGE IS DISPLAY, the fill character is a space. For identifiers of 
USAGE IS COMPUTATIONAL, the fill character is 0 (zero). 

Any necessary conversion of data from one form of internal representation to another 
takes place during the transfer. 

See Also 

• For a description of the contents of each special register, refer to "Special Registers" 
in Section 2, "Language Elements." 

• For information about the TYPE clause, refer to Section 7, "DATADMSION." 

• For a discussion of the ways to localize your program, refer to Section 16, 
"Internationalization. " 

9-2 8600 0296-000 



PROCEDURE DIVISION Statements 

ADD 
The ADD statement adds two or more numeric operands and stores the result. 

The ADD statement has the following three formats: 

Format 

2 

3 

Format 1 

Explanation 

The ADD ... TO format stores the result of the add operation in the identifier 
following the word TO. The operands preceding the word TO are unchanged. 

The ADD ... GIVING format stores the result of the add operation in the identifier 
following the word GIVING. The values of the operands preceding the word 
GIVING are unchanged. 

The ADD CORRESPONDING format adds the corresponding data items of two 
group items. 

ADD {identifier-I} [, {identifier-2 }] ... 
-- literal-I literal-2 

TO identifier-m [ROUNDED] [, identifier-n I ROUNDED] ] ... 

[ ; ON SIZE ERROR imperative-statement] 

Explanation of Format 1 

The values of the operands preceding the word TO are added together. The sum is 
then added to the current value of identifier-m, and the result is immediately stored in 
identifier-m. This process is repeated for each operand following the word TO~ 

Each identifier must refer to an elementary numeric item. Each literal must be a 
numeric literal. 

The imperative-statement can be the NEXT SENTENCE phrase. 

86000296--000 9-3 



PROCEDURE DIVISION Statements 

9-4 

Format 2 

ADD {identifier-l} {identifier-2} [ {identifier-3}] ... 
-- literal-l 'literal-2 ' literal-3 

GMNGidentifier-m [ROUNDED] [, identifier-n [ROUNDED] ] ... 

[ ; ON SIZE ERROR imperative-statement] 

Explanation of Format 2 

The values of the operands preceding the word GIVING are added together. The sum is 
then stored as the new value of each resultant identifier: identifier-m, identifier-n, and 
soon. 

Each identifier preceding the word GIVING must refer to an elementary numeric item. 
Each identifier following the word GIVING must refer to either an elementary numeric 
item or an elementary numeric-edited item. 

Each literal must be a numeric literal. 

The imperative-statement can be the NEXT SENTENCE phrase. 

You might want to use this format when you need to retain the contents of the operands. 

Format 3 

ADD {;SPONDING} identifier-l TO identifier-2 [ROUNDED 1 

[ ; ON SIZE ERROR imperative-statement] 

Explanation of Format 3 

Data items in identifier-l are added to and stored in corresponding data items in 
identifier-2. 

Each identifier must refer to a group item. 

CORR is an abbreviation for CORRESPONDING. 

8600 0296-000 



PROCEDURE DIVISION Statements 

The imperative-statement can·be the NEXT SENTENCE phrase. 

General Rules 

The following information applies to all three formats. 

When a sending item and a receiving item in the same ADD statement share a part - but 
not all- of their storage areas, the result of the execution of the statement is undefined. 

See Also 

• For a description of the features common to the arithmetic statements, refer 
to "Common Rules for Arithmetic Statements" in Section 8, "PROCEDURE 
DIVISION Concepts." 

• For information on producing multiple results with one arithmetic statement, refer 
to "Calculating Multiple Results with One Arithmetic Statement" in Section 8, 
"PROCEDURE DIVISION Concepts." 

• For information about the rounding of arithmetic result fields, refer to "ROUNDED 
Phrase" in Section 8, "PROCEDURE DIVISION Concepts." 

. • For information on Size Error conditions, refer to "SIZE ERROR Phrase" in 
Section 8, "PROCEDURE DIVISION Concepts." 

• For information on adding group items, refer to "CORRESPONDING Phrase," in 
Section 8, "PROCEDURE DIVISION Concepts." 

ALLOW (Unisys Extension)' 
The ALLOW statement executes an interrupt procedure that has been attached to an 
EVENT item. 

The ALLOW statement has the following two fm:illats: 

Format 

1 

2 

Format 1 

Explanation 

Causes the specified interrupt procedures to be specifically allowed 

Enables you to remove the General Disallow Interrupt condition 

ALLOW section-name-l [, section-name-2] ... 

Explanation of Format 1 

Execution of an ALLOW section-name statement causes the specified interrupt 
procedures (section-names) to be specifically allowed. Whenever their attached events 
are caused, they are executed unless a General Disallow Interrupt condition is in effect. 

8600 0296-000 9-5 



PROCEDURE DIVISION Statements 

Section-names used in this statement must be defined in the DECLARATIVES 
SECTION with the USE AS INTERRUPT clause. 

Format 2 

ALLOW INTERRUPT 

Explanation of Format 2 

The ALLOW INTERRUPT statement is the logical opposite of the DISALLOW 
INTERRUPT statement. It removes the General Disallow Interrupt condition. 
Interrupt procedures that are queued because of the General Disallow Interrupt 
condition are executed immediately after the ALLOW INTERRUPT statement is 
executed, unless their current status is specifically disallowed. 

General Rules 

The following information applies to both formats. 

Interrupts previously disallowed by a DISALLOW section-name statement can be 
allowed by an ALLOW section-name statement during the time a General Disallow 
Interrupt condition is in effect. If the associated event is caused after an interrupt 
procedure has been specifically allowed, the interrupt procedure is queued until an 
ALLOW INTERRUPT statement removes the General Disallow Interrupt condition. 

Interrupt procedures can be successfully allowed or disallowed regardless of whether 
they are attached to an event. However, performing an ATTACH statement for any 
interrupt procedure that has not been specifically disallowed causes an Automatic 
Implicit Allow condition for that procedure. 

See Also 

• For information about associating an interrupt procedure with an EVENT item, 
refer to "ATTACH (Unisys Extension)" in this section. 

• For information about dissociating a procedure from a task item or an EVENT item, 
refer to "DETACH (Unisys Extension)" in this section. 

• For information about preventing execution of an interrupt procedure that has been 
attached to an event, refer to "DISALLOW" in this section. 

• For information about specifying procedures for I/O exception handling, refer to 
"USE" in this section. 

9-6 8600 0296-000 



PROCEDURE DIVISION Statements 

ALTER 
The ALTER statement modifies a labeled GO TO statement. 

The general format of this statement is as follows: 

ALTER procedure-name-l TO [ PROCEED TO ] procedure-name-2 

[ , procedure-name-3 TO [ PROCEED TO ] procedure-name-4] ... 

Explanation of Format 

Execution of the ALTER statement modifies the GO TO statement in the paragraph 
named procedure-name-l, procedure-name-3, and so forth. The subsequent executions 
of the 'modified GO TO statements cause control to b~ transferred to procedure-name-2, 
procedure-name-4, and so forth. Modified GO TO statements in independent segments 
can, under some circumstances, be returned to their initial states. 

Each procedure-name-l, procedure-name-3, and so forth is the name of a paragraph that 
contains a single sentence consisting ofa GO TO statement without the DEPENDING 
phrase. 

Each procedure-name-2, procedure-name-4, and so forth is the name of a paragraph or 
section in the PROCEDURE DMSION. 

ATTACH (Unisys Extension) 
The ATTACH statement associates an interrupt procedure with an EVENT item. 

The format of the ATTACH statement is as follows: 

ATTACH section-name TO event-identifier 

Explanation of Format 

The section-name must be the name of a section in the DECLARATIVES SECTION that 
specifies the USE AS INTERRUPT clause. 

The event-identifier cannot be an event-valued file attribute. 

When an EVENT item is caused, all interrupt procedures that are then attached to 
that event-identifier are either executed immediately (interrupting the main program) 

8600 0296-000 9-7 



PROCEDURE DIVISION Statements 

or queued. If an interrupt procedure is allowed specifically, and if the General Disallow 
Interrupt condition is not in effect, the execution occurs. If an interrupt procedure is 
disallowed specifically, or if the General Disallow Interrupt condition is in effect, the 
execution is queued. 

An ATTACH statement for an interrupt procedure that has not been specifically 
disallowed causes that procedure to be implicitly and automatically allowed. Execution 
of a subsequent DISALLOW section-name statement inhibits the immediate execution 
of that interrupt procedure so that when the associated event is caused, execution is 
queued. This specific DISALLOW section-name statement remains in effect until a 
specific ALLOW section-name statement is executed, even if that section-name has 
intervening DETACH and ATTACH statements. 

Two or more interrupt procedures can be attached to a single event-identifier. The order 
of execution of these interrupt procedures when the event is caused is the reverse of 
their order of attachment. 

A particular interrupt procedure can be attached to only one event at anyone time. If 
the interrupt procedure is already attached to an event when the ATTACH statement is 
executed, the interrupt procedure is automatically detached from the old event and then 
attached to the new event. Any queued invocations of the interrupt procedure are lost. 

See Also 

• For information about executing an interrupt procedure that has been attached to an 
EVENT item, refer to "ALLOW (Unisys Extension)" in this section. 

• For information about dissociating a procedure from a task item or an EVENT item, 
refer to "DETACH (Unisys Exte~sion)" in this section. 

• For information about preventing execution of an interrupt procedure that has been 
attached to an event, refer to "DISALLOW" in this section. 

• For information about specifying procedures for I/O exception handling, refer to 
"USE" in this section. 

9-8 86000296--000 



PROCEDURE DIVISION Statements 

AWAIT-OPEN (Unisys Extension) 
The AWAIT -OPEN statement is used only for port files. This statement causes a subfile 
to wait for a start dialogue request from its correspondent endpoint. The AWAIT-OPEN 
statement does not initiate a request for a dialogue to be established. 

The general format of this statement is as follows: 

AWAIT-OPEN 

{

AVAILABLE } 
WITH NO WAIT {file-name} ... 
WITH WAIT 

USING 

CONNECT -TIME-LIMIT 

OF {~dentifier-l} 
mteger 

{
PARTICIPATE } 
DONT-PARTICIPATE 

Explanation of Format 

The file-name identifies one or more port files. 

The AVAILABLE phrase opens a subfile if a matching subfile has already initiated a 
request for a dialogue to be started. If no request has been sent, the AWAIT-OPEN 
statement fails and the subfile is not considered for subsequent matching. The 
AVAILABLE phrase is a way of indicating an OPEN WAIT statement with the 
AV AILABLEONLY file attribute set to TRUE. 

The NO WAIT phrase returns control to the program as soon as possible. The subfile 
waits for a request for a dialogue to be initiated while the program continues processing. 

The WAIT phrase suspends the program until an attempt to match the subfile with an 
incoming dialogue request either succeeds or fails. If the program specifies subfiles, the 
AWAIT-OPEN WAIT statement suspends the program until the open operation" on each 
affected subfile succeeds or fails. The AWAIT-OPEN WAIT statement is the default " 
statement and is used if no OPEN option is specified in your program. 

The USING option enables you to use each of the USING clauses once only. 

The CONNECT-TIME-LIMIT phrase indicates the time in minutes that your program 
allows for the system to match a subfile with a dialogue request. The time in minutes is 
indicated by the value contained in identifier-lor integer. The AWAIT-OPEN operation 
fails if a companion subfile does not initiate a dialogue request in that amount of time. If 
you do not use the CONNECT-TIME-LIMIT phrase or if you specify a value of 0 (zero), 
your program allows an indefinite amount of time. An error results if you specify a 
negative or noninteger value. 

"8600 0296--000 9-9 



PROCEDU RE DIVISION Statements 

9-10 

Identifier-l designates an elementary integer data item. Integer specifies an integer 
numeric literal. 

The PARTICIPATE phrase specifies that your program uses the RESPOND statement 
to accept or reject an offer for a dialogue to be started or ended. 

The DONT-PARTICIPATE phrase specifies that your program unconditionally accepts 
all offers to open or close a dialogue with a correspondent endpoint. 

General Rules 

You must use the RESERVE NETWORK clause in the SPECIAL-NAMES paragraph for 
the compiler to recognize AWAIT-OPEN as a reserved word. 

The ACTUAL KEY clause specifies the subtile that is awaiting an open request. If you 
do not code an ACTUAL KEY clause, the compiler assumes the number of subfiles is 
equal to the value of the MAXSUBFILES attribute. If you are using multiple subfiles, do 
the following: 

1. Specify the total number of subtiles in your program by using the CHANGE 
ATTRIBUTE MAXSUBFILES TO VALUE attribute-value statement. 

2. "Specify the subtiles that are to await an open operation with the SELECT port-file 
ASSIGN TO PORT; ACTUAL KEY IS subfile-num clause. 

3. Declare subtile-num and attribute-value in the WORKING-STORAGE SECTION. 

Table 9-1 shows the way the value specified in the ACTUAL KEY clause determines 
which subfile awaits an open request. 

Table 9-1. Designating Subfiles for the AWAIT-OPEN Statement 

Value 

o or none 

Nonzero 

Greater than the MAXSUBFILES 
value, or a negative number 

Explanation 

Every closed subfile awaits an open request. 

The specified subfile awaits an open request. 

A run-time error occurs. 

The system returns a value that indicates the result of an AWAIT-OPEN statement. 
You can access this value by including a SELECT file-name FILE STATUS IS 
data-name clause in your program. The operating system moves a value into the 
data-name storage area after the program performs the AWAIT-OPEN statement. You 
can then use an IF statement to test the value of the data-name and take the desired 
action, depending on the result. If you choose not to code actions for the AWAIT-OPEN 
results, the system provides a default action for each result. 

8600 0296-000 



PROCEDURE DIVISION Statements 

Table 9-2 shows the I/O status values and their meanings. 

Value 

00 

Table 9-2. I/O Status Values for the AWAIT-OPEN Statement 

Explanation 

Control was returned to the program after the AWAIT-OPEN statement 
completed correctly. 

83t An error was detected during the execution of the AWAIT-OPEN statement. 

t Unisys extension 

Examples 

In the following examples, it is assumed that earlier in the program the port files were 
declared by using an ACTUAL KEY clause to specify a subfile index and that the subfile 
index was set to a particular subfile. 

Example 9-1 indicates the, program is suspended until the operation fails or until the 
subport on the port file PORTFILEl receives an incoming dialogue request that matches 
and establishes a dialogue with the corresponding endpoint. 

AWAIT-OPEN WITH WAIT PORTFILEI. 

Example 9-1. Coding an AWAIT-OPEN WITH WAIT Statement 

Example 9-2 indicates that control is returned to the program as soon as the 
AWAIT -OPEN statement is checked for semantic correctness. The subfile for port file 
PORTFILE1 awaits dialogue establishment while the program continues running. 

'AWAIT-OPEN WITH NO WAIT PORTFILEI. 

Example 9-2. Coding an AWAIT-OPEN WITH NO WAIT Statement 

Example 9-3 is the same as an AWAIT-OPEN WAIT statement with the 
AV AILABLEONLY file attribute set to TRUE. When AV AILABLEONLY is TRUE, the 
AWAIT-OPEN request is matched to dialogue requests that have already been received. 
Ifno matching requests have been received, the AWAIT-OPEN statement fails and the 
subfile is not considered for subsequent matching. 

AWAIT-OPEN AVAILABLE PORTFILEl. 

Example 9-3. Coding an AWAIT-OPEN AVAILABLE Statement 

Example 9-4 indicates that the program waits for a request for a dialogue to be 
established on the subfile for the port file PORTFILE2. Control is not returned 
to the program until the subfile is matched to an incoming dialogue request. The 
P ARTICIP ATE option indicates that the dialogue request is not automatically accepted 
when it is matched to the subfile. When the system returns control to the program, the 

8600 0296-000 9-11 



PROCEDURE DIVISION Statements 

CALL 

program can review and negotiate dialogue attributes~ and accept or reject any offers by 
responding with the RESPOND statement. 

AWAIT-OPEN WITH WAIT PORTFILE2 USING PARTICIPATE. 

Example 9-4. Coding an AWAIT-OPEN ••• PARTICIPATE Statement 

Example 9-5 indicates that the program does not wait for a dialogue request to be 
established on the subfile for the port file PORTFILE3. Control is returned to the 
program as soon as possible. In addition, the·maximum amount of time that the system 
can wait for a successful match is equal to the value contained in the NUMER-ITEM 
item. 

AWAIT~OPEN NO WAIT PORTFILE3 USING CONNECT-TIME-LIMIT OF NUMER-ITEM. 

Example 9-5. Coding an AWAIT-OPEN .•• CONNECT-TIME-LiMIT Statement 

See Also 

• For information about another type of open operation used to establish a dialogue, 
refer to "OPEN" later in this section. 

• For step-by-step information on coding port file applications, refer to the I/O 
Subsystem Programming Guide. 

• For references to file attributes, refer to the File Attributes Reference Manual. 

The CALL statement transfers control from an object program to a separate task or 
procedure. 

The CALL statement has the following four formats: 

Format 

1 

2 

3 

4 

See Also 

Explanation 

Starts an independently compiled program that is executed under the control of 
the calling program 

Calls a bound-procedure 

Starts a system dump operation 

Initiates an independent task by submitting a Work Flow Language (WFL) job 

• For information on the use of the CALL statement in Inter-Program Communication 
(!PC), refer to "CALL Statement" in Section 13, "ANSI Inter-Program 
Communication (IPC)." 

• For information on the use of the CALL statement with libraries, refer to "Referring 
to a Library" in Section 15, "Libraries." 

9-12 86000296""()00 



PROCEDURE DIVISION Statements 

Format 1 (Unisys Extension) 

CALL task-identifier WITH section-name [USING actual-parameter-list] 

Explanation of Format 1 

Format 1 is used for calls on tasks. A task is an independently compiled program that is 
executed under the control of the calling program. 

The execution of the tasking CALL statement causes the program containing the CALL 
statement to be suspended and causes the program being called to begin execution as a 
separate task. 

Upon execution of an EXIT PROGRAM statement in the called program, the called 
program is suspended and control is returned to the next statement of the calling 
program. The calling program can call the called program again with a CONTINUE 
statement, and shared data is not reinitialized. The called program begins execution at 
its first executable statement with each CONTINUE statement. 

Execution of an EXIT PROGRAM RETURN HERE statement in the called program 
suspends the called program and returns control to the next statement of the calling 
program. Shared data is not reinitialized. A subsequent CONTINUE statement in the 
calling program returns control to the next statement after the EXIT statement in the 
called program. 

In the called program, execution of a STOP RUN statement or abnormal termination 
returns control to the next statement of the calling program. Subsequent calls 
reinitialize the called program. The inclusion of a task-identifier in the USING clause 
allows a called program to make any reference to that task that is allowable in the calling 
program. 

Files to be passed as parameters must have a record description. The record described 
for the file can be passed as a parameter. In the PROCEDURE DMSION header of 
the called program, the USING phrase must not reference any data item in the FILE 
SECTION of the called program. Either or both programs can initiate I/O to the file 
passed as a parameter in the CALL statement. 

The name of the program to be called can either be specified at the source level in the 
SPECIAL-NAMES paragraph or be assigned from a data item at run time by moving 
or reading the title into the data item named in the USE EXTERNAL statement of 
section-name. Standard file-naming conventions apply. 

Each identifier in the USING actual-parameter-list clause must be defined as either 
a 77-level item that resides in the stack or a Ol-level item. Items must correspond 
in level-number, usage, and size to those described in the corresponding positions 
of the USING clause of the PROCEDURE DMSION in the called program. The 
exceptions are DISPLAY, COMP, BINARY group items, and 77-level BINARY items with 
RECEIVED BY REFERENCE clauses. These items are interchangeable as parameters 

8600 0296-000 9-13 



PROCEDU RE DIVISION Statements 

9-14 

of tasking CALL statements only; that is, each item can be passed to and received by the 
other items when the system is doing tasking calls. However, the lengths must be the 
same, or run-time errors, such as INY ALID INDEX, occur. 

The identifiers in the USING clause can be any combination of data items, task 
(control point) items, INDEX items, EVENT items, or lock items at either the group or 
elementary level. 

The USING clause is included in the CALL statement if there is a USING clause in the 
USE statement of section-name, in the PROCEDURE DIVISION header of the called 
program, or both. The number, type, and order of items in each USING clause must be 
identical, except that DISPLAY, COMp, BINARY, REAL, and DOUBLE group items, 
and 77-level BINARY REAL, and DOUBLE items with RECEIVED BY REFERENCE 
clauses are interchangeable as parameters of tasking CALL statements. That is, each 
item can be passed to and received by the other. You must take care to ensure that the 
lengths of different types of items are the same, or run-time errors might occur. 

Table 9-3 describes the matching of formal parameters between the COBOL 74, ALGOL, 
and COBOL68 languages. 

Table 9-3. Paramete"r Mapping for Tasking Calls 

COBOL74 Parameter 

77-level BINARY or REAL 
item (single precision) 

77 -level BI NARY or 
DOUBLE item (double 
precision) 

OI-Ievel DISPLAY, COMp, 
BINARY, REAL, or DOUBLE 
item 

77 -level EVENT or LOCK 
item 

77 -level or 01 :-Ievel TASK 
elementary item 

ALGOL Parameter 

REAL INTEGER 

DOUBLE 

REAL ARRAY [*] 

INTEGER ARRAY [*] 

EBCDIC ARRAY [*] 

H EX ARRAY [*] 

REAL ARRAY [0] 

INTEGER ARRAY [0] 

EBCDIC ARRAY [0] 

HEX ARRAY [0] 

EVENT 

TASK 

COBOL68 Parameter 

77-level COMP or COMP-4 
item (single precision) 

77-level COMP or COMP-5 
item (double precision) 

OI-Ievel DISPLAY, COMp, or 
COMP-2 group item with or 
without LOWER-BOUNDS 

77 -level EVENT or LOCK 
item 

77 -level or 0 I-level TASK 
elementary item 

continued 

8600 0296-000 



PROCEDURE DIVISION Statements 

Table 9-3. Parameter Mapping for Tasking Calls (cont.) 

COBOL74 Parameter 

a I-level EVENT or LOCK 
group item 

aI-level TASK group item 

FILE 

ALGOL Parameter 

EVENT ARRAY 

TASK ARRAY 

FILE 

COBOL68 Parameter 

77 -level EVENT or LOCK 
. group item 

aI-level TASK group item 

FILE 

The following notes describe the use of actual parameters and their correspondence to 
ALGOL variable types: 

• BINARY items are single precision when they are declared with a length of 11 digits 
or less. These items are double precision if they are declared with a length of 12 to 
23 digits. While BINARY items can match ALGOL REAL or INTEGER parameters, 
they are maintained in binary-coded format; their values are maintained with 
exponents of zero and no fractional parts. 

• A BINARY 01-level group item with elements that are double precision (length of 12 
to 23 digits) is not represented as a double array. Each BINARY 01-level item is a 
real array. Two array elements are used for each item with a length of 12 to 23 digits 
(double) and one array element is used for each item with a length of 1 to 11 digits 
(single precision). ALGOL programs accessing the double-precision elements must 
use a double array equated to the real array that was used to receive or send the 
parameter. The ALGOL real array must be long enough to allow two elements for 
each item with a length of 12 to 23 digits. 

• 77-level DISPLAY and COMP items are not allowed as parameters in COBOL74 
tasking. 

• An ALGOL subprogram that declares global libraries can be bound to a COBOL74 
host program. However, all entry points of the libraries must be used in CALL 
statements in the COBOL74 program for the program to bind successfully. 

Any array row passed to or from an ALGOL-like language is considered a 01-level 
record in COBOL74. For example, consider an ALGOL program with an external 
procedure declaration specifying a formal parameter EBCDIC ARRAY A[*]. If 
this declaration is used to call a COBOL74 program that has a formal DISPLAY 
item parameter, the ALGOL-supplied array row is treated as a DISPLAY item 
of whatever length is declared in the COBOL74 program; the array row must be 
the declared length. The lower-bound could have been fixed when specified in the 
ALGOL procedure declaration (for example, A[O] or A[l]), instead of variable bound 
(A[*]); COBOL74 is not affected by the ALGOL lower-bound. 

• In the opposite direction, (a COBOL74 item passed to an ALGOL pr~edure), the 
COBOL74 item is treated as an ALGOL array row; its length is determined by the 
COBOL74 declaration. If the ALGOL procedure specifies a variable bound (A[*]), 
the actual value of the lower-bound is 0 (zero). 

8600 0296-000 9-15 



PROCEDURE DIVISION Statements 

The Work Flow Language (WFL) calls programs as tasks, passes its string parameters as 
real arrays with lower-bounds, and passes its numeric variable and constant parameters 
by value as real, single-precision operands. Table 9-4 shows WFL parameters and the 
corresponding COBOL74 parameters. 

Table 9-4. WFL and COBOL74 Parameters 

WFL parameter 

STRING or STRING constant 

REAL, INTEGER, REAL constant or INTEGER 
constant 

Format 2 (Unisys Extension) 

COBOL74 parameter 

DISPLAY, COMP or BINARY group item 

77-level BINARY or REAL item (single 
precision) 

CALL section-name [USING actual-parameter-list] 

9-16 

Explanation of Format 2 

Format 2 invokes as a procedure an externally compiled program that must have been 
bound into the calling program. The procedure is bound into the calling object code and 
is physically part of the program itself: 

The actual parameter-list must consist of data items, control items, and expressions 
optionally separated by commas. 

Table 9-5 shows the formal parameters for bound and host programs that can be 
declared in COBOL74, along with the corresponding declarations in ALGOL and the 
permissible kinds of actual parameters that can be passed. 

Note that if the formal parameter in COBOL74 or COBOL6S is a 77-level BINARY item, 
the actual parameter can be the value of an arithmetic expression. A single item of any 
numeric type can be considered an arithmetic expression for this purpose. 

8600 0296-000 



PROCEDURE DIVISION Statements 

Table 9-5. Parameters for Bound and Host Programs 

COBOL74 Formal Permissible Actual 
Parameter ALGOL Formal Parameter Parameter 

BINARY, 77 1-11 digits INTEGER Arith metic-expression 
(RECEIVED BY CONTENT) 

REAL, 77 (RECEIVED BY . REAL Arith metic-expression 
CONTENT) 

BINARY, 77 12-23 digits or DOUBLE Arith metic-expression 
DOUBLE, 77 (RECEIVED 
BY CONTENT) 

BINARY, 77 1-11 digits INTEGER BINARY, 77 1-11 digits 
(RECEIVED BY 
REFERENCE) 

REAL, 77 (RECEIVED BY REAL REAL, 77 
REFERENCE) 

BINARY, 77 12-23 digits DOUBLE BINARY, 77 12-23 digits 
(RECEIVED BY 
REFE,RENCE) 

DOUBLE, 77 (RECEIVED DOUBLE DOUBLE, 77 
BY REFERENCE) 

EVENT or LOCK, 77 EVENT EVENT or LOCK, 77 

TASK, 77 or 01 TASK TASK, 77 or 01 

BINARY, 01 INTEGER ARRAY BINARY, COMp, or DISPLAY, 
01 

REAL,OI REAL ARRAY REAL,01 

DOUBLE, 01 REAL ARRAY REAL or DOUBLE, 01 

COMP or DISPLAY, 01 EBCDIC ARRAY BINARY, COMp, or DISPLAY, 
01 

EVENT or LOCK, 01 group EVENT ARRAY EVENT or LOCK, 01 group 

continued 

8600 0296-000 9-17 



PROCEDURE DIVISION Statements 

Table 9-5. Parameters for Bound and Host Programs (cont.) 

COBOL74 Formal 
Parameter 

TASK, 01 group 

FILE 

ALGOL Formal Parameter 

TASK ARRAY 

FILE 

Format 3 (Unisys Extension) 

Permissible Actual 
Parameter 

TASK, 01 group 

FILE 

The execution of a CALL SYSTEM DUMP statement causes control to pass to the 
DUMP routine ill the operating environment. 

CALL SYSTEM DUMP 

Explanation of Format 3 

The CALL SYSTEM DUMP statement causes the operating system to dump data from 
the memory area of the program. 

Format 4 (Unisys Extension) 

CALL SYSTEM WFL [USING { , identifier-l } ... J 
-- -- ,literaI-l 

9-18 

Explanation of Format 4 

The CALL SYSTEM WFL statement causes an independent task to be initiated by 
submitting a Work Flow Language (WFL) job to the WFL compiler. After initiating the 
task, the executing program does not wait for the initiated task to be completed but 
immediately proCeeds to execute the next statement. 

The CALL SYSTEM WFL statement requires one parameter that can be a nonnumeric 
literal or the name of a Ol-level data item with the USAGE IS DISPLAY phrase. The 
contents of the parameter must be a complete WFL job. (Refer to th.e A Series Work 
Flow Language (WFL) Programming Reference Manual for information on WFL jobs.) 
The syntax of the WFL job deck is not checked by the COBOL compiler; thus any error 
detected by the WFL compiler has no direct effect on the calling program. 

8600 0296-000 



PROCEDURE DIVISION Statements 

Note: Previously, the CALL SYSTEM WFL statement invoked the old WFL 
job by default. On the Mark 3.7 and later releases, the content of the 
parameter specified by the CALL. SYSTEM WFL statement is treated 
as a new WFL job by default. Old WFL is a less powerful version of 
WFL. Old WFLjobs begin with JOB, USER, CLASS, or a specific 
statement starter (not BEGIN). New WFLjobs begin with the phrase 
BEGIN JOB. For more information on WFL, see the WFL Reference 
Manual 

To minimize the number of changes to existing programs, "old" WFL 
is tried if a syntax error is found in "new" WFL. Jobs that start with 
an explicit job heading-for example, BEGIN JOB (new WFL)or 
JOB (old WFL)-are still processed aCcording to the specification in 
the job heading; these jobs are not affected by this change. 

CAUSE (Unisys Extension) 
The CAUSE statement is normally used for communication between processes in an 
asynchronous processing environment. 

The format of the CAUSE statement is as follows: 

CAUSE [AND RESET] event-identifier-! [ , event-identifier-2 ] ... 

Explanation of Format 

The CAUSE statement initiates the events specified by the event-identifiers. If 
any process is in a Suspended condition because the program encountered a WAIT 
event-identifier statement that specified one of these event-identifiers, it resumes 
processing. If any process has an interrupt procedure attached to one of these events, 
the interrupt mechanism is initiated. 

When the AND RESET phrase is specified, all the event-identifiers are SET and then 
immediately RESET. This action indicates to any process that has an interrupt procedure 
attached to one of the event-identifiers that the event has been caused. 

Event-identifiers must be one of the following: 

• Properly qualified and subscripted data-names with the USAGE EVENT phrase 
specified 

• File or task attributes of type EVENT 

8600 0296-000 9-19 



PROCEDURE DIVISION Statements 

See Also 

• For information about executing an interrupt procedure that has been attached to an 
EVENT item, refer to "ALLOW (Unisys Extension)" in this section. 

• For information about associating an interrupt procedure with an EVENT item, 
refer to "ATTACH (Unisys Extension)" in this section. 

• For information about dissociating a procedure from a task item or an EVENT item, 
refer to "DETACH (Unisys Extension)" in this section. 

• For information about preventing execution of an interrupt procedure that has been 
attached to an event, refer to "DISALLOW" in this section. 

• For information about suspending the execution of an object program, refer to 
"WAIT (U nisys Extension)" in this section. 

CHANGE (Unisys Extension) 
The CHANGE statement modifies a file attribute or a task attribute. 

Those attributes that cannot be changed at any tUne cannot be specified in a CHANGE 
statement. 

Certain attributes cannot be changed while the file is in open mode. Attempts to change 
these attributes while the file is open are ignored. 

Certain file attributes are also used by the compiler to implement various constructs in 
the declaration of and access to files within the program. When a file attribute can be set 
or declared using standard COBOL syntax, it is always preferable to use the standard 
syntax because changing the attribute can lead to unexpected results in cases when the 
attribute is also used or altered by the compiler. 

The CHANGE statement has the following three formats: 

Format 

1 

2 

3 

Format 1 

Explanation 

Changes a numeric or alphanumeric file attribute 

Changes a mnemonic file attribute 

Changes a task attribute 

CHANGE {numeric-file-attribute-identifier } 
alphanumeric-file-attribute-identifier 

UP BY literal-l 
{

TO } 

DOWN BY {identifier-1} 

9-20 8600 0296-000 



PROCEDURE DIVISION Statements 

Explanation of Format 1 

If a numeric file attribute-identifier is specified, literal-l must be a numeric literal, and 
identifier-l must be a numeric data item that represents an integer .. 

If an alphanumeric-file-attribute-identifier is specified, literal-l must be a nonnumeric 
literal and can end with a period, and identifier-l must be a nonnumeric DISPLAY data 
item and must end with a period. 

Attempts to change attributes to illegal values are ignored. 

The UP BY and DOWN BY phrases are for use with the STATIONLIST attribute only. 
The STATIONLIST attribute can be used only with REMOTE files. 

Format 2 

CHANGE mnemonic-file-attribute-identifier TO 

[ {~UE}] mnemonic-attribute-value 

Explanation of Format 2 

The mnemonic-attribute-value must be associated with the attribute specified. 

If there is a data-name with the same name as a mnemonic-attribute-value, the value 
assigned to the attribute is determined by using the optional word VALUE. If the 
word VALUE is present, the attribute is set to the value of the mnemonic. If the word 
VALUE is omitted, the attribute is set to the current value of data-name. 

Format 3 

(

identifier-2 l 
CHANGE task-attribute-identifier TO. li[.t{e~~UE}] . . 

VA task-attrIbute-mnemonIc 

Explanation of Format 3 

Identifier-2 or literal-2 or the task-attribute-mnemonic must be consistent with the type 
of the task-attribute-identifier. Each of these variables can end with a period. Task 

8600 0296--000 9-21 



PROCEDURE DIVISION Statements 

attributes of attribute list type should not end with a period. For example, the LIBRARY 
task attribute should not end with a period. 

The choice of identifier, literal, or task-attribute-mnemonic depends on the attribute 
being changed and its declared value. Type POINTER task attributes accept an 
alphanumeric item. 

Boolean or INTEGER task attributes accept a numeric item or a literal or the value 
associated with a mnemonic. If the value is not in the permissible range for the attribute 
specified, an error occurs either at compilation time or at execution time. 

A task-attribute-mnemonic is a name associated with a constant value for an attribute 
that has a set number of predetermined possible values. 

If there is a data-name with the same name as a task-attribute-mnemonic, the value 
assigned to the attribute is determined by using the optional word VALUE. If the 
word VALUE is present, the attribute is set to the value of the mnemonic. If the word 
VALUE is omitted, the attribute is set to the current value of data-name. 

See Also 

• For a description of the format of task-attribute identifiers, refer to "Task-Attribute 
Identifiers (Unisys Extension)" in Section 3, "File and Task Concepts." 

• For information on file attributes, refer to the File Attributes Reference Manual. 

• For information on task attributes, refer to the Task Attributes Reference Manual. 

CLOSE 

9-22 

The CLOSE statement ends the processing of a file or of a reel of a multivolume tape file. 
Unlike the OPEN statement, you do not have to specify the open mode of the file (for 
example, input). However, you do have to consider the device associated with the file. 
Some close options are not permitted for a particular device, and some close options 
cause different actions with different devices. The CLOSE statement does not affect the 
contents or availability of the record area of the file (This is a U nisys extension). 

The CLOSE statement has the following three formats for files: 

Format 

1 

2 

3 

Explanation 

Closes a file for sequential I/O applications 

Closes a file for relative and indexed I/O applications 

Closes a port file 

8600 0296-000 



PROCEDURE DIVISION Statements 

Format 1: Sequential I/O 

Format 1 is for files with sequential organization. The format is as follows: 
\ 

. {:}[FORREMOVALj 
NO REWIND 
LOCK 

CLOSE· file-name SAVE [ FOR REMOVAL ] 
WITH PURGE 

CRUNCH 
RELEASE 
REMOVE [ CRUNCH] 

Explanation of Format 

The explanation of the format notation is divided into the following three categories of 
devices: 

• Devices other than tape 

• Single-reel tape 

• Multiple-reel tape 

Devices Other Than Tape 

For a file associated with a disk, printer, punch, reader, or remote device, the concept 
of a reel has no meaning. If you specify the REEL or UNIT option for these files, the 
system ignores the CLOSE statement and does not close the file. If you specify the NO 
REWIND or SAVE FOR REMOVAL option, the system ignores the option, but closes 
the file. 

For these files, the CLOSE statement affects only the association between the logical 
file and the physical file, not the physical device. The operating system controls the 
assignment and disposition of the physical devices. (This is a Unisys extension). 

For each close option, there is a list of actions called dispositions that apply when you 
use that option. Refer to Table 9-6 later in this section for the details about each close 
disposition. 

Explanation of Format for Devices Other Than Tape 

The CLOSE statement closes the file and applies the retain file disposition. 

8600 0296-000 9-23 



PROCEDURE DIVISION Statements 

The file-name names an open file that you want to close. The file must be named and 
assigned to a device in the SELECT clause and described in the INPUT-OUTPUT and 
FILE SECTIONs of your program. You can close files of differing organizations and 
access types in one CLOSE statement. 

The LOCK phrase closes the file and applies the following dispositions: 

• Lock file 

• Release file 

• Release device 

The SAVE phrase closes the file and applies the following dispositions: 

• Save file 

• Release file 

The PURGE phrase closes the file and applies the purge file disposition. 

The CRUNCH phrase closes the file and applies the following dispositions: 

• Crunch file 

• Save file 

• Release file 

The RELEASE phrase closes the file and applies the following dispositions: 

• Release file 

• Release device 

The REMOVE phrase closes the file and applies the following dispositions: 

• Save file with remove 

• Release file 

The REMOVE CRUNCH phrase closes the file and applies the following dispositions: 

• Crunch file 

• Save file with remove 

• Release file 

Single-Reel Tape 

·9-24 

A single-reel tape file is a sequential file that is entirely contained on one reel. 

For each close option, there is a list of actions called dispositions that apply when you 
use that option. Refer to Table 9-6 later in this section for the details about each close 
disposition. 

8600 0296-000 



PROCEDURE DIVISION Statements 

Explanation of Format for Single-Reel Tape 

The CLOSE phrase closes the file and applies the following dispositions: 

• Rewind reel 

• Retain file 

The file-name names an open file that you want to close. The file must be named and 
assigned to a tape in the SELECT clause and described in the INPUT-OUTPUT and 
FILE SECTIONs of your program. You can close files of differing organizations and 
access types in one CLOSE statement. If an output tape is to contain more than one 
file, the file is closed but the tape is not rewound. This process enables you to write 
subsequent output files to the same tape. 

The NO REWIND phrase closes the file and applies the following dispositions: 

• No rewind of current reel 

• Retain file 

The LOCK phrase closes the file and applies the following dispositions: 

• Lock file 

• Rewind reel 

• Release file 

• Release device 

The SAVE FOR REMOVAL phrase closes the file and applies the following dispositions: 

• Rewind reel 

• Release device 

• Release file 

• Save reel 

The PURGE phrase closes 'the file and applies the following dispositions: 

• Rewind reel 

• Purge file 

The RELEASE phrase closes the file and applies the following dispositions: 

• Rewind reel 

• Release file 

• Release device 

8600 0296-000 9-25 



PROCEDURE DIVISION Statements 

Multiple-Reel Tape 

A multiple-reel tape file is a sequential file that is contained on more than one reel. If 
you are processing very large multiple-reel files, the following close options might be 
useful. These options enable you to access the next reel of tape without requiring and 
intervening OPEN statement. . 

For each close option, there is a list of actions called dispositions that apply when you 
use that option. Refer to Table 9-6 later in this section for the details about each close 
disposition. 

Explanation of Format for Multiple-Reel Tape 

The CLOSE statement closes the file and applies the following dispositions: 

• Rewind reel 

• Previous reels unaffected 

• Retain file 

The file-name names an open file that you want to close. The file must be named and 
assigned to a tape in the SELECT clause and described in the INPUT-OUTPUT and 
FILE SECTIONs of your program. You can close files of differing organizations in one 
CLOSE statement. 

The REEL or UNIT phrases do not close the file and apply the following dispositions: 

• Close reel 

• Rewind reel 

The REEL and UNIT phrases are synonymous and interchangeable. 

The REEL FOR REMOVAL phrase does not close the file and applies the following 
dispositions: 

• Close reel 

• No rewind of current reel 

The NO REWIND phrase closes the file and applies the following dispositions: 

• Retain file 

• No rewind of current reel 

• Previous reels unaffected 

The LOCK phrase closes the file and applies the following dispositions: 

• Lock file 

• Rewind reel 

• Release file 

9-26 8600 0296-000 



PROCEDU RE DIVISION Statements 

• Previous reels unaffected 

• Release device 

The SAVE FOR REMOVAL phrase closes the file and applies the following dispositions: 

• Rewind reel 

• Previous reels unaffected 

• Lock file 

• Release file 

• Release device 

• Save reel unit 

The PURGE phrase closes the file and applies the following dispositions: 

• Rewind reel, 

• Previous reels unaffected 

• Purge file 

The RELEASE phrase closes the file and applies the following dispositions: 

• Rewind reel 

• Previous reels unaffected 

• Release file 

• Release device 

Close File Dispositions 

A close file disposition is an action taken by the system during the closing procedures for 
a file. For a specified close option, the dispositions that occur depend on the device with 
which the file is associated. For example, a simple CLOSE statement with no options 
specified also rewinds a tape file. 

A file must be in open mode to be closed. If a file is open when a program ends 
abnormally, executes a STOP RUN statement, or performs a CANCEL statement for the 
program that uses the file, the program closes the file using the dispositions of a CLOSE 
statement with no options specified. 

The system ignores the NO REWIND, FOR REMOVAL, SAVE, PURGE, CRUNCH, 
RELEASE, and REMOVE phrases if they do not apply to the device associated with the 
file. 

Once a file is closed, the program cannot perform any statement that refers to the 
file until the file is reopened. Because the SORT and MERGE statements have their 
own routines, this restriction does not apply when the program performs a SORT or a 
MERGE statement with the USING or GIVING options specified. 

8600 0296-000 9-27~ 



PROCEDURE DIVISION Statements 

9-28 

If the program attempts to close an optional input file that is not present, the program 
does not perform the standard end-of-file processing for that file. You can designate 
an optional file with the OPTIONAL phrase of the FILE-CONTROL paragraph in the 
ENVIRONMENT DMSION. 

When the program closes a file and releases it to the system, the program also checks 
the value of the EXCLUSIVE file attribute. If the value of the attribute is TRUE, 
the program sets it to FALSE. The CLOSE statement also changes the value of the 
FILEUSE attribute to 1-0. This change might affect the results of any subsequent access 
to the RESIDENT, PRESENT, or AVAILABLE file attribute. 

Table 9-6 lists each close disposition in alphabetical order and explains its actions. If the 
disposition depends on whether or not the file is an input, an output, or an I/O file, the 
differences between the open modes are described. Otherwise, the disposition applies to 
input, output, and I/O files. 

Disposition 

Close reel 

Crunch file 

Lock file 

No rewind of 
current reel 

Table 9-6. Close-File Dispositions for SequentialI/O 

Explanation 

For input files, the following operations occur: 

• Reels are swapped. 

• Standard beginning-reel label procedure is performed. 

The next READ statement performed for that file makes the next data 
record on the new reel available. 

For output files, the following operations occur: 

• Standard ending-reel label procedure is performed. 

• Reels are swapped. 

• Standard beginning-reel label procedure is performed. 

The next WRITE statement performed on the file directs the next data 
record to the next reel of the file. 

Releases as available to the system any unused portions of storage areas 
allocated for the file. This disposition is valid only for disk files. The file 
cannot subsequently be extended by opening the file with the OPEN 
EXTEN D statement. t 

Locks the logical file so that it cannot be reopened during execution of 
the program. If the file is assigned to disk, it becomes a permanent file 
before being made unavailable. If the file is assigned to tape, the 
physical unit is unreadied. 

Leaves the current reel in its current position. 

continued 

8600 0296-000 



PROCEDURE DIVISION Statements 

Table 9-6. Close-File Dispositions for SequentialI/O (cont.) 

Disposition 

Previous reels 
unaffected 

Purge file 

Release device 

Release file 

Remove file 

Retain file 

Rewind reel 

Save file 

Save file with 
remove 

Save reel unit 

t Unisys extension 

8600 0296-000 

Explanation 

Rewinds and locks all reels in the file prior to the current reel (except 
reels controlled by a prior CLOSE REEL statement). 

If the file is an input file, it remains open and cannot be opened in the 
program. If the current reel is not the last one in the input file, the 
program does not process the remaining reels. 

If the file is a tape file, the system rewinds the reel. If the reel has a write 
ring, the system writes a scratch label on it and releases the device as 
available to the system. If the file is a permanent disk file, the system 
removes the file-name from its directory and releases the disk area 
occupied by the file as available to the system.t 

Releases the device so that it is available to the system if the device to 
which the file was aSSigned can be controlled by the object program.t 

Severs the association between the logical file and the physical file. As 
the file is closed, the system checks the value of the EXCLUSIVE file 
attribute. If the value of the attribute is TRUE, it is assigned the value 
FALSE during the close process. The program releases to the system the 
areas of memory allocated for buffers. t 

Rewinds the current reel and releases it to the system. However, you can 
access the reel again in its proper order of reels within the file if you 
perform a CLOSE statement without the REEL phrase, followed by an 
OPEN statement for the file. 

Retains the association between the logical file and the physical file. 
When you reopen the file, the operating system does not search for the 
physical file. t 

Positions the current reel or analogous device at its physical beginning. 

Suspends the program if a permanent file with the same title already 
exists and the system option 5 (AUTORM) is reset. To restart the 
program, the operator must enter either the RM (Remove) or OF 
(Optional file)'system command. The new file becomes permanent after 
the operator entersthe RM or OF command when the system option 5 
(AUTORM) is set, or if no old file with the same title exists. This 
disposition is valid only for disk files. The file can be reopened during the 
execution ofthe program.t 

Makes the file permanent. ·If a permanent file with the same title already 
exists, the system removes it without regard for system option 5 
(AUTORM). This disposition is valid only for disk files. The program can 
reopen the file while the program is executing. t 

Unreadies the physical tape unit containing the reel. 

9-29 



PROCEDURE DIVISION Statements 

Format 2: Relative and Indexed I/O 

Indexed and relative files must be associated with a disk device. If the program closes 
and releases the file to the system, the program checks the value of the EXCLUSIVE file 
attribute. If the value is TRUE, it is set to FALSE during the close process. 

To close a relative or an indexed file, use the syntax shown in Format 2. 

LOCK 
SAVE 

CLOSE file-name WITH PURGE 
RELEASE 
REMOVE 

9-30 

Explanation of Format 

The CLOSE statement closes the logical file. The program retains the association 
between the logical file and the physical file. .If you reopen the file, the system does not 
search for the physical file (U nisys extension). 

The file-name names identifies an open relative or indexed file that you want to close. 
The file must be named and assigned to DISK in the SELECT clause and described in 
the INPUT-OUTPUT and FILE SECTIONs of your program. You can close files of 
differing organizations and access types in one CLOSE statement. 

The LOCK phrase closes the logical file and locks it so that the file cannot be reopened 
during the execution of the program. However, the system makes the physical file 
permanent and removes any existing file with the same name. The program severs the 
association between the logical file and the physical file and releases to the system the 
areas of memory allocated for buffers (Unisys extension). 

The SAVE phrase closes the logical file and suspends the program if a permanent 
file with the same title exists. The operator must enter either the RM (Remove) or 
the OF (Optional file) system command to restart the program. The new file becomes 
permanent after the operator enters the RM or OF system command, if system option 5 
(AUTORM) is set, or if no file with the same title exists. You can reopen the file during 
the execution of the program. The program severs the association between the logical 
file and the physical file and releases to the system the areas of memory allocated for 
buffers (U nisys extension). 

The PURGE phrase closes the logical file. If the file is permanent, the system removes 
the file-name from the system directory and releases to the system the areas occupied by 
the file. 

The RELEASE phrase closes the file .. 

8600 0296-000 



PROCEDURE DIVISION Statements 

The REMOVE phrase closes the logical file and makes the physical file permanent. If a 
permanent file with the same title already exists, the system removes it without regard 
for system option 5 (AUTORM). You can reopen the file during execution of the program 
(Unisys extension). 

Format 3: Port Files (Unisys Extension) 

You can close a port file by performing a CLOSE statement using the syntax shown in 
Format 3. 

CLOSE file-name [ WITH { :~AlT } ] 

{
ABORT } 

CLOSE-DISPOSITION OF ORDERLY 

USING ASSOCIATED-DATA-LENGTH OF {~dentifier-l} 
. . mteger 

ASSOCIATED-DATA OF {identifier-2} 
literal 

Explanation of Format 

The file-name names a port file. 

The NO WAIT phrase closes the dialogue and returns control to the program without 
waiting for the correspondent endpoint to close its subfile. The close operation continues 
in parallel with the execution of the program. The subfile is not closed completely until 
the correspondent endpoint closes its subfile. 

The WAIT option closes the dialogue and suspends the program until the correspondent 
endpoint has closed its subfile too. If a WITH option is not specified, the program 
defaults to the WITH WAIT option. 

The USING option permits each of the USING clauses to be included once only. 

The CLOSE-DISPOSITION ABORT phrase closes the dialogue immediately, without 
ensuring that your program received all the data. It is your responsibility to guarantee 
that all messages are processed so there is no loss of data. The compiler will default to 
the ABORT phrase if the type of CLOSE-DISPOSITION is not specified. 

The CLOSE-DISPOSITION ORDERLY phrase closes the dialogue in an orderly manner 
and ensures that no data is lost. This disposition is available only with some services. 

The ASSOCIATED-DATA-LENGTH phrase specifies the number of characters to be 
sent. If you do not specify the length of the associated data and the associated data is 

8600 0296-000 9-31 



PROCEDURE DIVISION Statements 

9-32 

a data item, your program uses the actual length of the data. If you specify the length 
of the associated data, the length value must be less than or equal to the actual length 
of the data. An error results if the length specified is not a single-precision integer 
value. To use the ASSOCIATED-DATA-LENGTH phrase, you must specify the 
ASSOCIATED-DATA phrase with either an identifier or an undigit literal, but not a 
nonnumeric literal. 

The ASSOCIATED-DATA phrase is used on some types of networks to transfer data to 
the correspondent endpoint along with the request to close the dialogue. 

The integer must be a numeric literal. 

Identifier-1 must name an elementary integer data item. 

Identifier-2 can be a group data item or an alphanumeric elementary data item. 
\ 

The literal can be a nonnumeric literal or an undigit literal. 

General Rules 

Besides specifying the close options, you might need to designate the subfiles to close. If 
you are using subfiles, perform the following steps: 

1. Specify the total number of subfiles in your program by using the CHANGE 
ATTRIBUTE MAXSUBFILES TO VALUE attribute-value statement. 

2. Specify the subfiles to be opened by using the SELECT port-file ASSIGN TO 
PORT; ACTUAL KEY IS subfile-num clause. 

3. Declare subfile-num and attribute-value in the WORKING-STORAGE SECTION. 

The ACTUAL KEY clause specifies the subfile to close. Table 9-7 shows the subfiles that 
are closed with differing ACTUAL KEY clause values. 

Table 9-7. Designating Subfiles to Close 

Actual Key Value 

o or none 

Nonzero 

Greater than the MAXSUBFILES 
value or negative number 

Examples 

Explanation 

Closes every open subtile 

Closes the specified subtile 

Returns a BADSUBFILEINDEX run-time error in the 
SUBFILERROR attribute 

In the following examples, it is assumed that earlier in the program the port files were 
declared using an ACTUAL KEY clause and the subfile index was set to a particular 
subfile. 

8600 0296--000 



PROCEDURE DIVISION Statements 

Example 9-6 causes the dialogue established on the port file for PORTFILE1 to be 
closed. The program is suspended until the correspondent endpoint is also closed. 

CLOSE PORTFILE1 WITH WAIT. 

Example 9-6. Coding a CLOSE WITH WAIT Statement 

Example 9-7 closes the dialogue and returns control to the program without waiting 
for the correspondent endpoint to close its subfile. The subfile on PORTFILE1 is not 
completely closed until the correspondent endpoint closes its subfile. The ORDERLY 
option ensures that no data is lost during the close operation. Any messages that are 
received are saved in the READ queue. 

CLOSE PORTFILE1 WITH NO WAIT USING CLOSE-DISPOSITION OF ORDERLY. 

Example 9-7. Coding a CLOSE WITH NO WAIT Statement 

Example 9-8 ,requests that PORTFILE1 be closed. Since the CLOSE-DISPOSITION 
phrase is not specified, a CLOSE ABORT statement is assumed. Since the W AJT or NO 
WAIT are not specified, W AYr is assumed, and control is not returned to the program 
until the close operation is complete. The information "MYDATA" is sent to the other 
program with this message: 

CLOSE PORTFILE1 USING ASSOCIATED-DAT~OF "MYDATA". 

Example 9-8. Coding a CLOSE ••• ASSOCIATED-DATA Statement 

Example 9-9 requests that PORTFILE1 be closed. When this message to close is sent, 
10 characters of data are sent at the same time to the correspondent endpoint. The data 
sent begins at the location pointed to by the ALPHANUM-ITEM item. 

CLOSE PORTFI LE1 
USING ASSOCIATED-DATA OF ALPHANUM-ITEM 

ASSOCIATED-DATA-LENGTH OF 10. 

Example 9-9. Coding a CLOSE ••• ASSOCIATED-DATA-LENGTH Statement 

Example 9-10 requests that the multiple port files, PORTFILE1 and PORTFILE2, be 
closed. The ABORT option closes the dialogue, but does not ensure that your program 
received all the data. 

CLOSE PORTFILE1 WITH WAIT 

8600 0296-000 

USING CLOSE-DISPOSITION OF ABORT 
ASSOCIATED-DATA-LENGTH OF 10 
ASSOCIATED-DATA OF ALPHANUM-ITEM 

PORTFILE2 WITH NO WAIT 
USING CLOSE-DISPOSITION OF ORDERLY 

ASSOCIATED-DATA-LENGTH OF 10 
ASSOCIATED-DATA OF ALPHANUM-ITEM. 

Example 9-10. Closing Multiple Port Files 

9-33 



PROCEDU RE DIVISION Statements 

See Also 

• For step-by-step information on coding port file applications, refer to the I/O 
Subsystem Programming Guide. 

• For information on file attributes, refer to the File Attributes Reference Manual. 

I/O Status Value 

The system returns a value that indicates the result of a CLOSE statement. You can 
access this value by including a SELECT file-name FILE STATUS IS data-name clause \. 
in your program. The operating system moves a value into the designated data-name 
storage area after the program performs the CLOSE statement. You can then use an 
IF statement to test the value of the data-name and take the desired action depending 
on the result. If you choose not to code an action for the I/O result, the system provides 
default actions for the results. 

If your program does not include either a FILE STATUS clause or an ERROR 
PROCEDURE clause in the DECLARATNES SECTION for the file, the system aborts 
the program when the close operation is unsuccessful. 

Table 9-8 shows the I/O status values and their meanings. 

Table 9-8. I/O Status Values for CLOSE Statement Completion 

Value 

00 

82t 

t Unisys extension 

Explanation 

Control was returned to the program after the CLOSE statement completed 
correctly. In the case of a port file, the close operation might be pending. 

An error was detected while the file was being closed. 

COMPUTE 
The COMPUTE statement calculates the value of the arithmetic expression following 
the equal sign ( = ) and assigns the value to one or more data items preceding the equal 
sign. 

This statement is useful for performing complex arithmetic operations. 

The general format of this statement is as follows: 

COMPUTE identifier-l [ROUNDED] [, identifier-2 [ROUNDED] ] ... 

= arithmetic-expression [ ; ON SIZE ERROR imperative-statement] 

9-34 8600 0296--000 



PROCEDURE DIVISION Statements 

Explanation of Format 

If more than one identifier is specified to the left of the equal sign, the compiler 
computes the value of the arithmetic expression and stores the new value in identifier-l, 
identifier-2, and so forth in turn. 

Identifiers that appear only to the left of the equal sign must refer either to an 
elementary numeric item or to an elementary numeric-edited item. 

If the arithmetic expression consists of a single identifier or literal, the compiler sets the 
values of identifier-l, identifier-2, and so on to the value of the single identifier or literal. 

Imperative-statement can be the NEXT SENTENCE phrase. 

When a sending item and a receiving item in the same COMPUTE statement share a 
part, but not all, of their storage areas, the result of the execution of the statement is 
undefined. 

Note: A rounding error can occur if i den tifier-l , identifier-2, and so on 
contain different numbers of digits after the decimal point, and if an 
intermediate result of the computation exceeds the maximum integer. 

See Also 

• For a description of the features common to the arithmetic statements, refer 
to "Common Rules for Arithmetic Statements" in Section 8, "PROCEDURE 
DMSION Concepts." 

• For information on producing multiple results with one arithmetic statement, refer 
to "Calculating Multiple Results with Qne Arithmetic Statement" in Section 8, 
"PROCEDURE DIVISION Concepts." 

• For information about the rounding of arithmetic result fields, refer to "ROUNDED 
Phrase" in Section 8, "PROCEDURE DMSION Concepts." 

• For information on Size Error conditions, refer to "SIZE ERROR Phrase" in 
Section 8, "PROCEDURE DIVISION Concepts." 

CONTINUE (Unisys Extension) 
The CONTINUE statement passes control to a synchronous process that has been 
previously called and exited with the EXIT PROGRAM or EXIT PROGRAM RETURN 
HERE statement. This statement enables the called process to restart without 
repassing parameters or to resume at a point other than its first executable statement. 

The general format of this statement is as follows: 

CONTINUE task-identifier 

86000296--000 9-35 



PROCEDURE DIVISION Statements 

COpy 

9-36 

Explanation of Format 

The task-identifier must be the same as in a previously executed CALL statement. 

See Also 

For information about transferring control to a separate task or procedure, refer to 
"CALL" earlier in this section. 

The COpy statement incorporates text from a library program into the COBOL program 
that contains the COpy statement. 

When the compiler processes a COpy statement, it copies the library text associated 
with the text-name into the source program and logically replaces the entire COPY 
statement, beginning with the reserved word COPY and ending with the period, 
inclusive. 

You can use a COpy statement in the source program anywhere a character string or 
a separator is allowed, but a COpy statement must not occur within another COpy 
statement. 

The text produced as a result of the complete processing of a COpy statement must not 
contain a COpy statement. 

Text in the copied library must conform to the rules for COBOL reference format. 

The compilation of a source program containing COpy statements is logically equivalent 
to processing all COpy statements prior to the processing of the resultant source 
program. 

This statement is useful for eliminating redundant programming. 

8600 0296-000 



PROCEDURE DIVISION Statements 

The general format of this statement is as follows: 

COpy text-name [ { ~} library-name] ... [ ON family-name 1 

[ [{

THROUGH} ]] 
FROM sequence-nwnber-l ~~RU sequence-nwnber-2 

REPLACING I 
= = pseudotext-l = = l 
identifier-l BY 

, literal-l 

word-l 

I 
= = pseudotext-2 = = l 
identifier-2 
literal-2 
word-2 

Explanation of Format 

. .. ~ [ !. ] 

The COpy statement must be preceded by a separator and ended by a period. (The use 
ofa separator other than a space immediately before a COpy statement is a Unisys 
extension). To comply with language standards, at least one space must be used as a 
separator immediately before a COpy statement. 

text-name 

Text-name specifies the external identification of a file in the COBOL library. 

library-name 

Library-name specifies the external identification of a directory-ID associated with the 
name of the COBOL library. Successive library-names specify parent directory-IDs; 
thus, a complete series of library-names represents the entire name. 

ON family-name (Unisys Extension) 

Family-name specifies the name of the family in which the library file resides. 

FR OM sequence number (Unisys Extension) 

THRU, THROUGH, and TO are synonyms. 

8600 0296-000 9-37 



PROCEDURE DIVISION Statements 

If the FROM phrase is specified, copying starts at the sequence number specified. If 
the THRU phrase is specified, copying continues until that sequence number has been 
copied. If the THRU phrase is not specified, copying continues to the end of the file. 

REPLACING 

If the REPLACING phrase is not specified, the library text is copied unchanged. If the 
REPLACING phrase is specified, the library text is copied, and each properly matched 
occurrence of pseudotext-I, identifier-I, word-I, or literal-I in the library text is replaced 
by the corresponding pseudotext-2, identifier-2, word-2, or literal-2. The REPLACING 
phrase does not alter the source library itself, but changes the library text according to 
specifications in the calling program. After the REPLACING phrase is executed, the 
source listing contains the original library text. The source listing does not contain the 
results of the REPLACING phrase. 

Pseudotext is a sequence of text-words or comments bounded by two consecutive equal 
signs (= = ). This sequence specifically excludes partial words. Allowable separators 
in the pseudotext are commas (,), semicolons (;), and spaces; a nonnumeric literal can 
contain quotation marks ("). Pseudotext-I must not be null and cannot consist solely of 
spaces or comment lines. Pseudotext-2 can be null. 

Character strings within pseudotext-I and pseudotext-2 can be·continued. However, 
both characters of a pseudotext delimiter must be on the same line. 

Word-! or word-2 can be any single COBOL word, including a COBOL reserved word. 

For purposes of matching, identifier-I, word-I, and literal-! are treated as pseudotext 
containing only identifier-I, word-I, or literal-I, respectively. 

The comparison operation to determine text replacement occurs in the following 
manner: 

• Any separator comma, semicolon, or space preceding the leftmost library text-word 
is copied into the source program. Starting with the leftmost library text-word and 
the first pseudotext-!, identifier-I, word-I, or literal-! specified in the REPLACING 
phrase, the entire REPLACING phrase operand that precedes the reserved word BY 
is compared to an equivalent number of contiguous library text-words. 

• Pseudotext-!, identifier-I, word-I, or literal-! match the library text only if the . 
ordered sequence of text-words that forms pseudotext-!, identifier-I, word-I, 
or literal-! is equal, character for character, to the ordered sequence of library 
text-words. 

For purposes of matching, each occurrence of a separator comma or semicolon 
in pseudotext-1 or in the library text is considered to be a single space, except 
when pseudotext-! consists solely of either a comma or a semicolon. In that case, 
pseudotext-! participates in the match as a text-word. Each sequence of one or 
more space separators is considered to be a single space. 

• If no match occurs, the comparison is repeated with each successive pseudotext-I, 
identifier-I, word-I, or literal-I, ifany, in the REPLACING phrase until either a 
match is found or no REPLACING operand remains. . 

9-38 86000296-000 



PROCEDURE DIVISION Statements 

When all REPLACING phrase operands have been compared and no match has 
occurred, the leftmost library text-word is copied into the source program. The next 
successive library text-word is then considered to be the leftmost library text-word, 
and the comparison cycle starts again with the first pseudotext-I, identifier-I, 
word-I, or literal-I specified in the REPLACING phrase. 

Whenever a match occurs between pseudotext-I, identifier-I, word-I, or literal-I and 
the library text, the corresponding pseudotext-2, identifier-2, word-2, or literal-2 
is placed in the source program. The library text-word immediately following 
the rightmost text-word that participates in the match is then considered to be 
the leftmost library text-word. The comparison cycle starts again with the first 
pseudotext-I, identifier-I, word-I, or literal-I specified in the REPLACING phrase. 

• The comparison operation continues until the rightmost text-word in the library 
text has either participated in a match or has been considered as a leftmost library 
text-word and participated in a complete comparison cycle. 

For matching, a comment line occurring in the library text andin pseudotext-I is 
interpreted as a single space. Comment lines appearing in pseudotext-2 and library text 
are copied into the source program unchanged. 

Debugging lines are permitted in library text and pseudotext-2. Debugging lines are not 
permitted in pseudotext-I; text-words in a debugging line participate in the matching 
rules as if the letter D did not appear in the indicator area. If a COpy statement 
is specified on a debugging line, the text that results from the processing of the 
COPY statement appears as if it were specified on debugging lines, with the following 
exception: comment lines in library text appear as comment lines in the resultant source 
program. 

After replacement, text-words are placed in the source program for compilation 
according to the rules for reference format. 

semicolon (i) (Unisys Extension) 

The semicolon (;) that follows the ending period can be used to control the behavior of 
compiler control records (CCRs) and the format of listings. This semicolon should always 
be separated from the ending period of the COPY statement by at least one space. 

If a CCR immediately follows a COpy statement, the compiler option changes might 
occur before the compiler processes the included source information. This situation can 
be avoided by using the semicolon after the ending period. The semicolon ensures that 
the compiler processes the included source information before the option changes. 

When a compilation listing is produced, a comment immediately following'a COPY 
statement might be printed after the COpy statement but before the information 
included as a result of the COPY statement. If a semicolon is placed after the ending 
period but before the comment entry, the comment is printed after the included source 
information. 

Use the optional semicolon with caution. In some cases, the compiler may recognize the 
optional semicolon. In other cases, the compiler may prohibit the use of the semicolon. 
In the latter cases, the semicolon may not produce the desired listing format and even 

8600 0296--000 9-39 



PROCEDURE DIVISION Statements 

produce syntax errors. In such cases, use the semicolon as a tool in determining whether 
errors can be eliminated. 

In general, the semicolon can produce undesirable listing formats in the following cases: 

• Multiple COpy statements follow each other with no intervening syntax. 

• COpy statements have semicolons. 

• The last element in the library that is the subject of a COpy statement is a 
PICTURE string that ends with one or more 9s followed by a period terminating the 
DATA declaration. 

If the last statement of a COBOL 74 program is a COpy statement, do not use a 
semicolon with that statement. The last syntax element ofa COBOL74 program 
must always be a period that terminates the last statement or paragraph-name of the 
program. 

Examples 

The following examples represent different ways of incorporating (SYSTEM)A/B/C ON 
SYSP ACK into the program. 

COpy II (SYSTEM)A/B/C ON SYSPACK. II
• 

COpy C OF B OF A OF (SYSTEM) ON SYSPACK. 

DELETE 
The DELETE statement logically removes a record from a mass-storage file. 

The general format of this statement is as follows: 

DELETE file-name RECORD [ ; INVALID KEY imperative-statement] 

9-40 

Explanation of Format 

The file-name must be a relative or an indexed file. 

The imperative-statement can be the NEXT SENTENCE phrase. 

For a file in the sequential access mode, the last I/O statement executed prior to 
execution of the DELETE statement must have been a successfully executed READ 
statement. The record accessed by the READ statement is deleted from the file. 

For a file in random or dynamic access mode, the record to be deleted is identified by the 
contents of the relative or prime record key data item associated with the file-name. If 
the file does not contain the record specified by the key, an Invalid Key condition exists. 

8600 0296-000 



PROCEDURE DIVISION Statements 

The file must be open in the I -0 mode when this statement is executed. 

After the successful execution of a DELETE statement, the identified record that is 
logically removed from the file can no longer be accessed. 

The execution of a DELETE statement does not affect the contents of the record area 
associated with the file-name, nor does it affect the current record pointer. 

However, the execution of the DELETE statement causes the appropriate FILE 
STATUS data item, if any, to be updated. 

DETACH (Unisys Extension) 
The DETACH statement dissociates a procedure from a task item or an EVENT item. 

The general format of this statement is as follows: 

DETACH identifier-! [ , identifier-2 ] ... 

Explanation of Format 

Identifiers used in this statement must be defined as either elementary task items or 
section-names in the DECLARATIVES SECTION with a USE AS INTERRUPT clause. 

If a task item is being detached, it must previously have been implicitly attached by 
the execution of a CALL, PROCESS, or RUN statement. The successful execution of 
a statement terminates the task that was attached to the task-identifier of the task 
and was running, because the STATUS attribute was set to TERMINATED. After 
execution of the DETACH statement, the task-identifier should be tested for STATUS 
of TERMINATED prior to the next use of that task-identifier in a CALL, PROCESS, 
or RUN statement, because execution of the program that contained the DETACH 
statement continues asynchronously while the detachment is performed. 

Execution ofaDETACH section-name statement severs the association of that interrupt 
procedure with its currently attached event. Detaching an interrupt procedure that is 
not attached to an event does not cause an error. Executions of the interrupt procedure, 
which might have been queued at the time of the detachment, do not occur. 

The Allowed or Disallowed condition of the interrupt procedure is not changed by a 
DETACH statement. If the interrupt is subsequently attached, the condition is the same 
as it was before the DETACH statement. 

8600 0296-000 9-41 



( 

PROCEDURE DIVISION Statements 

See Also 

• For information about executing an interrupt procedure that has been attached to an 
EVENT item, refer to "ALLOW (Unisys Extension)" earlier in this section. 

• For information about associating an interrupt procedure with an EVENT item, 
refer to " ATTACH (U nisys Extension)" earlier in this section. 

• For information about preventing execution of an interrupt procedure that has been 
attached to an event, refer to "DISALLOW" earlier in this section. 

• For information about specifying procedures for I/O exception handling, refer to 
"USE" later in this section. 

DISALLOW 
The DISALLOW statement prevents execution of an interrupt procedure that has been 
attached to an event. 

The DISALLOW statement has the following two formats: 

Format 

1 

2 

Format 1 

Explanation 

Enables you to specify the interrupt prqcedures that are not to be executed 

Causes a General Disallow Interrupt condition 

DISALLOW section-name-l [ ,section-name-2 ] ... 

Explanation of Format 1 

The section-names specify the interrupt procedures that are not to be executed 
when their attached events occur. The sections named must be defined in the 
DECLARATIVES SECTION with the USE AS INTERRUPT clause in their headers. 
The section-names must be allowed when the DISALLOW statement is executed. 

Format 2 

DISALLOW INTERRUPT 

9-42 

Explanation of Format 2 

The DISALLOW INTERRUPT statement causes a General Disallow Interrupt condition. 
During the time the General Disallow Interrupt condition is in effect, execution of an 

8600 0296--000 



PROCEDURE DIVISION Statements 

interrupt procedure that is attached to an event is queued when the event is caused. 
Later execution of an ALLOW INTERRUPT statement immediately executes any 
queued procedures that are not currently disallowed because of a specific DIB.ALLOW 
section-name statement. 

General Rules 

Mter execution of a DISALLOW section-name statement, the system queues executions 
of the specified interrupt procedures because of the events being caused. Their 
execution can later be caused by a corresponding ALLOW section-name statement unless 
a General Disallow Interrupt condition is in effect. The current state of the General 
Disallow Interrupt condition does not affect whether an interrupt is specifically allowed 
or disallowed. 

See Also 

• For information about executing an interrupt procedure that has been attached to an 
EVENT item, refer to "ALLOW (Unisys Extension)" earlier in this section. 

• For info:rmation about associating an interrupt procedure with an EVENT· item, 
refer to "ATTACH (Unisys Extension)" earlier in this section. 

• For information about preventing execution of an interrupt procedure that has been 
attached to an event, refer to "DISALLOW" earlier in this section. 

• For information about dissociating a procedure from a task item or an EVENT item, 
refer to "DETACH (Unisys Extension)" earlier in this section. 

• For information about specifying procedures for I/O exception handling, refer to 
"USE" later in this section. 

DISPLAY 
The DISPLAY statement transfers data to an operator display terminal (ODT). 

The general format of this statement is as follows: 

DISPLAY {i~entifier-l} [, lli·~ena1tifier-2l ... [ UPON mnemonic-name] 
literal-l , ter -2 

Explanation of Format 

The DISPLAY statement causes the contents of each operand to be transferred in the 
order listed. 

If a figurative constant is specified as one of the operands, only a single occurrence of the 
figurative constant is displayed. 

8600 0296-000 9-43 



PROCEDURE DIVISION Statements 

Each literal can be any figurative constant except ALL. 

When a DISPLAY statement contains more than one operand, the size of the sending 
item is the sum of the sizes associated with the operands, and the values of the operands 
are transferred in the sequence in which the operands are encountered. In a Unisys 
extension, if the data transferred does not fit on one line, carriage returns and line feeds 
are supplied so that the data is extended to other lines of print. 

If the UPON phrase is not ~sed, the device used is the ODT. 

The mnemonic-name is associated with a hardware device in the SPECIAL-NAMES 
paragraph in the ENVIRONMENT DMSION and must be associated with the 
hardware-name ODT. 

The operating system, when processing a DISPLAY statement, stops at the first null 
(hex 00). The operating system initializes data areas to all nulls. Therefore, if a FILLER 
item without a VALUE clause is present in a group item being displayed, the display 
ends with this item. (This is a Unisys extension.) 

DIVIDE 

9-44 

The DIVIDE statement divides one numeric data item into others and sets the values of 
data items equal to the quotient and remainder. 

The DIVIDE statement has the following five formats: 

Format 

1 

2 

3 

4 

5 

Explanation 

The DIVIDE ... INTO format enables you to divide a numeric operand into another 
numeric operand and to store the result in the second operand. 

The DIVIDE ... INTO ... GIVING format enables you to divide a numeric operand into 
another numeric operand and to specify a place to store the result. 

The DIVIDE ... BY ... GIVING format enables you to divide a numeric operand by 
another numeric operand and to specify a place to store the result. 

The DIVIDE ... INTO ... GIVING ... REMAINDER format enables you to divide a 
numeric operand into another numeric operand and to specify a place to store the 
result and the remainder. 

The DIVIDE ... By' .. GIVING ... REMAINDER format enables you to divide a numeric 
operand by another numeric operand and to specify a place to store the result. 

8600 0296-000 



PROCEDURE DIVISION Statements 

Format 1 

DIVIDE {identifier-l} INTO identifier-2 [ ROUNDED] 
literal-l --

[identifier-3 [ROUNDED] ] ... 

[ ; ON SIZE ERROR imperative-statement] 

Explanation of Format 1 

When Format 1 is used, the value of identifier-lor literal-l is divided into the value of 
identifier-2. The value of the dividend (identifier-2) is replaced by this quotient; the 
process is then repeated for identifier-lor literal-l and identifier-3, and so on. 

Each identifier must refer to an elementary numeric item. 

Each literal must be a numeric literal. 

The imperative-statement can be the NEXT SENTENCE phrase. 

Format 2 

DMDE {identifier-l} INTO {identifier-2} GMNG identifier-3 [ROUNDED] 
literal-l -- literal-2 

[ ,identifier-4 [ROUNDED] ] ... 

[ ; ON SIZE ERROR imperative-statement] 

Explanation of Format 2 

When Format 2 is used, the value of identifier-lor literal-l is divided into identifier-2 or 
literal-2, and the result is stored in identifier-3, identifier-4, and so on. 

Each identifier must refer to an elementary numeric item, except that any identifier 
associated with the GMNG phrase must refer to either an elementary numeric item or 
an elementary numeric-edited item. 

8600 0296-000 9-45 



PROCEDURE DIVISION Statements 

Each literal must be a numeric literal. 

The imperative-statement can be the NEXT SENTENCE phrase. 

Format 3 

DIVIDE {identifier-I} BY {identifier-2} GIVING identifier-3 [ROUNDED] 
literal-l - literal-2 

[, identifier-4 [ROUNDED] ] ... 

[ ; ON SIZE ERROR imperative-statement] 

Explanation of Format 3 

When Format 3 is used, the value of identifier-lor literal-l is divided by the value of 
identifier-2 or literal-2, and the result is stored in identifier-3, identifier-4, and so on. 

Each identifier must refer to an elementary numeric item, except that any identifier 
associated with the GIVING phrase must refer to either an elementary numeric item or 
an elementary numeric-edited item. 

Each literal must be a numeric literal. 

The imperative-statement can be the NEXT SENTENCE phrase. 

Format 4 

DIVIDE {identifier-I} INTO {identifier-2} GIVING identifier-3 [ROUNDED] 
literal-l -- literal-2 

REMAINDER identifier-4 [ ; ON SIZE ERROR imperative-statement] 

9-46 86000296-000 



PROCEDURE DIVISION Statements 

Format 5 

DMDE {identifier-l} BY {identifier-2} GMNG identifier-3 [ROUNDED] 
literal-l - literal-2 

REMAINDER identifier-4 [ ; ON SIZE ERROR imperative-statement] 

Explanation of Format 4 and 5 

Formats 4 and 5 are used when a remainder from the division operation is desired, 
namely identifier-4. The remainder in COBOL is defined as the result of subtracting the 
product of the quotient (identifier-3) and the divisor from the dividend. If identifier-3 
is defined as a numeric-edited item, the quotient used to calculate the remainder is an 
intermediate field that contains the unedited quotient. If the word ROUNDED is used, 
the quotient used to calculate the remainder is an intermediate field that contains the 
quotient of the DMDE statement in truncated rather than rounded form. 

In Formats 4 and 5, the accuracy of the REMAINDER data item (identifier-4) is defined 
by the preceding calculation. Appropriate decimal alignment and truncation (not 
rounding) are performed for the content of the data item referenced by identifier-4, as 
needed. 

Each identifier must refer to an elementary numeric item, except that any identifier 
associated with the GMNG or REMAINDER phrase must refer to either an elementary 
numeric item or an elementary numeric-edited item. 

Each literal must be a numeric literal. 

The imperative-statement can be the NEXT SENTENCE phrase. 

When the ON SIZE ERROR phrase is used in Formats 4 and 5, the following rules apply: 

• If the Size Error condition occurs on the quotient, no remainder calculation is 
meaningful. Thus, the contents of the data items referenced by both identifier-3 and 
identifier-4 remain unchanged. 

• If the Size Error condition occurs on the remainder, the contents of the data item 
referenced by identifier-4 remain unchanged. 

General Rules 

The following information applies to all formats. 

When a sending item and a receiving item in the same DMDE statement share a part, 
but not all, of their storage areas, the result of the statement execution is undefined. 

86000296-000 9-47 



PROCEDURE DIVISION Statements 

See Also 

• For a description of the features common to the arithmetic statements, refer 
to "Common Rules for Arithmetic Statements" in Section 8, "PROCEDURE 
DIVISION Concepts." 

• For information on producing multiple results with one arithmetic statement, refer 
to "Calculating Multiple Results with One Arithmetic Statement" in Section 8, 
"PROCEDURE DIVISION Concepts." 

• For information about rounding of arithmetic result fields, refer to "ROUNDED. 
Phrase" in Section 8, "PROCEDURE DMSION Concepts." 

• For information on Size Error conditions, refer to " SIZE ERROR Phrase" in 
Section 8, "PROCEDURE DIVISION Concepts." 

EXECUTE (Unisys Extension) 

EXIT 

The EXECUTE statement is synonymous with the RUN statement. 

See Also 

For information about this statement, refer to "RUN (U nisys Extension)" later in this 
section. 

The EXIT statement allows you to end a series, section of paragraphs, exit from a bound 
procedure or called program, or bypass statements. 

The EXIT statement has the following four formats: 

Format 

1 

2 

3 

4 

Format 1 

Explanation 

Ends a series of sections or paragraphs referenced by a PERFORM statement 

Enables you to exit from a bound procedure 

Ena bles you to exit from a ca /led progra m 

Ena bles you to bypass statements 

EXIT. 

9-48 86000296-000 



PROCEDURE DIVISION Statements 

Explanation of Format ;I. 

The EXIT statement provides a common method for documenting the logical endpoint 
for a series of sections or paragraphs that can be executed under the control of a 
PERFORM statement. 

The EXIT statement must appear in a sentence by itself and must be the only sentence 
in the paragraph. 

A simple EXIT statement only assigns a procedure-name to a given point in a program 
and has no effect on execution of the program. 

Format 2 (Unisys Extension) 

EXIT PROCEDURE. 

Explanation of Format 2 

The EXIT PROCEDURE statement provides a mechanism for returning from a bound 
procedure. 

If a Format 2 statement appears in a consecutive sequence of imperative statements 
within a sentence, it must appear as the last statement in that sequence. If the program 
in which it appears is not a bound procedure, then the EXIT PROCEDURE statement is 
synonymous with the STOP RUN statement. 

The EXIT P:ROCEDURE statement should be used only for procedures compiled 
at level 3 or higher. If the procedure has been processed or called as a coroutine, 
end-of-task (EOT) occurs for that stack. If the procedure has been called as a procedure, 
normal exit routines transfer control back to the statement following the procedure 
invocation in the calling program. 

An implicit EXIT PROCEDURE statement is compiled for all procedures compiled at 
level 3 or higher. The EXIT PROCEDURE statement need not be used when it would be 
the final statement in the procedure. 

Format 3 (Unisys Extension) 

EXIT PROGRAM [ RETURN HERE] . 

8600 0296-000 9-49 



PROCEDURE DIVISION Statements 

Explanation of Format 3 

An EXIT PROGRAM statement is designed to be used to return from a program that is 
under control of a CALL statement. 

If an EXIT PROGRAM statement is executed while a program is under control of a 
tasking CALL statement, then control returns to the statement following the CALL 
statement in the calling program. If a subsequent CONTINUE statement is executed 
for the same program, control passes to the first logically executable statement in the 
called program . 

. The EXIT PROGRAM statement and RETURN HERE option provide a mechanism for 
passing control between a dependent task and its initiating program. 

If a Format 3 statement without the RETURN HERE phrase appears in a consecutive 
sequence of imperative statements within a sentence, it must be the last statement in 
that sequence. 

An EXIT PROGRAM RETURN HERE statement cannot appear in a bound procedure. 

When the EXIT PROGRAM RETURN HERE statement is used and a CONTINUE 
statement is executed on the same program, control passes to the statement 
immediately following the EXIT statement. 

Format 4 (Unisys Extension) 

EXIT PERFORM. 

9-50 

Explanation of Format 4 

The EXIT PERFORM statement provides a way to bypass the remainder of a 
PERFORM statement range .. 

If the program is under control of a PERFORM statement when the EXIT PERFORM 
statement is encountered, any remaining statements in the PERFORM statement range 
are bypassed. If an EXIT PERFORM statement is executed when no PERFORM 
statement is active, control passes to the next statement. 

See Also 

For information on returning control from a library to a calling program, refer to 
"Exiting a Library" in Section 15, "Libraries." 

8600 0296-000 



PROCEDURE DIVISION Statements 

GO TO 
The GO TO statement explicitly transfers control to another procedure. 

The GO TO statement has the following two formats: 

Format Explanation 

1 The GO TO format transfers control from one part of the PROCEDURE DIVISION 
to another. 

2 The GO TO ... DEPENDING ON format transfers control from one part of the 
PROCEDURE DIVISION to another, depending on the value of a specified integer 
identifier. 

Format 1 

GO TO [procedure-name-l] 

Explanation of Format 1 

When a GO TO statement executes, control transfers to procedure-name-l or to another 
procedure-name if the GO TO statement has been modified by an ALTER statement. 

Ifprocedure-name-l is not specified, an ALTER statement referring to this GO TO 
statement must be executed prior to the execution of this GO TO statement. Otherwise, 
the program terminates abnormally. 

When a paragraph is referenced by an ALTER statement, that paragraph can consist of 
only a paragraph header followed by a Format 1 GO TO statement. 

A Format 1 GO TO statement without procedure-name-l can appear only in a 
single-statement paragraph. 

If a GO TO statement appears in a consecutive sequence of imperative statements 
within a sentence, it must be the last statement in that sequence. 

Format 2 

GO TO procedure-name-l, procedure-name-2 [ , procedure-name-n] ... 

DEPENDING ON identifier 

8600 0296-000 9-51 



PROCEDURE DIVISION Statements 

IF 

Explanation of Format 2 

When a GO TO statement executes, control transfers to procedure-name-!, 
procedure-name-2, and so on, depending on whether the value of the identifier is !, 2, or 
another integer value. If the value of the identifier is anything other than a positive or 
unsigned integer, no transfer occurs and control passes to the next statement. 

The identifier is the name of an elementary numeric item that describes an integer. It 
cannot be a formula or another expression. 

The IF statement evaluates a condition. The subsequent action of the object program 
depends on whether the value of the condition is TRUE or FALSE. 

The general format of this statement is as follows: 

.'. {statement-l } [ {statement-2 } 1 
IF condition; THEN NEXT SENTENCE ; ELSE NEXT SENTENCE 

Explanation of Format 

Statement-! and statement-2 represent either an imperative statement or a conditional 
statement; either type of statement can be followed by a conditional statement. 

When an IF statement is executed, the following transfers of control occur: 

• If the condition is TRUE, statement-! is executed if specified. If statement-! 
contains a procedure branching statement or conditional statement, control is 
explicitly transferred under the rules of that statement. If statement-! does not 
contain a procedure branching or conditional statement, the specified ELSE phrase 
is ignored and control passes to the next executable sentence. 

• If the condition is TRUE and the NEXT SENTENCE phrase is specified instead of 
statement-l!, the specified ELSE phrase is ignored and control passes to the next 
executable sentence. 

• If the condition is FALSE, statement-! or its alternative, NEXT SENTENCE, is 
ignored; statement-2, if specified, is executed. If statement-2 contains a procedure 
branching or conditional statement, control is explicitly transferred under the 
rules of that statement. If statement-2 does not contain a procedure branching or 
conditional statement, control passes to the next executable sentence. If the ELSE 
statement-2 phrase is not specified, statement-! is ignored and control passes to the 
next executable sentence. . 

• If the condition is FALSE and the ELSE NEXT SENTENCE phrase is specified, 
statement-! is ignored, if specified, and control passes to the next executable 
sentence. 

9-52 8600 0296-000 



PROCEDURE DIVISION Statements 

Statement-l, statement-2, or both can each contain an IF statement. In this case, the IF 
statement is nested. 

IF statements within IF statements can be considered paired IF and ELSE 
combinations, proceeding from left to right. Thus, any ELSE statement encountered 
applies to the immediately-preceding IF statement that has not been already paired with 
an ELSE statement. 

See Also 

For information about conditions, refer to "Conditional Statements and Sentences" in 
Section 8, "PROCEDURE DIVISION Concepts." 

INSPECT 
The INSPECT statement tallies, replaces, or tallies and replaces occurrences of single 
characters or groups of characters in a data item. 

When a sending item and a receiving item in the same INSPECT statement share a 
part, but not all, of their storage areas, the result of the execution of the statement is 
undefined. 

The INSPECT statement has the following three formats: 

Format 

1 

2 

3 

Format 1 

Explanation 

The INSPECT. .. TALLYING format tallies single characters or groups of characters. 

The INSPECT...REPLACING format replaces single characters or groups of 
characters. 

The INSPECT. .. TALLYING and REPLACING format tallies and replaces single 
characters or groups of characters; this format combines Formats 1 and 2. 

INSPECT identifier-l TALLYING 

, identifier-2 

, {{~ADING} {~~:::r-3}} 
CHARACTERS 

[ {
BEFORE} INITIAL {identifier-l}] 
AFTER literal-2 

8600 0296-000 9-53 



PROCEDURE DIVISION Statements 

9-54 

Explanation of Format 1 

Note: Unpredictable results can occur ifidentifier-l is longer than 4095 
bytes or if anyone of identifier-3 through identifier-n is longer than 
255 bytes. This is a permanent restriction. Avoid programs that 
violate it. 

identifier -1 . 

Identifier-l must reference either a group item or any category of elementary data item 
described implicitly or explicitly as USAGE IS DISPLAY. 

identifier ·2 

Identifier-2 must reference an elementary numeric data item. 

The contents of the data item referenced by identifier-2 are ~ot initialized by execution 
of the INSPECT statement. 

ALL 

If the ALL phrase is specified, the contents of the data item referenced by identifier-2 
are incremented by one for each occurrence of literal-l matched within the contents of 
the data item referenced by identifier-l. 

LEADING 

If the LEADING phrase is specified, the contents of the data item referenced by 
identifier-2 are incremented by one for each contiguous occurrence ofliteral-l matched 
within the contents of the data item referenced by identifier-l. The leftmost such 
occurrence must be at the point where comparison began in the first comparison cycle in 
which literal-l was eligible to participate. 

CHARACTERS 

If the CHARACTERS phrase is specified, the contents of the data item referenced by 
identifier-2 are incremented by one for each character matched within the contents of 
the data item referenced by identifier-l. 

identifier-3 

Identifier-3 through identifier-n must reference elementary alphabetic, alphanumeric, or 
numeric items described implicitly or explicitly as USAGE IS DISPLAY. 

Iiteral-l, Iiteral-2 

If either literal-lor literal-2 is a figurative constant, the figurative constant refers to an 
implicit, one-character data item. 

8600 0296-000 



PROCEDURE DIVISION Statements 

Each literal must be nonnumeric and can be any figurative constant except ALL. 

See Also 

For information on the BEFORE and AFTER phrases,see "Establishing BOWldaries for 
the BEFORE or AFTER Phrase" later in this section. 

Format 2 

INSPECT identifier-l REPLACING 

CHARACTERS BY { identifier-6 } 
literal-4 

[ {. 
BEFORE } INITIAL·{ identifier-7 } 1 
AFTER literal-5 

I ALL I ' { i~entifier-5 } BY { i~entifier-6 } II 
' { =ING } lirr=~ } :;;:4 g~;~~:r-7 } 1 -- - .--

Explanation of Format 2 

Note: . Unpredictable results can occur ifidentifier-l is longer than 4095 
bytes or if anyone ofidentifier-3 through identifier-n is longer than 
255 bytes. This is a permanent restriction. Avoid programs that 
violate it. 

identifier-! 

Identifier-! must reference either a group item or any category of elementary data item 
described implicitly or explicitly as USAGE IS DISPLAY. 

identifler-5 

Identifier-5 through identifier-n must reference elementary alphabetic, alphanumeric, or 
numeric items described implicitly or explicitly as USAGE IS DISPLAY. 

CHARACTERS 

When the CHARACTERS phrase is used, literal-4, literal-5, or the size of the data item 
referenced by identifier-6 or identifier-7 must be 1 character long. Each character 
matched in the contents of the data item referenced by identifier-! is replaced by 
literal-4. . 

8600 0296-000 9-55 



PROCEDURE DIVISION Statements 

9-56 

Iiteral-4 and identifier-6 

The size of the data referenced by literal-4 or identifier-6 must equal the size of the data 
referenced by literal-3 or identifier-5. When a figurative constant is used as literal-4, the 
size of the figurative constant equals the size of literal-3 or the size of the data item 
referenced by identifier-5. 

Iiteral-3 

When a figurative constant is used as literal-3, the data referenced by literal-4 or 
identifier-6 must be ! character long. 

Each literal must be nonnumeric and can be any figurative constant except ALL. 

ALL 

When the adjective ALL is specified, each occurrence of literal-3 matched in the contents 
of the data item referenced by identifier-! is replaced by literal-4. 

LEADING 

When the adjective LEADING is specified, each contiguous occurrence ofliteral-3 
matched in the contents of the data item referenced by identifier-! is replaced by 
literal-4, provided that the leftmost occurrence is at the point where comparison began in 
the first comparison cycle in which literal-3 was eligible to participate. 

FIRST 

When the adjective FIRST is specified, the leftmost occurrence of literal-3 matched in 
the contents of the data item referenced by identifier-l is replaced by literal-4. 

BY 

The required words ALL, LEADING, and FmST ~e adjectives that apply to each 
succeeding BY phrase until the next adjective appears. 

Format 3 

A Format 3 INSPECT statement is interpreted and executed as if two successive 
INSPECT statements specifying the same identifier-l were written. One statement is a 
Format 1 statement with TALLYING phrases identical to those specified in the Format 
3 statement; the other statement is a Format 2 statement with REPLACING phrases' 
identical to those specified in the Format 3 statement. The rules for matching and 
counting apply to the Format 1 statement; the rules for matching and replacing apply to 
the Format 2 statement. 

8600 0296-000 



PROCEDU RE DIVISION Statements 

INSPECT identifier-! TALLYING 

, identifier-2 

, {{~ADING} {~~:~~:r-3}} 
CHARACTERS 

[ {
BEFORE} INITIAL {identifier-l}] 
AFTER literal-2 

REPLACING 

CHARACTERS BY { identifier-6 } 
literal-4 

[ { 
BEFORE} INITIAL { identifier-7 } ] 
AFTER literal-5 

1 
ALL '1 ' { i~entffier-5 } BY { i~entffier-6 } II 

' { =ING } lit[er{al~~FORE } IN:;:4{ i~entifier-7 } ] . . . . .. 
AFTER literal-5 . 

Explanation of Format 3 

Note: Unpredictable results can occur if identifier-l is Zonger than 4095 
bytes or if anyone of identifier-3 through identifier-n is longer than 
255 bytes. This is a permanent restriction. Avoid programs that 
violate it. 

Identifier-! must reference either a group item or any category of elementary data item 
described implicitly or explicitly as USAGE IS DISPLAY. 

Identifier-2 must reference an elementary numeric data item. 

Identifier-3 through identifier-n must reference elementary alphabetic, alphanumeric, or 
numeric items described implicitly or explicitly as USAGE IS DISPLAY. 

If either literal-! or literal-2 is a figurative constant, the figurative constant refers to an 
implicit, l-character data item. 

The size of the data referenced by identifier-6 or literal-4 must equal the size of the data 
referenced by identifier-5 or literal-3. When a figurative constant is used as literal-4, the 

8600 0296-000 . 9-57 



PROCEDURE DIVISION Statements 

size of the figurative constant equals the size of literal-3 or the size of the data item 
referenced by identifier-5. 

When the CHARACTERS phrase is used, literal-4, literal-5, or the size of the data item 
referenced by identifier-6 or identifier-7 must be I-character long. 

When a figurative constant is used as literal-3, the data referenced by literal-4 or 
identifier-6 must be one character long. 

Each literal must be nonnumeric and can be any figurative constant except ALL. 

Note that with undigit literals each pair of hexadecimal digits corresponds to one 8-bit 
character. (U ndigit literals are a U nisys extension.) 

Inspection 

The process of inspection has the following three stages: 

• The comparison cycle 

• The mechanism for tallying, replacing, or both tallying and replacing 

• The establishment of boundaries for the BEFORE or AFTER phrase 

Inspection begins at the leftmost character position of the data item referenced by 
identifier-I, regardless of its class, and proceeds from left to right to the rightmost 
character position. 

Comparison Cycle 

All references to identifier-! also apply to identifier-3, identifier-4, identifier-5, 
identifier-6, and identifier-7. 

All references to literal-I, literal-2, literal-3, literal-4, and literal-5 also apply to the 
contents of the data item referenced by identifier-3, identifier-4, identifier-5, identifier-6, 
and identifier-7, respectively. 

The INSPECT state~ent treats the contents of the data item referenced by identifier-! 
as follows: 

• If identifier-! is described as alphanumeric, the INSPECT statement treats the 
contents of each such identifier as a character string. 

• If identifier-! is described as alphanumeric-edited, numeric-edited, or unsigned 
numeric, the INSPECT statement inspects the data item as if it were redefined 
as alphanumeric and as if the INSPECT statement were written to reference the 
redefined data item. 

• If identifier-! is described as signed numeric, the INSPECT statement inspects the 
data item as if it had been moved to an unsigned numeric data item of the same 
length, and as if the INSPECT statement were . written to reference the redefined 
data item. . 

9-58 8600 0296-000 



PROCEDURE DIVISION Statements 

Tallying and Replacing 

During inspection of the contents of the data item referenced by identifier-I, each 
properly matched occurrence of literal-I is tallied (Formats I and 3), and/or each 
properly matched occurrence ofliteral-3 is replaced by literal-4 (Formats 2 and 3). 

The comparison cycle, which determines the occurrences of literal-I to be tallied and the 
occurrences of literal-3 to be replaced, occurs as follows: 

• The operands of the TALLYING and REPLACING phrases are considered in the 
order in which they are specified in the INSPECT statement from left to right. The 
first literal-l/literal-3 is compared with an equal number of contiguous characters, 
starting with the leftmost character position in the data item referenced by 
identifier-I. Literal-I!literal-3 and the portion of the contents of identifier-I match 
only if they are equal on a character-for-character basis. 

• If no match occurs in the comparison of the first literal-l/literal-3, the comparison is 
repeated with each successive literal-I!literal-3, if any, until either a match is found 
or no subsequent literal-l/literal-3 remains. When no subsequent literal-I!literal-3 
remains, the character position in identifier-I immediately to the right of the 
leftmost character position in the last comparison. cycle is considered as the 
leftmost character position, and the comparison cycle begins again with the first 
literal-l/literal-3. 

• Whenever a match occurs, tallying, replacing, or both occurs. The character position 
in identifier-I immediately to the right of the rightmost character position that 
participated in the match is now considered to be the leftmost character position of 
the data item referenced by identifier-I, and the comparison cycle starts again with 
the first literal-l/literal-3. 

• The comparison operation continues until·'the rightmost character position of 
identifier-I has participated in a match or has been considered as the leftmost 
character position. When this situation occurs, inspection is terminated. 

• If the CHARACTERS phrase is specified, an implied, I-character operand 
participates in the cycle previously described, except that no comparison with the 
contents of identifier-I takes place. This implied character is always considered 
to match the leftmost character of the contents of the data item referenced by 
identifier-I. 

See Also 

For a description of move operations, refer to "MOVE" later in this section. 

8600 0296-000 9-59 



PROCEDURE DIVISION Statements 

Establishing Boundaries for the BEFORE or AFTER Phrase 

The comparison operation defined earlier is performed by the BEFORE and AFTER 
phrases as follows: 

• If the BEFORE or AFTER phrase is not specified, literal-l/literal-3 or the impJ,ied 
operand of the CHARACTERS phrase participates in the comparison cycle. 

• If the BEFORE phrase is specified, literal-l/literal-3 or the implied operand of the 
CHARACTERS phrase participates only in comparison cycles that involve the 
contents of identifier-l from its leftmost character position up to, but not including, 
the first occurrence ofliteral-2/literal-5 within the contents of identifier-I. The 
position of the first occurrence is determined before the beginning of the first cycle of 
the comparison operation. 

If, on any comparison cycle, literal-l/literal-3 or the implied operand of the 
CHARACTERS phrase is not eligible to participate, this variable does not match 
the contents ofidentifier-l. Ifliteral-2/literal-5 does not occur within the contents 
of identifier-I, then literal-l/literal-3 or the implied operand of the CHARACTERS 
phrase participates in the comparison operation as if the BEFORE phrase had not 
been specified. 

• If the AFTER phrase is specified, literal-l/literal-3.or the implied operand of the 
CHARACTERS phrase can participate only in comparison cycles that involve the 
contents of identifier-l beginning with the character position immediately to the 
right of the rightmost character position of the first occurrence ofliteral-2/literal-5 
within the contents of identifier-I. The position of this first occurrence is 
det~rmined before the beginning of the first cycle of the comparison operation. 

If, on any comparison cycle, literal-l/1iteral-3 or the implied operand of the 
CHARACTERS phrase is not eligible to participate, it is considered not to match the 
contents ofidentifier-l. Ifliteral-2/literal-5 does not occur within the contents of 
identifier-I, literal-l/literal-3 or the implied operand of the CHARACTERS phrase is 
never eligible to participate in the comparison operation. 

Examples of the INSPECT Statement 

9-60 

Examples 9-11 through 9-18 illustrate the use of the INSPECT statement. 

Example 9-11 counts the number of leading zeros in the specified word. 

INSPECT word TALLYING count FOR LEADING "0". 

Word 

00009876 

12345 

Count 

4 

o 

Example 9-11. Coding an INSPECT TALLYING Statement with LEADING Option 

86000296-000 



PROCEDU RE DIVISION Statements 

Example 9-12 counts the number of characters before the first Z character. 

INSPECT word TALLYING count FOR CHARACTERS BEFORE INITIAL"Z". 

Word 

ALPHA 

ABCDEFZ 

Count 

5. 

6 

Example 9-12. Coding an ~NSPECT TALLYING Statement with BEFORE INITIAL 
Option 

Example 9-13 counts the number of characters that occur before the first A character 
and counts the number of A characters followed immediately by an L character. 

INSPECT word TALLYING count FOR LEADING "L" BEFORE INITIAL 
"A", count-l FOR LEADING "A" BEFORE INITIAL "L". 

Word 

LARGE 

ANALYST 

First Count 

1 

o 

Second Count 

o 
1 

Example 9-13. Coding an INSPECT TALLYING Statement with LEADING BEFORE 
Option 

Example 9-14 counts the number of L letters; and replaces an A with an E if the A 
occurs after the first L. 

INSPECT word TALLYING count FOR ALL II L", REPLACING LEADING 
II A" BY II P AFTER INITIAL II L" ~ 

Word Before 

DOLLAR 

SALAMI 

LATTER 

Count 

2 

1 

1 

Word After 

DOLLAR 

SALEMI 

LETTER 

Example 9-14. Coding an INSPECT TALLYING Statement with FOR ALL REPLACING 
Option 

Example 9-15 replaces all occurrences of the character A with the character G until all 
occurrences of the character X are inspected. 

INSPECT word REPLACING ALL "A" BY "G" BEFORE INITIAL II X" • 

Word Before 

ARXAX 

HANDAX 

Word After 

GRXAX 

HGNDGX 

Example 9-15. Coding an INSPECT REPLACING ALL Statement with BEFORE 
INITIAL Option 

8600 0296-000 9-61 



PROCEDURE DIVISION Statements 

Example 9-16 counts the number of characters after the first J character, and replaces 
all occurrences of the letter A by the letter B. 

INSPECT word TALLYING count FOR CHARACTERS AFTER INITIAL IIJII 
REPLACING ALL "AII BY IIBII. 

Before 

ADJECTIVE 

JACK 

JUJMAB 

Count 

6 

3 

5 

Word After 

. BDJECTIVE 

JBCK 

JUJMBB 

Example 9-16. Coding an INSPECT TALLYING REPLACING Statement 

Example 9-17 replaces X with Y, B with Z, and W with Q for all character after the first 
R character. 

INSPECT word REPLACING ALL "X" BY lIylI, "B" BY "l II , IIW" BY "Q" 
AFTER INITIAL II R" • 

Word Before 

RXXBQMY 

YlACDWBR 

RAWRXEB 

Word After 

RYYlQQY 

YZACDWZR 

RAQRYEZ 

Example 9-17. Coding an INSPECT ... REPLACING Statement with Literals 

Example 9-18 replaces all character with the letter B until an A character is inspected. 

INSPECT word REPLACING CHARACTERS BY "B" BEFORE INITIAL "A". 

Word Before 

12XZABCD 

Word After 

BBBBABCD 

Example 9-18.· Coding an INSPECT ... REPLACING CHARACTERS Statement 

LOCK (Unisys Extension) 

The LOCK statement is used in an asynchronous processing environment. This 
statement enables one process to deny related processes access to a particular common 
storage area until the process has unlocked that area. It also permits a process to test a 
common storage area for a locked condition. 

The general format for this statement is as follows: 

LOCK {lock-identifier } [. AT LOCKED {statement } 1 
-- event-identifier ' NEXT SENTENCE 

9-62 8600 0296-000 



PROCEDURE DIVISION Statements 

Explanation of Format 

Lock-identifiers must be declared with USAGE IS LOCK. 

Event-identifiers must be declared with USAGE IS EVENT or must be event-valued 
task attributes. 

If the AT LOCKED option is specified and the lock-name or event-name is already locked 
when the LOCK statement is executed, control passes to the statement following the 
AT LOCKED phrase. If AT LOCKED is not specified, the LOCK statement continues 
to try the operation until the LOCK has been successfully completed, that is, until the 
lock-name or event-name has been unlocked from other processes. . 

The locking or unlocking of lock-identifier or event-identifier invokes the PROCURE 
and LIBERATE functions of the operating system and provides priority handling, thus 
eliminating contention problems. 

See Also 

For informat~on about releasing restrictions on common resources, refer to "UNLOCK 
(U nisys Extension)" later in this section. 

8600 0296-000 9-63 



PROCEDURE DIVISION Statements 

MERGE 
The MERGE statement combines two or more files by using a set of specified keys and, 
during this process, makes records available in merged order·in an output procedure or 
an output file. 

The general format for this statement is as follows: 

MERGEfile-name-l [ {:~GE} ON ERROR ] 

{ 
ASCENDING } 

ON DESCENDING KEY data-name-l [ , data-name-2 ] ... 

[ { 
ASCENDING } ] 

ON DESCENDING KEY data-name-3 [ , data-name-4 ] ... 

[ COLLATING SEQUENCE IS alphabet-name] 

USING file-name-2 [ { ~E } ] ,file-name-3 [ { ~E } ] 
RELEASE RELEASE 

[ ,file-name-4 [ { :E } ] ] ... 

OUTPUT PROCEDURE IS section-name-l [{ =UGH } section-name-2] 

SAVE 

GMNG file-name-5 

9-64 

LOCK 
RELEASE 
NO REWIND 
CRUNCH 

8600 0296-000 



PROCEDURE DIVISION Statements 

Explanation of Format 

MERGE 

The MERGE statement merges all records contained on file-name-2, file-name-3, and 
file-name-4. The files referenced in the MERGE statement must not be open when the 
MERGE statement is executed; they are automatically opened and closed by the merge 
operation. The terminating function for all files is performed as if a CLOSE statement 
without optional phrases were executed for each file. 

MERGE statements can appear anywhere except in the DECLARATIVES SECTION 
of the PROCEDURE DMSION or in an INPUT PROCEDURE or an OUTPUT 
PROCEDURE associated with a SORT or MERGE statement. 

file-names 

File-name-! must be described in a sort-merge file-description entry in the DATA 
DMSION.File-name-2, file-name-3, file-name-4, and file-name-5 must be described 
in a file-description entry that is not a sort-merge file-description entry in the DATA 
DMSION. The size of the largest logical records described for file-name-2, file-name-3, 
file-name-4, and file-name-5 must be equal to the size of the largest logical records· 
described for file-name-!. 

When the records in the files referenced by file-name-2, file-name-3, and so on are 
not ordered as described in the ASCENDING or DESCENDING KEY clauses, the 
merge operation takes place as previously described except that all improperly ordered 
data records are placed in the output file or returned to the OUTPUT PROCEDURE 
immediately after they are read from their respective input files. As a result, when such 
a condition exists, the output from the MERGE statement is not in a strict ASCENDING 
or DESCENDING KEY order. (This paragraph is a Unisys extension.) 

No more than one file-name from a multiple-file reel can appear in the MERGE 
statement. 

File-names must not be repeated in the MERGE statement. 

ON ERROR (Unisys Extension) 

The ON ERROR option enables you to have control over irrecoverable parity errors 
when an OUTPUT PROCEDURE is not present in a program. The PURGE option 
causes all records in a block containing an irrecoverable parity error to be dropped; 
processing is continued after a system message giving the relative position in the file 
of the bad block is printed. The RUN option causes the bad block to be used by the 
program and provides the same message as that defined for the PURGE option. The 
END option causes termination and is assumed if no option is specified. 

8600 0296-000 9-65 



PROCEDURE DIVISION Statements 

9-66 

ASCENDI NG or DESCENDI NG 

The data-names following the word KEY are listed from left to right in the MERGE 
statement in order of decreasing significance and without regard to their division into 
KEY phrases. In the format, data-name,;.l is the major key, data-name-2 is the next most 

/ significant key, and so forth. 

• When the ASCENDING phrase is specified, the merged sequence is from the 
lowest value of the contents of the data items identified by the KEY data.;names to 
the highest value, according to the rules for comparison of operands in a relation 
condition. 

• When the DESCENDING phrase is specified, the merged sequence is from the 
highest value of the contents of the data items identified by the KEY data-names to 
the lowest value, according to the rules for comparison of operands in a relation 
condition. 

data-names 

Data-name-l, data-name-2, data-name-3, and data-name-4 are KEY data-names and are 
subject to the following rules: 

• The data items identified by KEY data-names must be described in records 
associated with file-name-1. 

• KEY data-names can be qualified. 

• The data items identified by KEY data-names must not be variable-length items. 

• Iffile-name-l has more than one record description, all the data items identified 
by KEY data-names can be described in one of the record descriptions or in any 
combination of record descriptions. The KEY data-names in each record description 
need not be described again. 

• N one of the data items identified by KEY data-names can be described by an entry 
that either contains an OCCURS clause or is subordinate to an entry that contains 
an OCCURS clause. 

COLLATING SEQUENCE 

The collating sequence that applies to the comparison of the specified nonnumeric KEY 
data items is determined in the following order of precedence: 

1. The collating sequence established by the COLLATING SEQUENCE phrase, if 
specified, in that MERGE statement 

2. The collating sequence established as the program-collating sequence 

USING (Unisys Extension) 

As many as eight file-names can be specified in the USING clause. 

The LOCK, PURGE, and RELEASE options can be used to specify the type of file close 
operation for the USING files, file-name-2, file-name-3, file-name-4, and so forth. 

8600 0296-000 



PROCEDURE DIVISION Statements 

OUTPUT PROCEDURE 

The OUTPUT PROCEDURE clause must consist of one or more paragraphs or 
sections that appear contiguously in a source program and do not form a part of any 
other procedure. To make merged records available for processing, the OUTPUT 
PROCEDURE clause must include execution of at least one RETURN statement. 
Control must not be passed to the OUTPUT PROCEDURE clause except when a related 
SORT or MERGE statement is being executed. The OUTPUT PROCEDURE clause can 
consist of any procedures needed to select, modify, or copy the records being returned 
one at a time in merged order from file-name-I. The restrictions on the procedural 
statements in the OUTPUT PROCEDURE clause are as follows: 

• The .oUTPUT PROCEDURE clause must not contain any transfers of control to 
points outside the output procedure. ALTER, GO TO, and PERFORM statements in 
the OUTPUT PROCEDURE clause cannot refer to procedure-names outside the 
output procedure. COBOL statements are allowed that cause an implied transfer of 
control to declaratives. 

• The OUTPUT PROCEDURE clause must not contain any SORT or MERGE 
statements. 

• The remainder of the PROCEDURE DMSION must not contain any transfers of 
control to points inside the output procedures. ALTER, GO TO, and PERFORM 
statements in the remainder of the PROCEDURE DMSION cannot refer to 
procedure-names in the output procedures. 

If an OUTPUT PROCEDURE clause is specified, control passes to it during execution 
of the MERGE statement. The compiler inserts a return mechanism at the end 

. of the output procedure. When control passes to the last statement in the output 
procedure, the return mechanism ends the merge operation and passes control to the 
next.executable statement after the MERGE statement. Before entering the output 
procedure, the merge procedure reaches a point at which it can select the next record in 
merged order when requested. The RETURN statements in the output procedure are 
the requests for the next record. 

GIVING 

If the GIVING phrase is specified, all merged records in file-name-l are automatically 
written on file-name-5. 

section-name-l and section-name-2 

Section-name-l and section-name-2 represents the names of OUTPUT PROCEDURE 
clauses .. 

THRU and THROUGH 

The words THRU and THROUGH are equivalent. They indicate a range of OUTPUT 
PROCEDURE clauses. 

8600 0296-000 9-67 



PROCEDURE DIVISION Statements 

SAVE, LOCK, RELEASE, NO REWIND. and CRUNCH 

The SAVE, LOCK, RELEASE, NO REWIND, and CRUNCH options can be used to 
specify the type of file close operation for the GIVING file-name-5 phrase. 

See Also 

For information on closing files, refer to "CLOSE" earlier in this section. 

MOVE 
The MOVE statement transfers data to one or more receiving data items. 

When a sending item and a receiving item in the same MOVE statement share a part, 
but not all, of their storage areas, the result of the statement execution is undefined. 

The MOVE statement has the following three formats: 

Format 

1 

2 

3 

Format 1 

Explanation 

This format transfers data to one or more data areas. 

The MOVE CORRESPONDING format transfers selected items in identifier-l to 
selected items in identifier-2. This format transfers items having the same name 
as an item in the receiving field to that corresponding field. 

This format transfers selected bit ranges between two BINARY data items. 

MOVE {i~entifier-l } TO identifier-2 [ , identifier-3 ] ... 
literal-l 

9-68 

Explanation of Format 1 

Identifier-l and literal-l represent the sending area. 

The data designated by literal-lor identifier-l are moved first to identifier-2, then 
to identifier-3, and so on. The rules referring to identifier-2 also apply to the other 
receiving areas. Any subscripting or indexing associated with identifier-2, identifier-3, 
and so forth is evaluated immediately before the data is moved to the respective data 
item. 

An index data item cannot appear as an operand of a MOVE statement. 

Any MOVE statement in which the sending and receiving items are both elementary 
items is considered an elementary move operation. Every elementary item belongs to 
one of the following categories: numeric, alphabetic, alphanumeric, numeric-edited, 

8600 0296-000 



PROCEDURE DIVISION Statements 

alphanumeric-edited, Kanji, or Kanji-edited. These categories are determined by the 
PICTURE clause. Numeric literals belong to the category numeric; nonnumeric literals 
belong to the category alphanumeric. The figurative constant ZERO belongs to the 
category numeric. The figurative constant SPACE belongs to the category alphabetic. 
All other figurative constants belong to the category alphanumeric. 

The following rules apply to an elementary move between these categories: 

• The figurative constant SPACE or a numeric-edited, an alphanumeric-edited, or an 
alphabetic data item must not be moved to a numeric or a numeric-edited data item. 

• A numeric literal, the figurative constant ZERO, a numeric data item, or a 
numeric-edited data item must not be moved to an alphabetic data item. 

• A noninteger numeric literal or a noninteger numeric data item must not be moved 
to an alphanumeric or an alphanumeric-edited data item. 

• An undigit literal must not be moved to a usage DISPLAY, numeric, numeric-edited, 
or alphanumeric-edited data item. Otherwise, subsequent operations on these items 
can be unpredictable. (Undigit literals are a Unisys extension.) 

• When moving the figurative constant ZERO to a BINARY item, the result is 
a numeric zero (all bits off). When moving the fig!J.rative constant ZERO to a 
COMPUTATIONAL or DISPLAY item, the result is EBCDIC zeros. 

• A Kanji data item or a Kanji-edited data item can be moved only to a Kanji data item 
or a Kanji-edited data item, respectively. All other items cannot be moved to a Kanji 
data item or a Kanji-edited data item. 

All other elementary moves are legal and are performed according to the rules given in 
the following paragraphs. 

Any necessary conversion of data from one form of internal representation to another 
takes place during legal elementary moveS along with any editing specified for the 
receiving data item, as follows: 

• When an alphanumeric-edited or an alphanumeric item is a receiving item, alignment 
by decimal point and any necessary zero-filling takes place according to the data 
alignment rules. If the size of the sending item is greater than the size of the 
receiving item, the excess characters are right-truncated after the receiving item is 
filled. 

If the sending item is described as signed numeric, the operational sign is not moved. 
If the operational sign occupies a separate character position, that character is not 
moved, and the size of the sending item is considered to be one less than its actual 
size (in terms of standard data format characters). 

8600 0296-000 .9-69 



PROCEDURE DIVISION Statements 

9-70 

• When a numeric or a numeric-edited item is the receiving item, alignment by decimal 
point and any necessary zero-filling take place according to data alignment rules, 
except where zeros are replaced because of editing requirements. 

When a signed numeric item is the receiving item, the sign of the sending item is 
placed in the receiving item. Conversion of the representation of the sign takes 
place as necessary. If the sending item is unsigned, a positive sign is generated 
for the receiving item. 

When an unsigned numeric item is the receiving item, the absolute value of the 
sending item is moved and no operational sign is generated for the receiving 
~~ " 

When an alphanumeric data item is the sending item, data is moved as if the 
sending item were described as an unsigned numeric integer. 

If any digits of a sending COMPUTATIONAL numeric item are greater than 9, 
they can be changed when moved from the source. If you wish to preserve these 
values, you must use nonnumeric moves. 

• When a receiving field is described as alphabetic, justification and any necessary 
space-filling take place according to data-alignment rules. If the size of th-e sending 
item" is greater than the size of the receiving item, the excess characters are 
right-truncated after the receiving item is filled. 

• If the receiving item has an associated TYPE clause, the clause contains the data 
formatted using the type, convention,and language declared for the item. If the 
item does not have an associated convention or language declared, the system 
determines the convention or language based on a default hierarchy. 

The sending item must be a nonnumeric literal or an identifier with the USAGE IS 
,DISPLAY clause. 

Any move operation that is not an elementary move is treated like an 
alphanumeric-to-alphanumeric elementary move. In such a move, the receiving area 
is filled without regard to the individual elementary or group items contained in 
either the sending or the receiving area. This rule applies regardless of the declared 
or implied usage of either the source or the destination field. A move operation 
in which either the source field or the destination field is a group item is thus 
unconditionally treated as a transfer of EBCDIC characters with EBCDIC space-fill if 
the source is shorter than the destination. 

It is important to note that when the source field is a group item and the destination 
field is an elementary COMPUTATIONAL item, or vice versa, and the source field 
is shorter than the destination field, the system performs space-fill by inserting 
single-digit zeros as needed, such that the EBCDIC spaces are always aligned on 
byte boundaries. 

In nonelementary moves, USAGE REAL elementary items are treated like 
6-character DISPLAY items, USAGE DOUBLE elementary items are treated like 
12-character DISPLAY items, USAGE BINARY items not longer than 11 digits are 
treated like 6-character DISPLAY items, and USAGE BINARY items longer than 11 
digits are treated like 12-character DISPLAY items. 

8600 0296-000 



PROCEDURE DIVISION Statements 

Table 9-9 summarizes the legality of the various types of MOVE statements. For 
example, a nwneric noninteger can be moved to a nwneric integer, a numeric noninteger, 
or a numeric-edited field. 

Table 9-9. Comparison of Sending and Receiving Items in MOVE Statements 

Category of Receiving Data Item 

Numeric Integer, 
Category of Alphanumeric Numeric Kanji and 
Sending Edited and Noninteger, and Kanji-
Data Item Alphabetic Alphanumeric Numeric-Edited Edited 

Alphabetic Yes Yes No No 

Alphanumeric Yes Yes Yes No 

AI pha n u meric- Yes Yes No No 
edited 

Numeric No Yes Yes No 
integer 

Numeric No No Yes No 
noninteger 

Numeric- No Yes No No 
edited 

Kanji No No No Yes 

Kanji- No No No Yes 
edited 

See Also 

• For a description of the way data is aligned in a receiving item, refer to "Aligning 
Data" in Section 6, "Data Concepts." 

• For information about the position and representation of the operational sign, refer 
to "SIGN Clause" in Section 7, "DATA DIVISION." 

Format 2 

MOVE ,{CORRESPONDING}·d ifi -1 TO ·d ifi-2 CORR 1 ent er _ 1 ent er 

8600 0296-000 9-71 



PROCEDURE DIVISION Statements 

Explanation of Format 2 

CORR is an abbreviation for CORRESPONDING. 

When the CORRESPONDING phrase is used, both identifiers must be group items. 

If the CORRESPONDING phrase is used, selected items in identifier-1 are moved to 
selected items in identifier-2, according to the rules for the CORRESPONDING phrase 
in Section 8. The'results are the same as if each pair of corresponding identifiers were 
referenced in separate MOVE statements. 

An index data item cannot appear as an operand of a MOVE statement. 

See Also 

Refer to "CORRESPONDING Phrase" in Section 8, "PROCEDURE DMSION 
Concepts," for information about corresponding move operations. 

Format 3 (Unisys Extension) 

MOVE identifier-4 TO identifier-5 

[ {literal-2 } 
- arithmetic-expression-1 

. {literal-3 . }. {literal-4 } ] 
!. arithmetic-expression-2 !. arithmetic-expression-3 -

9-72 

Explanation of Format 3 

Identifier-4 represents the sending area and identifier-5 represents the receiving area. 

An index data item cannot appear as an operand of a MOVE statement. 

Format 3 of the MOVE statement allows bit manipulation and character manipulation. 
The left and right brackets and the colons are required. The declarations of identifier-4 
and identifier-5 must be such that they are single-precision word-oriented items (either 
USAGE BINARY with fewer than 12 digits in the PICTURE clause, or USAGE REAL). 

A Format 3 MOVE statement moves bits from identifier-4 into identifier-5 with only 
the indicated bits ofidentifier-5 being changed. Literal-2 or arithmetic-expression-1 
represents the location in identifier-4 at which the transfer begins (that IS, the source 
bit position). Literal-3 or arithmetic-expression-2 represents the location in identifier-5 
at which the transfer begins (that is, the destination bit position). Literal-4 or 
arithmetic-expression-3 represents the number of bits to be transferred. 

8600 0296-000 



PROCEDURE DIVISION Statements 

The bits in a word-oriented numeric item are numbered 47 through 0, from left to right. 
Therefore, only 0 through 47 are valid numbers for source and destination bit positions. 

Note that the compiler ensures that unsigned USAGE BINARY items never have 
negative values when they are stored in memory. The compiler unconditionally resets 
the sign bit of an unsigned binary item before storing it. As a result, bit 46 of such an 
item is always reset in memory even if it is explicitly set by a Format 3 MOVE statement. 
It is therefore better to ensure that the program declares items referred to in Format 3 
MOVE statements either as signed USAGE BINARY items (an S appears in the 
PICTURE clause) or as USAGE REAL items. 

Examples of Format 3 

The following statements unpack a BINARY word that contains two 20-bit fields: 

MOVE A-AND-8-80TH TO A-ONLY [39:19:20]. 

MOVE A-AND-8-80TH TO 8-0NLY [19:19:20]. 

The following two statements repack the fields: 

MOVE 8-0NLY TO A-AND-8-80TH. 

MOVE A-ONLY TO A-AND-8-80TH [19:39:20]. 

MULTIPLY 
The MULTIPLY statement multiplies numeric data items and sets the values of data 
items equal to the results. 

The MULTIPLY statement has the following two formats: 

Format 

1 

2 

86000296-000 

Explanation 

Multiplies the value of identifier-l by the value of identifier-2, identifier-3, and so 
on. The product is stored in identifier-2, identifier-3, and so on. 

Multiplies the value of identifier-lor literal-l by the value of identifier-2 or 
Iiteral-2. The product is stored in identifier-3, identifier-4, and so on. 

9-73 



PROCEDURE DIVISION Statements 

Format 1 

MULTIPLy{i~entifier-l} BY identifier-2 [ ROUNDED]' 
literal-l 

[ , identifier-3 [ ROUNDED] ] ... 

[ ; ON SIZE ERROR imperative-statement] 

Explanation of Format 1 

When Format 1 is used, the value of identifier-lor literal-l is multiplied by the value of 
identifier-2. The value of the multiplier (identifier-2) is replaced by this product; this 
process is then repeated for identifier-l or literal-l aD:d for identifier-3, and so forth. 

Each literal must be a numeric literal. 

Each identifier must refer to a numeric elementary item. 

The imperative-statement can be the NEXT SENTENCE phrase. 

The composite, of operands (which is the hypothetical data item resulting from the 
superimposition of all receiving data items of a given statement aligned by their decimal 
points) must not contain more than 18 digits. 

Format 2 

MULTIPLY {identifier-I} BY {identifier-2} 
literal-l - literal-2 

GIVING identifier-3 [ROUNDED] [, identifier-4 [ROUNDED] ] ... 

[ ; ON SIZE ERROR imperative-statement] 

9-74 

Explanation of Format 2 

When Format 2 is used, the value of identifier-lor literal-l is multiplied by the value of 
identifier-2 or literal-2; the result is stored in identifier-3, identifier-4, and so forth. 

8600 0296-000 



OPEN 

PROCEDURE DIVISION Statements 

Each literal must be a numeric literal. 

Each identifier following the word GIVING must refer either to an elementary numeric 
item or to an elementary numeric-edited item. 

The composite of operands (which is the hypothetical data item resulting from the 
superimposition of all receiving data items of a given statement aligned by their decimal 
points) must not contain more than 18 digits. 

The imperative-statement can be the NEXT SENTENCE phrase. 

General Rules 

The following information applies to all the formats. 

When a sending item and a receiving item in the same MULTIPLY statement share 
a part, but not all, of their storage areas, the result of the statement execution is 
undefined. . 

Note that unpredictable results occur in a Format 1 MULTIPLY statement if the same 
operand appears more than once in the list of multiplicands that follows the word BY in 
the statement. For example, assuming X contains the value 9 and Y contains the value 2, 
the value of X is 18 rather than 72 after execution of the following statement: 

MULTIPLY Y BY X, X, X 

The OPEN statement makes a file available for processing. It does not affect the 
contents or availability of the record area of the file. The OPEN statement also specifies 
what kinds of I/O operations are allowed for that file. You might designate, for example, 
an input file to be read by the program and an output file to which records are written by 
the program. 

The OPEN statement has the following two formats: 

Format 

1 

2 

Explanation 

Opens a file for sequential, relative, and indexed I/O applications 

Opens a port file 

Format 1: Sequential, Relative, and Indexed I/O 

Format 1 is used for files with sequential, relative, and indexed organization. A 
sequential I/O operation is performed when a program acts on a sequential file, a relative 
I/O operation is performed when a program acts on a relative file, and an indexed I/O 
operation is performed when a program acts on an indexed file. For example,' a program 
randomly accessing a sequential file performs a sequential I/O operation, and a program 
sequentially accessing a relative file performs a relative I/O operation. 

8600 0296-000 9-75 



PROCEDURE DIVISION Statements 

The general format of this statement is as follows: 

[

REVERSED ] 
INPUT file-name-l WITH NO REWIND 

WITH~ 

[ [

REVERSED] ] 
, file-name-2 WITH NO REWIND 

WITH LOCK 

OUTPUT file-name-3 [WITH NO REWIND] 

OPEN [, file-name-4 [WITH NO REWIND] ] ... 

9-76 

1-0 file-name-5 [WITH LOCK] [, file-name-6 [WITH LOCK] ] ... 

EXTEND file-name-7 [WITH LOCK] 

[ , file-name-8 [ WITH LOCK] ] ... 

AVAILABLE EXTEND file-name-9 [WITH LOCK] 

[ ,file-name-IO [WITH LOCK] ] ... 

Note: The AVAILABLE EXTEND, EXTEND, NO REWIND, and 
REVERSED phrases apply only to sequential files. 

Explanation of Format 1 

The INPUT phrase .opens the file for reading only. The OPEN INPUT statement makes 
the file available for reading by positioning the current-record pointer at the first record 
in the file. The first read operation of an open file causes an At End condition if the file 
has no records or if it is an optional file that is not present. 

The OUTPUT phrase opens the file for writing only. A successful OPEN OUTPUT 
statement creates a new file, provided you have not previously closed and retained a file 
with the same name. 

The 1-0 phrase opens the file for both reading and writing. Because this phrase implies 
the existence of the file, you carmot use it to create a file. The OPEN 1-0 statement 
positions the current-record pointer at the first record present in the file. The first read 
operation of the file causes an At End condition if the file has no records. 

The EXTEND phrase opens a sequential file so that new records can be written to 
the end. The OPEN EXTEND statement positions the current-record pointer at the 
end of the file. Subsequent records that are written are added as if the file had been 
opened with the OPEN OUTPUT statement. You cannot use the EXTEND phrase with 
multiple-reel files. 

86000296-000 



PROCEDURE DIVISION Statements 

The AVAILABLE EXTEND phrase opens a sequential file so that new records can be 
written to the end of the file. If the file cannot be opened, the program is not suspended 
and operator intervention is not required. The program can determine the cause of the 
open failure by examining the value of the AVAILABLE file attribute. 

File-name-l through file-name-IO designate files that must be named in the SELECT 
clause and described in the INPUT-OUTPUT SECTION and FILE SECTION of your 
program. You can open files of differing organizations and access types with one OPEN 
statement. The REVERSED option designates that the sequential file is read in reverse 
order, beginning with the last record first. An OPEN INPUT REVERSED statement 
positions the current-record pointer at the end of the file. This statement is meaningful 
for sequential single-reel files, but is ignored if the statement does not apply to the 
storage medium on which the file resides. 

The NO REWIND option opens the sequential file without repositioning the 
current-record pointer. The OPEN INPUT WITH NO REWIND or OPEN OUTPUT 
WITH NO REWIND statements are meaningful for sequential files, but are ignored if 
these statements do not apply to the storage medium on which the file resides. The 
WITH NO REWIND phrase is useful for opening the next file on a multiple-file tape. 

The LOCK phrase opens the file if it is available. The WITH LOCK phrase is meaningful 
for mass-storage files; it is ignored for all other files. 

The LOCK operation works as follows: 

• If another program has already opened the file, the system suspends your program 
until the file is exclusively available. 

• If no program has opened the file, the file is opened. 

The LOCK phrase is· controlled by the EXCLUSIVE file attribute. When you open 
and lock a file using an OPEN WITH LOCK statement, the value of the EXCLUSIVE 
attribute becomes TRUE when the file is opened. If you close the file without retaining 
it, the value of the EXCLUSIVE attribute becomes FALSE when the file is closed. This . 
value ensures that other programs can access that file. 

U nisys recommends that you do not directly use the EXCLUSIVE file attribute because 
you might interfere with the lock mechanism and cause unexpected results in your 
program. 

General Rules 

You can open and close a file many times in a program by using any of the syntax options. 
To reopen a file after you open it initially, you must first close the file without specifying 
the REEL, UNIT, or LOCK phrase. 

Because the sort module has opening routines for files associated with the USING and 
the GIVING phrases of the SORT and MERGE statements, your program must not open 
these files with an OPEN statement. . 

8600 0296-000 9-77 



PROCEDURE DIVISION Statements 

Example 

Many programs open all files at the beginning of the PROCEDURE DMSION. Although 
you can use a separate OPEN statement for each file, typically you open many files with 
one OPEN statement. 

A sample of this type of OPEN statement is shown in Example 9-19. This example does 
the following operations: 

• Creates a file called GUEST-FOLIO 

• Opens two existing files,.ROOM-STATUS and RESERVATIONS, for update; allows 
no other programs to access these files while they are open 

• Opens the file ROOM -AVAIL for reading in reverse order 

• Opens the file CREDIT-CHARGE so that records can be added at the end of the file, 
and allows no other programs to access the file while it is open 

PROCEDURE DIVISION. 
OPEN-PARA. 

OPEN OUTPUT GUEST-FOLIO, 

See Also 

1-0 ROOM-STATUS WITH LOCK, RESERVATIONS WITH LOCK, 
INPUT ROOM-AVAIL REVERSED, 
AVAILABLE EXTEND CREDIT-CHARGE WITH LOCK. 

Example 9-19. Coding an OPEN Statement 

• For information about handling an At End condition that occurs during a read 
operation, refer to "READ" later in this section. 

• For information about the meanings of status code values, refer to "I/O Status" in 
Section 5, "ENVIRONMENT DIVISION." 

• For information about the AVAILABLE and EXCLUSIVE attributes, refer to the 
File Attributes Reference Manual. 

Open Modes 

9-78 

A successfully opened file is considered to be in an open mode. The open modes include 
INPUT, OUTPUT, 1-0, and EXTEND. These modes correspond to the phrases of 
the same name allowed for the OPEN statement. The type of open mode, the file 
organization, and the method of file access determine the I/O statements that are 
permitted in your program. 

8600 0296-000 



PROCEDURE DIVISION Statements 

Table 9-10 shows the I/O statements you can perform with each open mode and the 
method of file access for files with sequential organization. 

Table 9-10. I/O Statements Allowed for Open Files with Sequential Organization 

Open Mode Access Statements Allowed 

INPUT S,R READ 

OUTPUT S,R WRITE 

1-0 S READ, REWRITE 

R READ, WRITE, REWRITE 

EXTEND S WRITE 

Legend 
S Sequential 
R Random 

Table 9-11 shows the I/O statements you can use with each open mode and the method 
of file access for files with relative or indexed organization. 

Table 9-11. I/O Statements Allowed for Open Files with Relative or Indexed 
Organization 

Open Mode Access 

INPUT S,D 

R 

OUTPUT S, R,D 

1-0 S 

R 

Statements Allowed 

READ, START 

READ 

WRITE 

READ, REWRITE, START, DELETE 

READ, WRITE, REWRITE, DELETE 

D READ, WRITE, REWRITE, START, DELETE 

Legend 
S Sequential 
R Random 
D Dynamic 

Format 2: Opening Port Files (Unisys Extension) 

Before a dialogue can be established between two programs that communicate 
through a port file, each program must open a subfile. The system establishes the 
logical communication path between the two port files, provided that the connection 
descriptions of the two files match. Because the two programs run independently, one 
program cannot affect when the subfile of the other program is open. The OPEN 
statement for port files enables a program to request that a dialogue be established with 

86000296-000 9-79 



PROCEDURE DIVISION Statements 

9-80 

a correspondent endpoint ~thout the programming determining whether the subfile of 
the correspondent endpoint is open. 

The general format of this statement is as follows: 

1-0 {file-name-I} ... 

I~=~AIT) {file-name-2} ... 

WITH WAIT 

USING 

CONNECT-TIME-LIMIT 

OF {identifier-I} 
integer-I 

ASSOCIATED-DATA-LENGTH 

OF {identifier-2} 
integer-2 

ASSOCIATED-DATA 

OF {identifier-3} 
literal 

Explanation of Format 2 

The 1-0 phrase opens the file for both input and output operations. No further options 
can be specified. The WAIT option is the default control option. 

File-name-I can designate the port file to open. 

File-name-2 must designate the port file to open 

The OFFER phrase opens the port file and returns control to the program after you 
determine the availability of the host by using the YOURHOST file attribute. If the 
program specifies subfiles, the OPEN OFFER statement returns control to the program 
after the availability of the correspondent endpoint is determined for all subfiles. The 
dialogue is then established in parallel with the processing of the program. 

The AVAILABLE phrase opens a subfile that matches a subfile that has already been 
offered. If no subfile has been offered, the subfile remains closed and is not considered 
for subsequent matching. This phrase is the same as an OPEN WAIT statement with 
the AV AILABLEONLY file attribute set to TRUE. 

The NO WAIT phrase opens the port file and returns control to the program as soon as 
the OPEN NO WAIT statement is checked for correctness. The dialogue is established 
while the program continues processing. 

8600 0296-000 



PROCEDURE DIVISION Statements 

Note: Your program might be significantly delayed while the availability 
of the correspondent endpoint is determined. If this delay is 
undesirable, use the OPEN NO WAIT statement. 

The WAIT phrase opens the port file and suspends the program until either the dialogue 
is established or the open operation fails. If the program specifies subfiles, the OPEN 
WAIT statement suspends the program until the open operation on each subfile succeeds 
or fails. The OPEN WAIT statement is the default statement and is used if no OPEN 
statement option is specified in your program. 

The CONNECT-TIME-LIMIT option indicates the time in minutes that the system 
allows for establishing a dialogue. The open operation fails if a correspondent endpoint is 
not found in that amount of time. If you do not use the CONNECT-TIME-LIMIT phrase 
or if you specify a value of 0 (zero), the system allows an indefinite amount of time to 
establish a dialogue. An error results or if you specify a negative or noninteger value. 

The ASSOCIATED-DATA-LENGTH option specifies the number of characters of 
associated data to be sent. If you do not specify the length of the associated data and 
the associated data is a data item, your program uses the actual length of the data. If 
you do specify the length of the associated data, the length value must be less than or 
equal to the actual length of the data. An error results if the length specified is not a 
single-precision integer value. 

The ASSOCIATED-DATA option transfers data to the correspondent endpoint along 
with the open request for some types of networks. 

Identifier-! through identifier-3 designate elementary integer data items. Identifier-3 
can also designate a group data ite:rp.. 

Integer-! and integer-2 must be integer numeric literals. 

This literal specifies either a nonnumeric or hex literal. 

General Rules 

In addition to deciding the method of opening a subfile, you need to designate the 
subfiles to open. If you want to designate more than one subfile, make sure your 
program includes code to perform the following tasks: 

1. Specify the total number of subfiles in your program by using the CHANGE 
ATTRIBUTE MAXSUBFILES TO VALUE attribute-value statement. 

2. Specify the subfiles to open by using the SELECT port-file ASSIGN TO PORT; 
ACTUAL KEY IS subfile-num clause. 

3. Declare subfile-num and attribut~-value in the WORKING-STORAGE SECTION. 

8600 0296-000 9-81 



PROCEDURE DIVISION Statements 

9-82 

Table 9-12 shows how the value specified in the ACTUAL KEY clause determines which 
subfile is opened. 

Actual Key Value 

o 
Nonzero 

None 

Table 9-12. Designating Subfiles to Open 

Explanation 

Opens every closed subtile 

Opens the specified subtile 

Opens a single subtile 

Greater than the MAXSUBFILES 
value or a negative number 

Returns a BADSUBFILEINDEX run-time error in the 
SUBFILERROR attribute 

Examples 

In Examples 9-20 through 9-22, it is assumed that earlier in the program the port files 
were declared using an ACTUAL KEY clause to specify a subfile index and that the 
subfile index was set to a particular subfile. 

Example 9-20 opens port file PORTFILE1 and offers it for matching. The program is 
suspended until a matching subfile is found or until 10 minutes have elapsed. 

OPEN WAIT PORTFILE1 
USING CONNECT-TIME-LIMIT OF 10. 

Example 9-20. Coding an ()PEN WAIT Statement 

Example 9-21 opens port file PORTFILE1 with the control option set to OFFER. 
Control is returned to the program as soon as it is determined that the host can be 
reached. When a matching subfile is found, the information "MYDATA" is sent to the 
other process as associated data during the OPEN process. 

OPEN OFFER PORTFILE1 
ASSOCIATED-DATA OF "MYDATA". 

Example 9-21. Coding an OPEN 'OFFER Statement 

Example 9-22 offers port files PORTFILE1 and PORTFILE2 for matching. The NO 
WAIT option indicates that control is returned to the program as soon as the open 
process begins. Fourteen characters of information are sent to the other process 
as associated data with the connect request, beginning at the location pointed to by 
GROUP-ITEM. 

OPEN NO WAIT PORTFILE1 PORTFILE2 
USING ASSOCIATED-DATA OF GROUP-ITEM 

ASSOCIATED-DATA-LENGTH OF 14. 

Example 9-22. Coding an OPEN NO WAIT Statement 

8600 0296-000 



PROCEDU RE DIVISION Statements 

See Also 

• For information about another type of open operation used to establish a dialogue, 
refer to "AWAIT-OPEN (Unisys Extension)" earlier in this section. 

• For step-by-step information on coding port file applications, refer to the I/O 
Subsystem Programming Guide. 

• For references to file attributes, refer to the File Attributes Reference Manual. 

I/O Status Value 

The system returns a value that indicates the result of an OPEN statement. You can 
access this value by including a SELECT file-name FILE STATUS IS data-name clause 
in your program. The operating system moves a value into the designated data-name 
storage area after the program performs the OPEN statement. You can then use an IF 
statement to test the value of the data-name and take the desired action depending on 
the result. If you choose not to code an action for the result of an open operation, the 
system provides a default action for each result. 

If your program does not include either a FILE STATUS clause or an ERROR 
PROCEDURE clause in the DECLARATIVES SECTION for the file, the system aborts 
the program if the open operation is unsuccessful. . 

Table 9-13 shows the I/O status values and their meanings. 

Table 9-13. I/O Status Values for OPEN Statement 

Value Explanation 

00 Control was returned to the program after the OPEN statement completed 
correctly. In the case of a port file, the open operation might be pending. 

81 t An error was detected while the file was being opened. 

t Unisys extension 

PERFORM 
The PERFORM statement transfers control explicitly to one or more procedures and 
returns control implicitly whenever execution of the specified procedure is complete. 

The PERFORM statement has the following four formats: 

Format 

1 

2 

86000296-000 

Explanation 

Executes the specified procedures and then transfers control to the next 
instruction after the PERFORM statement. 

Executes procedures a specified number of times. 

continued 

9-83 



PROCEDURE DIVISION Statements 

continued 

Format 

3 

4 

Format 1 

Explanation 

Executes procedures until a specified condition is TRUE. 

Executes procedures repetitiv.ely, increasing or decreasing the value of a counter 
data item once for each repetition until one or more conditions are satisfied. The 
conditions that end the repetitions are tested before the procedures are executed. 

[{
THROUGH} 1 PERFORM procedure-name-l THRU procedure-name-2 

9-84 

Explanation of Format 1 

Format 1 is the basic PERFORM statement. A procedure referenced by this type of 
PERFORM statement is executed once, and control then passes to the next executable 
statement following the PERFORM statement. 

procedure-name-! THROUGH procedure-name-2 

When the PERFORM statement is executed, the program transfers control from 
the PERFORM statement to the first statement of the procedure named by 
procedure-name-!. This transfer occurs only once for each execution ofa PERFORM 
statement. The program transfers coritrol from the procedure to the next executable 
statement following the PERFORM statement, as follows: 

• Ifprocedure-name-l is a paragraph-name and procedure-name-2 is not specified, the 
program returns control after the last statement of procedure-name-!. 

• Ifprocedure-name-l is a section-name and procedure-name-2 is not specified, 
the program returns control after the last statement of the last paragraph in 
proc~dure-name-!. 

• If procedure-name-2 is specified and is a paragraph-name, the program returns 
control after the last statement of the paragraph. 

• Ifprocedure-name-2 is specified and is a section-name, then the program returns 
control after the last statement of the last paragraph in the section. 

When procedure-name-l and procedure-name-2 are both specified and one is the name 
of a procedure in the DECLARATIVES SECTION of the program, then both must be 
procedure-names in the same DECLARATIVES SECTION. 

No particular sequential relationship needs to exist between procedure-name-l 
and procedure-name-2. More than one logical path of program control through the 
performed range of procedures can exist. A common, though not required, method of . 

8600 0296-000 



PROCEDURE DIVISION Statements 

documenting the final paragraph of a performed range of procedures is through the use 
of the EXIT statement. 

An implicit return mechanism is established at the end of a performed range of 
procedures and is activated by the execution of a PERFORM statement. When program 
control reaches an active return mechanism, control returns to the activating PERFORM 
statement. A return mechanism permanently deactivates itself by transferring program 
control back to a PERFORM statement; an active return mechanism is temporarily 
deactivated by the execution of a PERFORM statement. Program control passes 
through a nonactive return mechanism to the next executable statement following the 
PERFORM range. This rule applies to all formats. 

A procedure executed under the control of a PERFORM statement can execute 
PERFORM statements. The range of procedures executed under the control of the 
nested PERFORM statement need not be declared totally within, or disjoint from, the 
range of procedures executed by the first PERFORM statement. The permanent 
deactivation of an active return mechanism causes the last return mechanism 
temporarily deactivated to become active again, allowing overlapping PERFORM ranges 
(two or more PERFORM ranges that have a common exit point) to logically execute in 
the same way as disjoint PERFORM ranges. 

Transfer of program control by means of a GO statement from a range of procedures 
being executed under control of a PERFORM statement does not cause the return 
mechanism to be deactivated. Subsequent transfer of program control back into the 
PERFORM range causes control to return to the PERFORM statement, provided that 
the return mechanism is still active. Repeated branching out of a PERFORM range 
without allowing control to reach the ending paragraph can cause the program to end 
with a STACK OVERFLOW fault. 

Note: A RELEASE statement in a SORT INPUT procedure and 
a RETURN statement in a SORT OUTPUT procedure will 
conditionally cause the program to terminate with an INVALID 
INDEX error if either statement is executed when the PERFORM 
statement nesting level is greater than 32. This is a permanent 
nesting-level restriction. 

When procedure-name-l and procedure-name-2 are both specified and one is the name 
of a procedure in the DECLARATIVES SECTION of the program, then both must be 
procedure-names in the same DECLARATIVES SECTION. 

The words THRU and THROUGH are equivalent. 

8600 0296-000 9-85 



PROCEDURE DIVISION Statements 

Format 2 

[{
THROUGH} ] PERFORM procedure-name-l THRU procedure-name-2 

{~dentifier-l} TIMES 
mteger-l 

Explanation of Format 2 

Format 2 is the PERFORM; .. TIMES variation. The procedures are performed the 
number of times specified by integer-lor by the initial value of the data item referenced 
by identifier-l for that execution. If, at the time of execution of a PERFORM statement, 
the value of the data item referenced by identifier-l is equal to 0 or is negative, then 
control passes to the next executable statement follo~ing the PERFORM statement. 
After the procedures have been executed the specified number of times, control is 
transferred to the next executable statement following the PERFORM statement. 

procedure-name-l THROUGH procedure-name-2 

Refer to the discussion ofprocedure-name-l THROUGH procedure-name-2 in Format 1 
of the PERFORM statement for information. 

TIMES 

Each identifier represents an elementary numeric item described in the DATA 
DIVISION. Identifier-l must be described as a numeric integer. 

During execution of the PERFORM statement, references to identifier-l cannot alter 
the number of times the procedures are to be executed as specified by the initial value of 
identifier-l. 

Format 3 

[{
THROUGH} 1 PERFORM procedure-name-l THRU procedure-name-2 

UNTIL condition-l 

9-86 8600 0296-000 



PROCEDURE DIVISION Statements 

Explanat~on of Format 3 

Format 3 is the PERFORM ... UNTIL variation. The specified procedures are performed 
until the condition specified by the UNTIL phrase is TRUE. When the condition is 
TRUE, control is transferred to the next executable statement after the PERFORM 
statement. If the condition is TRUE when the PERFORM statement is entered, no 
control transfer to procedure-name-l takes place, and control is passed to the next 
executable statement following the PERFORM statement. 

procedure-name-! THROUGH procedure-name-2 

Refer to the discussion ofprocedure-name-l THROUGH procedure-name-2 in Format 1 
of the PERFORM statement for information. 

UNTIL 

Condition-l can be any conditional expression described according to the rules for 
conditional expressions. 

Format 4 

[{
THROUGH} 1 PERFORM procedure-name-l . THRU procedure-name-2 

VARYING {~dentifier-2 } FROM index-name-2 
. . {identifier-3 } 

Index-name-l Ii all ter -

BY {identifier-4} UNTIL condition-l 
- Iiteral-2 . 

. . {identifier-6 } 
AFTER {~dentifier-5 } FROM index-name-4 

mdex-name-3 Ii al3 ter -

. 

BY' {identifier-7} UNTIL condition-2 
- Iiteral-4 

[ 

.. {identifier-9 } 
AFTER { ~dentifi~r-8 } FROM index-name-6 

mdex-name-5 Ii al 5 ter -

BY { identifier-lO } UNTIL condition-3 
- literal-6 -

8600 0296-000 9-87 



PROCEDURE DIVISION Statements 

Explanation of Format 4 

Format 4 is the PERFORM ... V ARYING variation. The values referenced by one or more 
identifiers or index-names are incremented or decremented in an orderly fashion during 
execution of a PERFORM statement 

In the following discussion, every reference to an identifier as the object of the 
VARYING, AFTER, and FROM (current value) phrases also refers to index-names. 

Condition-I, condition-2, and condition-3 can be any conditional expression described 
according to the rules for conditional expressions. 

Each identifier represents an elementary numeric item described in the DATA 
DIVISION. 

Each literal represents a numeric literal. 

procedure-name-l THROUGH procedure-name-2 

Refer to the discussion of procedure-name-l THROUGH procedure-name-2 in Format 1 
of the PERFORM statement for information. 

VARYING 

The VARYING phrase specifies a data item that tracks the iterations of the PERFORM 
statement. 

If an index-name is specified in the VARYING phrase, the following conditions apply: 

• The identifier in the associated FROM and BY phrases must be an integer data item. 

• The literal in the associated FROM phrase must be a positive integer. 

• The literal in the associated BY phrase must be a nonzero integer. 

If an index-name is specified in the VARYING or the AFTER phrase and an identifier is 
specified in the associated FROM phrase, then the data item referenced by the identifier 
must have a positive value. 

FROM 

The FROM phrase specifies the initial value of the tracking data item in the VARYING 
phrase. 

If an index-name is specified in the FRO~ phrase, the following conditions apply: 

• The identifier in the associated VARYING or AFTER phrase must be an integer data 
item. 

• The identifier in the associated BY phrase must be an integer data item. 

• The literal in the associated BY phrase must be a nonzero integer. 

9-88 8600 0296-000 



PROCEDURE DIVISION Statements 

If an index-name appears in a VARYING phrase, an AFTER phrase, or in both phrases; 
then the index-name is initialized and subsequently incremented (as described in the 
following paragraphs) according to the rules of the SET statement. 

When an index-name appears in. the FROM phrase and an identifier appears in an 
associated VARYING or AFTER phrase, the identifier is initialized according to the 
rules of the SET statement. Subsequent incrementation is explained in the flowchart 
descriptions in the text that follows. 

BY 

The BY phrase specifies the value by which the counter data item is incremented. 

UNTIL 

The UNTIL phrase indicates the condition to be tested that, if TRUE, ends the 
iterations of the PERFORM statement. 

AFTER ••• UNTIL 

The AFTER phrase specifies the next condition to be evaluated. 

If an index-name is specified in the AFTER phrase, the following conditions apply: 

• The identifier in the associated FROM atld BY phrases must be an integer data item. 

• The literal in the associated FROM phrase must be a positive integer. 

• The literal in the associated BY phrase must be a nonzero integer. 

Flowcharts 

Figure 9-1 shows the flowchart for the VARYING phrase with one condition. 

8600 0296-000 9~89 



PROCEDURE DIVISION Statements 

9-90 

Entrance 

Set 
identifier-2 

equal to 
current FROM value 

Execute 
procedure-name-l 

THRU 
procedure-name-2 

Increment 
identifier-2 

with 
current BY value 

TRUE 
I--------=__ Ex it 

Figure 9-1. Flowchart for the VARYING Phrase of a PERFORM Statement with One 
Condition 

When the PERFORM statement has one condition, the following sequence of events 
occurs: 

1. The program sets identifier-2 to the value established in the FROM phrase. 

2. The program evaluates condition-I. 

3. Ifcondition-l is TRUE when it is evaluated, the program transfers control to the 
next executable statement after the PERFORM statement. 

4. Ifcondition-l is FALSE, the program executes procedure-name-l and 
procedure-name-2. 

5. The program increments the value specified in the VARYING phrase by the value 
. designated in the BY phrase. 

Figure 9-2 shows the flowchart for the VARYING phrase with two conditions. 

8600 0296-000 



PROCEDURE DIVISION Statements 

Entrance 

+ 
Set 

identifier-2 
and 

identifier-5 
to 

current FROM values 

~ 
TRUE 

condition-l Exit 

~ FALSE 

TRUE 
- condition-2 

~ FALSE 

Execute 
procedure-name-l 

THRU 
procedure-name-2 

• Increment 
identifier-5 

- with 
current BY value 

Increment 
identifier-5 ...e--with 

current BY value 

~ 
Set 

identifier-5 
to 

current FROM value 

Figure 9-2. Flowchart for the VARYING Phrase of a PERFORM Statement with Two 
Conditions 

86000296-000 9-91 



PROCEDURE DIVISION Statements 

When the PERFORM statement has two conditions, the following sequence of events 
occurs: 

1. The program sets identifier-2 and any occurrences ofidentifier-5 to the value of the 
literal or the current value of the identifier in the associated FROM phrase. 

2. The program evaluates condition-I. 

3. If any condition other than the last one is FALSE when it is evaluated, the program 
evaluates the next condition immediately. 

If the last condition is FALSE when it is evaluated, the program executes 
procedure-name-l through procedure-name-2 once. Then, the program adds 
the last BY value to the associated identifier-2 or identifier-5, and evaluates the 
condition again. 

If condition-l is TRUE when it is evaluated, the program transfers control to the 
next executable statement after the PERFORM statement. If condition-l is TRUE 
the first time it is evaluated, the program does not evaluate the remaining conditions 
and does not execute procedure-name-l through procedure-name-2. 

If condition-2 is TRUE when it is evaluated, the program increments the identifier of 
the immediately preceding AFTER or VARYING phrase by the associated BY value, 
sets the associated identifier-5 to the value ofliteral-3 or to the current value of 
identifier-6 in the associated FROM phrase, and evaluates the condition specified in 
that preceding AFTER or VARYING phrase. 

See Also 

For information about identifying conditions, refer to "Conditional Expressions" in 
Section 8, "PROCEDURE DIVISION Concepts." 

PROCESS (Unisys Extension) 
The PROCESS statement initiates the parallel execution of another task. 

The format of the PROCESS statement is as follows: 

PROCESS task-identifier WITH section-name [USING actual-parameter-list] 

9-92 

Explanation of Format 

The PROCESS statement creates a dependent process as a separate task. Unlike the 
separate task started by a RUN statement, the task initiated by a PROCESS statement 
depends on the initiator. If the initiator ends before the termination of the dependent 
process, a critical block exit occurs. 

A dependent process must be bound to a host program if the dependent process contains 
data areas described with the GLOBAL or OWN clauses. A dependent process runs in 
its own stack. 

8600 0296-000 



READ 

PROCEDURE DIVISION Statements 

The syntax of the PROCESS statement is the same as the CALL statement format 
that initiates a task. The difference is that the CALL statement initiates serial (or 
synchronous) processing of another program, while the PROCESS statement initiates 
parallel (or asynchronous) processing. 

The actual-parameter-list must consist of a series of data items, task items, and 
expressions, optionally separated by commas. Arithmetic expressions can be passed 
as variables, and certain kinds of variables can be passed (received) by reference. As 
a general rule, the kind of actual parameter must not conflict with the corresponding 
formal parameter. 

See Also 

For an additional explanation of the syntax; refer to "CALL" earlier in this section. 

The READ statement reads one record from a file on an input device and stores it in 
a record storage area associated with the file-name. You must first open a file in the 
INPUT or 1-0 mode before you can read from it. If the read operation is successful, the 
data is available in the record storage area. 

For sequential access, the READ statement makes the next logical record from a file 
available. For random access, the READ statement makes a specified record available 
from a mass-storage file. 

The execution of the READ statement causes the value of any FILE STATUS data item 
associated with the file-name to be updated. 

When the logical records of a file are described with more than one record description, 
these records automatically share the same record storage area. This sharing is 
equivalent to an implicit redefinition of the area. The contents of any data items that are 
beyond the range of the current data record are undefined after the READ statement is 
executed. 

The READ statement has the following five formats: 

Format 

1 

2 

3 

4 

5 

Explanation 

Reads the next record of any file in sequential access mode, regardless of 
orga n ization. 

Reads a record in random or dynamic access mode when the record is retrieved 
randomly. 

Reads relative or indexed files in dynamic access mode. 

Reads indexed files in random access mode, or reads files in dynamic access 
mode when records are retrieved randomly. 

Reads a formlibrary. Refer to Volume 2 for more information. 

8600 0296-000 9-93 



PROCEDURE DIVISION Statements 

Format 1: Sequential Access 

The READ statement make the next record available as follows: 

• If the open operation positions the current-record pointer, the record indicated by 
the current-record pointer is made available. 

• If a read operation positions the current-record pointer, the current-record pointer is 
updated to point to the next record in the file and that record is made available. 

If the position of the current-record pointer for that file is undefined for a read 
operation, the read operation is unsuccessful. 

If the end of a reel or a unit is recognized during execution of a READ statement and the 
logical end of the file has not been reached, the following operations are executed: 

• For an indexed file being sequentially accessed, records with the same duplicate 
value in an alternate record key (the key of reference) are made available in the 
same order they would be in if they were executed with WRITE or REWRITE 
statements that create such duplicate values. 

• If the ACTUAL KEY or RELATIVE KEY phrase is specified for a sequential or a 
relative organization file with sequential access mode, the execution of a READ 
statement updates the contents of the ACTUAL KEY or RELATIVE KEY data item 
to the ordinal number of the logical record accessed. However, if an At End condition 
is reached, the contents of the ACTUAL KEY phrase are not changed. 

The format for sequential access is as follows: 

READ file-name RECORD [WITH NO WArT] [INTO identifier] 

[ ; AT END imperative-statement] 

9-94 

Explanation of Format 1 

Format 1 is used for all files in sequential access mode, regardless of organization. 

WITH NO WAIT (Unisys Extension) 

The WITH NO WAIT phrase can be specified only for port files. 

A READ statement causes the program to wait until a logical record is available. For 
port files, you can prevent the possibility of this suspension by specifying the WITH NO 
WArT phrase. A status key value of 94 indicates that no logical record was available for 
the read operation. ( 

8600 0296-000 



PROCEDURE DIVISION Statements 

If you declare an ACTUAL KEY clause for a port file, you are responsible for updating 
the ACTUAL KEY value with an appropriate subfile index. If the ACTUAL KEY value is 
not 0 (zero), a read operation from the specified subfile is performed. If the ACTUAL 
KEY value is 0 (zero), a nonselective read operation is performed and the ACTUAL KEY 
value is updated to indicate the subfile index of the subfile that was read. 

For a nonselective read operation, the first logical record to arrive at a subfile in the 
port file is returned as the data for the READ statement. The subfile to be read is 
determined by the operating system, and no specific selection algorithm is guaranteed. 
However, no subfile is read continuously at the expense of the other subfiles. 

If you do not declare an ACTUAL KEY clause for the port file, the file must contain a 
single subfile and that subfile is read. 

INTO 

If the INTO phrase is specified, the record being read is moved from the record area to 
the area specified by the identifier. The move takes place according to the ru1es specified 
for the MOVE statement. The sending area is considered to be a group item equal in 
size to the maximum record size for this file. The implied MOVE statement does not 
occur if the read operation was unsuccessfu1. Any subscripting or indexing associated 
with the identifier is evaluated after the record is read· and immediately before the 
record is moved to the data item. 

When the INTO phrase is used, the record being read is available in both the input 
record area and the data area associated with the identifier. The record storage area 
associated with the identifier and the record storage area associated with file-name must 
not be the same record storage area. 

AT END 

When the At End condition occurs, the read operation is unsuccessfu1. The following 
actions occur in the order specified: 

1. The system places a value in the FILE STATUS data item (if specified for this file) 
to indicate an At End condition. 

2. If the program specifies an AT END phrase in the statement that causes the 
condition, the program transfers control to the associated imperative-statement. 
The program cannot execute any USE procedure specified for this file. 

3. If the program does not specify an AT END phrase and does specify a USE 
procedure, the program executes that procedure. If the program does not specify a 
USE procedure, the program ends. 

A READ statement with an AT END phrase transfers control to the imperative
statement in the AT END phrase if the READ statement is exe~uted after an At 
End condition has been recognized but before.a successful CLOSE statement and a 
successful OPEN statement have been executed for the file. (The ability to read a 
record after the At End condition has been reached and the repeated execution of the 
imperative-statement in the AT END phrase of such READ statements are Unisys 
extensions) . 

8600 0296-000 9-95 



PROCEDU RE DIVISION Statements 

If an optional file is not present when the file is opened, the read operation is 
unsuccessful. The At End condition occurs at execution of the first READ statement for 
the file. The standard end-of-file procedures are not performed. 

The imperative-statement can be the NEXT SENTENCE phrase. 

Format 2: Random Access of Relative or Indexed Files 

For random access of relative files, the execution of a Format 2 READ statement 
accesses the record specified by the contents of the ACTUAL KEY data item or 
RELATIVE KEY data item. If, on execution of a Format 2 READ statement, the 
contents of the ACTUAL KEY data item or RELATIVE KEY data item are less than 
one or greater than the ordinal number of the last record written to the file, the READ 
statement is unsuccessful and the Invalid Key condition results. 

For random access of indexed files, the prime record key is established as the key of 
reference. The prime record key for the file is the data item specified in the RECORD 

. KEY clause of the file-control-entry for a file. 

The format for random access of relative files or indexed files is as follows: 

READ file-name RECORD [WITH NO WAIT] [INTO identifier] 

[ ; INVALID KEY imperative-statement] 

9-96 

Explanation of Format 2 

Format 2 is used for files in random access or dynamic access mode when records are to 
be retrieved randomly. 

WITH NO WAIT (Unisys Extension) 

The WITH NO WAIT phrase can be specified only for port files. 

A READ statement causes the program to wait until a logical record is available. For 
port files, you can prevent the possibility of this suspension by specifying the WITH NO 
WAIT phrase. A status key value of 94 indicates that no logical record was available for 
the read operation. 

If you declare an ACTUAL KEY clause for a port file, you are responsible for updating 
the ACTUAL KEY value with an appropriate subfile index. If the ACTUAL KEY value is 
not 0 (zero), a read operation from the specified subfile is performed. If the ACTUAL 
KEY value is 0 (zero), a nonselective read operation is performed and the ACTUAL KEY 
value is updated to indicate the subfile index of the subfile that was read. 

8600 0296-000 



PROCEDURE DIVISION Statements 

For a nonselective read operation, the first logical record to arrive at a subfile in the 
port file is returned as the data for the READ statement. The subfile to be read is 
determined by the operating system, and no specific selection algorithm is guaranteed. 
However, no subfile is read continuously at the expense of the other subfiles. 

If you do not declare an ACTUAL KEY clause for the port file, the file must contain a 
single subfile and that subfile is read. 

INTO 

If the INTO phrase is specified, the record being read is moved from the record area to 
the area specified by the identifier. The move takes place according to the rules specified 
for the MOVE statement. The sending area is considered to be a group item equal in 
size to the maximum record size for this file. The implied MOVE statement does not 
occur if the read operation was unsuccessful. Any subscripting or indexing associated 
with the identifier is evaluated after the record is read and immediately before the 
record is moved to the data item. 

When the INTO phrase is used, the record being read is available in both the input 
record area and the data area associated with the identifier. The record storage area 
associated with the identifier and the record storage area associated with file-name must 
not be the same storage area. 

INVALID KEY 

When the Invalid Key condition occurs, the read operation is unsuccessful. The following 
actions occur in the order specified: 

1. The system places a value in the FILE STATUS data item (if specified for this file) 
to indicate an Invalid Key condition. 

2. If the program specifies an INVALID KEY phrase in the statement that causes the 
condition, the program transfers control to the associated imperative-statement. 
The program does not execute any USE procedure specified for this file. 

3. If the program does not specify an INVALID KEY phrase and does specify a USE 
procedure, the program executes the USE procedure. If the program does not 
specify a USE procedure, the pr·ogram ends. 

The imperative-statement can be the NEXT SENTENCE phrase. 

8600 0296-000 9-97 



PROCEDURE DIVISION Statements 

Format 3: Dynamic Access of Relative or Indexed I/O Files . 

9-98 

The format for dynamic access of relative or indexed files is as follows: 

READ file-name [ NEXT] RECORD [INTO identifier] 

[ ; AT END imperative-statement] 

Explanation of Format 3 

Format 3 is used for rela#ve or indexed I/O files in dynamic access mode. 

NEXT 

For indexed files, a READ NEXT statement causes the -next logical record to be retrieved 
from that file using the key of reference. 

For relative files, a READ NEXT statement updates the contents of the RELATIVE KEY 
data item so that it contains the ordinal record number of the record made available. 

INTO 

If the INTO phrase is specified, the record being read is moved from the record area to 
the area specified by the identifier. The move takes place according to the rules specified 
for the MOVE statement. The sending area is considered to be a group item equal in 
size to the maximUm record size for this file. The implied MOVE statement does not 
occur if the read operation was unsuccessful. Any SUbscripting or indexing associated 
with the identifier is evaluated after the record is read and immediately before the 
record is moved to the data item. 

When the INTO phrase is used, the record being read is available in both the input 
record area and the data area associated with the identifier. The record storage area 
associated with the identifier and the record storage area associated with file-name must 
not be the same storage area. 

8600 0296-000 



PROCEDURE DIVISION Statements 

AT END 

When the At End condition occurs, the read operation is unsuccessful. The following 
actions occur in the order specified: 

1. The system places a value in the FILE STATUS data item (if specified for this file) 
to indicate an At End condition. 

2. If the program specifies an AT END phrase in the statement that causes the 
condition, the program transfers control to the associated imperative-statement. 
The program does not execute any USE procedure specified for this file. 

3. If the program does not specify an AT END phrase and does specify a USE 
procedure, the program executes that procedure. If the program does not specify a 
USE procedure, the progr~ ends. 

A READ statement with an AT END phrase transfers control to the imperative
statement in the AT END phrase if the READ statement is executed after an At 
End condition has been recognized but before a successful CLOSE statement and a 
successful OPEN statement have been executed for the file. (The ability to read a 
record after the At End condition has been reached and the repeated execution of the 
imperative-statement in the AT END phrase of such READ statements are Unisys 
extensions) . 

If an optional file is not present when the file is opened, the read operation is 
unsuccessful. The At End condition occurs at execution of the first READ statement for 
the file. The standard end-of-file procedures are not performed. 

The imperative-statement can be the NEXT SENTENCE phrase. 

Format 4: Random Access of Indexed Files 

The format for random access of indexed files is as follows: 

READ file-name RECORD [INTO identifier] [ ; KEY IS data-name] 

[ ; INVALID KEY imperative-statement] 

Explanation of Format 4 

Format 4 is used for indexed I/O files in random access mode or for files in dynamic 
access mode when records are to be retrieved randomly. 

860,00296--000 9-99 



PROCEDURE DIVISION Statements 

9-100 

INTO 

If the INTO phrase is specified, the record being read is moved from the record area to 
the area specified by the identifier. The move takes place according to the rules specified 
for the MOVE statement. The sending area is considered to be a group item equal in 
size to the maximum record size for this file. The implied MOVE statement does not 
occur if the read operation was unsuccessful. Any subscripting or indexing associated 
with the identifier is evaluated after the record is read and immediately before the 
record is moved to the data item. 

When the INTO phrase is used, the record being read is available in both the input 
record area and the data area associated with the identifier. The record storage area 
associated with the identifier and the record storage area associated with file-name must 
not be the same storage area. 

KEY 

Data-name is established as the key of reference for this retrieval. If the dynamic access 
mode is specified, this key of reference is also used by any subsequent executions of 
Format 4 READ statements for the file until a different key of reference is established 
for the file. . 

The data-name must be the name of a data item specified as a record key associated with 
the file-name. The data-name can be qualified. 

Execution of the READ statement causes the value of the key of reference to be 
compared with the value contained in the corresponding data item of the stored records 
in the file until the first record with a matching value is found. The current-record 
pointer indicates this record, which is then made available. If no record can be so 
identified, the Invalid Key condition exists and execution of the READ statement is 
unsuccessful. 

INVALID KEY 

When the Invalid Key condition occurs, the read operation is unsuccessful. The following 
actions occur in the order specified:· 

1. The system places a value in the FILE STATUS data item (if specified for this file) 
to indicate an Invalid Key condition. 

2. If the program specifies an INVALID KEY phrase in the statement that causes the 
condition, the program transfers control to the associated imperative-statement. 
The program does not execute any USE procedure specified for this file. 

3. If the program does not specify an INVALID KEY phrase and does specify a USE 
procedure, the program executes the USE procedure. If the program does not 
specify a USE procedure, the program ends. 

The imperative-statement can be the NEXT SENTENCE phrase. 

8600 0296--000 



PROCEDURE DIVISION Statements 

See Also 

• For information about naming a file, identifying its medium, specifying its 
organization, and so on, refer to "FILE-CONTROL Paragraph" in Section 5, 
"ENVIRONMENT DIVISION." 

• For information about identifying the status of I/O operations, refer to "I/O Status" 
in Section 5, "ENVIRONMENT DIVISION." 

• For information about opening a file, refer to "OPEN" earlier in this section. 

• For information on specifying procedures for I/O exception handling, refer to "USE" 
later in this section. 

·RELEASE 
The RELEASE statement transfers records to the initial phase of a sort operation. 

The general format of this statement is as follows: 

RELEASE record-name [ FROM identifier] 

Explanation of Format 

The RELEASE statement releases the record named by the record-name to the initial 
phase of a sort operation. 

A RELEASE statement can be used only in an INPUT PROCEDURE associated with 
a SORT statement for a file whose sort-merge file-description entry contains the 
record-name. 

The record-name must be the name of a logical record in the associated sort-merge 
file-description entry and can be qualified. The record-name and the identifier must not 
refer to the same storage area. 

If the FROM phrase is used, the contents of the identifier data area are moved to 
record-name. The contents of the record-name are released to the sort file. Moving 
takes place according to the rules specified for the MOVE statement. 

In a Unisys extension, the execution of a RELEASE statement does not affect the 
contents or the accessibility of the record area. If the sort-merge file is named in a 
SAME RECORD AREA clause, the logical record is also available as a record of other 
files referenced in the same SAME RECORD AREA clause. When control passes from 
the INPUT PROCEDURE, the file consists of all records that were placed in it by the 
execution of RELEASE statements. 

8600 0296-000 9-101 



PROCEDURE DIVISION Statements 

Note: If a RELEASE statement is executed when there are more than 
32 PERFORM statements active, the RELEASE statement 
unconditionally causes the program to terminate with an INVALID 
INDEX error. This is a permanent restriction. 

See Also 

For information about the SORT statement, refer to "SORT" later in this section. 

RESET (Unisys Extension) 
The RESET statement is used to control communication between processes in an 
asynchronous processing environment. 

The general format of this statement is as follows: 

RESET event-identifier-l [ , event-identifier-2 ] ... 

Explanation of Format 

The RESET statement causes the event specified by event-identifier-l, event-identifier-
2, and so on to be turned off. If the event is then tested, the condition returns the value 
FALSE. 

Event-identifiers must be one of the following: 

• Properly qualified and subscripted data-names with event usage specified 

• File or task attributes of type EVENT 

See Also 

For information about Inter-Program Communication, refer to "CAUSE (Unisys 
Extension)" earlier in this section. 

RESPOND (Unisys Extension) 

9-102 

The RESPOND statement is used only with port files. This statement enables a 
program to accept or reject a request for a dialogue to be established or terminated. 

The program is prompted for a response through the CHANGEEVENT file 
attribute. The FILESTATE file attribute indicates the type of response for which 
the program is being prompted, for example, OPENRESPONSEPLEASE or 
CLOSERESPONSEPLEASE. 

86000296-000 



PROCEDURE DIVISION Statements 

The general format of this statement is as follows: 

RESPOND 

{

ACCEPT-OPEN} 
{ file-name} ... WITH RESPONSE-TYPE OF REJECT-OPEN 

ACCEPT-CLOSE 

USING 

ASSOCIATED-DATA-LENGTH 

OF {~dentifier-l} 
mteger 

ASSOCIATED-DATA 

OF {identifier-2} 
literal 

Explanation of Format 

The file-name identifies one or more port files. 

The WITH RESPONSE-TYPE phrase specifies the type of response. The response type 
must be consistent with the CWTent state of the subfile. 

The ACCEPT-OPEN phrase accepts the request for a dialogue to be started .. 

The REJECT-OPEN phrase rejects the request for a dialogue to be started. 

The ACCEPT-CLOSE phrase accepts the request for a dialogue to be ended. 

The USING option permits each of the USING clauses to be included one time only. 

The ASSOCIATED-DATA-LENGTH phrase specifies the number of characters to be 
sent. If you do not specify the length of the associated data and the associated data 
is a data item, your program uses the actual length of the data. If you do specify the 
length of the associated data, the length value must be less than or equal to the actual 
length of the data. An error results if the length specified is not a single-precision 
integer value. To use the ASSOCIATED-DATA-LENGTH phrase, you must specify the 
ASSOCIATED-DATA phrase with either an identifier or an undigit literal, but not a 
nonnumeric literal. 

The ASSOCIATED-DATA phrase transfers data to the corresponding subfile along with 
the request to close the dialogue. 

The integer must be a numeric literal. 

The identifier must name an elementary integer data item. 

8600 0296-000 9-103 



PROCEDU RE DIVISION Statements 

9-104 

The identifier can be a group data item or an alphanumeric elementary data item. 

The literal can be a nonnumeric or undigit literal. 

General Rules 

You l!lust use the RESERVE NETWORK clause in the SPECIAL-NAMES paragraph for 
the compiler to recognize the words RESPOND and RESPONSE-TYPE as keywords. 

The ACTUAL KEY clause specifies the subfile that is responding. If you do not code 
an ACTUAL KEY clause, the port file must contain a single subfile. If you are using 
multiple subfiles, do the following: 

1. Specify the total number of subfiles in your program by using the CHANGE 
ATTRIBUTE MAXSUBFILES TO VALUE attribute-value statement. 

2. Specify the subfile that is to respond by using the SELECT port-file ASSIGN TO 
PORT; ACTUAL KEY IS subfile-num 93 clause. 

3. Declare subfile-num and attribute-value in the WORKING-STORAGE SECTION. 

Table 9-14 shows the effects of the ACTUAL KEY clause value on the RESPOND verb. 

Table 9-14. Designating Subfiles to Respond 

Actual Key Value 

o (zero) or none 

Nonzero 

Greater than the MAXSUBFILES 
value or a negative number. 

Explanation 

Returns a BADSUBFILEINDEX run-time error in the 
SUBFILEERROR file attribute. You are not allowed to 
respond to all subfiles at once. 

Responds with the specified subfile. 

Returns a BADSUBFILEINDEX run-time error in the 
SUBFILERROR file attribute. 

The system returns a value that indicates the result of a RESPOND statement. You 
can access this value by including a SELECT file-name FILE STATUS IS data-name 
clause in your program. The operating system moves a value into the data-name storage 
area after the program performs the RESPOND statement. You can then use an IF 
statement to test the value of the data-name and take the desired action depending on 
the result. If you choose not to code actions for the result of a RESPOND statement, the 
system provides a default action for each result. 

8600 0296-000 



PROCEDU RE DIVISION Statements 

Table 9-15 shows the I/O status values and their meanings. 

Table 9-15. Values for RESPOND Statement Completion 

Value Explanation 

00 Control was returned to the program after the RESPOND statement 
completed correctly. In the case of a port file, the close operation might be 
pending. 

84t An error was detected while the file was being closed. 

tUn isys extension 

Examples 

In the following examples, it is assumed that earlier in the program the port files were 
declared using an ACTUAL KEY clause to specify a subfile index and that the subfile 
index was set to a particular index. 

Example 9-23 accepts a request for an orderly close operation from the correspondent 
endpoint for the subfile of port file PORTFILEl. . 

RESPOND PORTFILE1 WITH RESPONSE-TYPE OF ACCEPT-CLOSE. 

Example 9-23. Coding a RESPOND Statement for an Orderly Close Operation 

Example 9-24 accepts a request for a dialogue to be started on the subfile of port file 
PORTFILEl. 

RESPOND PORTFILEI WITH RESPONSE-TYPE OF ACCEPT-OPEN. 

Example 9-24. Coding a RESPOND Statement That Requests a Dialogue 

Example 9-25 rejects an open dialogue request for the subfile on port file PORTFILE1. 
The associated data "MYDATA" is sent with the response. 

RESPOND PORTFILE2 WITH RESPONSE-TYPE OF REJECT-OPEN 
USING ASSOCIATED-DATA OF IIMYDATA". 

Example 9-25. Coding a RESPOND Statement That Rejects an Open Request 

Example 9-26 accepts an open dialogue request for the subfile on port file PORTFILEl. 
Twelve characters of associated data are sent with the response, beginning with the 
location pointed to by the ALPHANUM-ITEM item. 

RESPOND PORTFILE1 WITH RESPONSE-TYPE OF ACCEPT-OPEN 
USING ASSOCIATED-DATA-LENGTH 12 

ASSOCIATED-DATA OF ALPHANUM-ITEM. 

Example 9-26. Coding a RESPOND Statement That Uses Associated Data 

8600 0296-000 9-105 



PROCEDURE DIVISION Statements 

Example 9-27 accepts open dialogue requests for the subfiles on the port files 
PORTFILEI and PORTFILE2. 

RESPOND PORTFILEI PORTFILE2 WITH RESPONSE-TYPE OF ACCEPT-OPEN 
USING ASSOCIATED-DATA OF "MYDATA" 
USING ASSOCIATED-DATA-LENGTH NUMERIC-ITEM. 

Example 9-27. Coding a RESPOND Statement with Multiple Files. 

See Also 

• For information about the RESERVE clause in the SPECIAL-NAMES paragraph, 
refer to Section 5, "ENVIRONMENT DIVISION." 

• For step-by-step information oli coding port file applications, refer to the I/O 
Subsystem Programming Guide. 

• For references to file attributes, refer to the File Attributes Reference Manual. 

RETURN 
The RETURN statement causes the next record (in the order specified by the KEY 
clause in the SORT or the MERGE statement) to be transferred to the record area. 

The RETURN statemen.t obtains either sorted records from the final phase of a sort 
operation or merged records during a merge operation. 

The general format of this statement is as follows: 

RETURN file-name RECORD [ INTO identifier] 

; AT END imperative-statement 

9-106 

Explanation of Format 

file-name 

The file-name must be described by a sort-merge file-description entry in the DATA 
DIVISION. 

A RETURN statement can be used only in the range of an output procedure associated 
with a SORT or a MERGE statement for the file-name. 

8600 0296-000 



PROCEDU RE DIVISION Statements 

INTO 

If the INTO phrase is specified, the current record is moved from the input area to 
the area specified by the identifier. The move takes place according to the rules for 
the MOVE statement without the CORRESPONDING phrase. The sending area is 
considered to be a group item with a fixed size equal to the maximum record size. The 
implied move does not occur if an At End condition exists. Any subscripting or indexing 
associated with the identifier is evaluated after the record is returned and immediately 
before it is moved to the data item. When the INTO phrase is used, the data is available 
in both the input record area and the data area associated with the identifier. 

The INTO phrase must not be used when the input file contains logical records of 
various sizes as indicated by the record descriptions. The storage area associated with 
the identifier and the record area associated with the file-name must not be the same 
storage area. 

AT END 

If no next logical record exists for the file when a RETURN statement is executed, the 
At End condition occurs. 

When the At End condition occurs, no transfer of data to the record area takes place and 
the contents of the record area are undisturbed. After the At End condition occurs, 
the contents of the record area are still accessible. (This is a U nisys extension.) After 
execution of the imperative-statement in the AT END phrase, no RETURN statement' 
can be executed as part of the current output procedure. 

The imperative-statement can be the NEXT SENTENCE phrase. 

General Rules 

When the logical records of a file are described with more than one record description, 
these records automatically share the same storage area. This sharing is equivalent to 
an implicit redefinition of the area. The contents of any data items beyond the range of 
the current data record are undefined when the execution of the RETURN statement is 
complete~ 

If records smaller than the maximum record size are released, the contents of the 
record area beyond the end of the released record are unpredictable when subsequently 
returned. In that case, you must account for the size of the logical record returned. 
(This is a Unisys extension.) 

Note: If a RETURN statement is executed when there are more than 

86000296-000 

32 PERFORM statements active, the RETURN statement. 
unconditionally causes the program to terminate with an INVALID 
INDEX error. This is a permanent restriction. 

9-107 



PROCEDURE DIVISION Statements 

REWRITE 
The REWRITE statement replaces a logical record that exists in a mass-storage file. 

The REWRITE statement causes the value of the FILE STATUS data item associated 
with the file, if any, to be updated. 

The general format of this statement is as follows: 

REWRITE record-name [SYNCHRONIZED] "[ FROM identifier] 

[ ; INVALID KEY imperative-statement] 

9-108 

Explanation of Format 

record-name and SYNCHRONIZED 

The record-name is the name of a logical record in the FILE SECTION of the DATA 
DIVISION and can be qualified. " 

The file associated with the record-name must be open in the 1-0 mode when this 
statement is executed. 

The number of character positions in the record referenced by the record-name must 
equal the number of character positions in the record being replaced. 

Synchronization of all output records can be designated with the SYNCHRONIZE 
file attribute. Synchronization means that output must be written to the physical 
file before the program initiating the output can resume execution, thereby ensuring 
synchronization between logical and physical files. The SYNCHRONIZED clause enables 
you to override the synchronization specified by the file attribute for a specific output 
record. Synchronization is available for use by tape files and disk files with sequential 
organization only. 

FROM 

The FROM option makes the REWRITE statement operate like a MOVE statement 
followed by a WRITE statement. The move takes place according to the rules of the 
MOVE statement without the CORRESPONDING option. 

The record-name and the identifier must not refer to the same storage area. 

8600 0296-000 



PROCEDURE DIVISION Statements 

INVALID KEY 

Refer to "Indexed I/O" later in this section for information about the Invalid Key 
condition . 

. The imperative-statement can be the NEXT SENTENCE phrase. 

The execution of the REWRITE statement does not affect the contents or accessibility of 
the)record area. (This is a Unisys extension.) . 

The execution of a REWRITE statement with the FROM phrase is equivalent to the 
execution of the statement MOVE identifier TO record~name "followed by the execution 
of the same REWRITE statement without the FROM phrase. 

Seq uentia I I/O 

For files in the sequential access mode, the last 1/0 statement executed for the 
associated file before the execution of the REWRITE statement must have been a 
successfully executed READ statement. The I/O subsystem logically replaces the record 
that was accessed by the READ statement. 

For sequential files in the random or the dynamic access mode, the record to be 
rewritten is specified by the value of the actual key or the relative key. No prior reading 
of this record is required. 

Relative I/O 

For relative files in the random or the dynamic access mode, the record to be rewritten 
is specified by the value of the actual key or the relative key. No prior reading of this 
record is required. 

Indexed I/O 

The following rules apply to indexed I/O only: 

• For a file in the sequential access mode, the record to be replaced is specified by 
the value contained in the prime record key. When the REWRITE statement is 
executed, the value contained in the prime-record-key data item of the record to be 
replaced must equal the value of the prime record key of the last record read from 
this file. 

• For a file in the random C?r the dynamic access mode, the record to be replaced is 
specified by the prime-record-key data item. 

86000296-000 9-109 



PROCEDURE DIVISION Statements 

• The contents of alternate-record-key data items of the record being rewritten can 
differ from those in the record being replaced. The I/O subsystem uses the contents 
of the record key data items during the execution of the REWRITE statement so 
that subsequent access of the record can be made based on any of those specified 
record keys. 

• The Invalid Key condition exists under the following circumstances: 

The access mode is sequential, and the value contained in the prime-record-key 
item of the record to be replaced does not equal the value of the prime record 
key of the last record read from this file. 

The value contained in the prime-record-key data item does not equal that of any 
record stored in the file. 

The value contained in an alternate-record-key data item for which a 
DUPLICATES clause is not specified equals that ofa record already stored in 
the file. 

See Also 

• For information about the status of I/O operations, refer to "I/O Status" in 
Section 5, "ENVIRONMENT DIVISION." 

• For information about opening a file in I -0 mode, refer to "OPEN" in this section. 

RUN (Unisys Extension) 
The RUN statement enables a program to initiate another program as an independent, 
asynchronous task. Once·a program is initiated by executing a RUN statement, it 
executes independently of the initiating program. 

The general format of this statement is as follows: 

RUN task-identifier WITH section-name 

[ USING arithmetic-expression-l [ , arithmetic-expression-2 ] ... ] 

9-110 

Explanation of Format 

The section-name must be the name ofa USE procedure declared as EXTERNAL. 
Parameters must be passed by value, that is, contain a RECEIVED BY CONTENT 
clause. Only arithmetic values can be passed or received because only formal parameters 

- with arithmetic properties can be described in the syntax. 

The formal parameters to which the values of the arithmetic expressions are passed 
must be described as single-precisiori or double-precision 77-level items and must have a 
RECEIVED BY CONTENT clause. The compiler makes adjustments, if necessary, to 

8600 0296-000 



PROCEDURE DIVISION Statements 

truncate double-precision values to single-precision values or extend single-precision 
values to double-precision values to ensure that the value passed has the same precision 
as the corresponding formal parameter. All values are passed with a scale of 0, 
regardless of the scale of the corresponding formal parameter, and can be passed as 
normalized values. 

The RUN statement creates an independent process, which does not share the resources 
of the initiator and can continue running after the termination of the initiator. 

An independent process must not be bound to a host program, nor can any of its data 
be declared with the GLOBAL or OWN phrases. Independent procedures (all the 
procedures of an independent process) must be compiled at the 02-level. 

SEARCH 
The SEARCH statement searches a table for a table element that satisfies the specified 
condition, and adjusts the associated index-name to indicate that table element. A 
SEARCH statement must be performed for each level of a table to be searched. 

The SEARCH statement has the following two formats: 

Format 

1 

Explanation 

Performs a serial search on an unordered table. An unordered table is not 
arranged in a particular order. 

2 Performs a binary search on an ordered table. An ordered table is arranged in 
ascending or descending order. . 

Format 1 

SEARCH identifier-l [ VARYING {~dentifier-2 } 1 
mdex-name-l 

[ : AT END imperative-statement-l ] 

. . {imperative-statement-2 } 
WHEN conditlon-l NEXT SENTENCE 

[ 
. . {imperative-statement-s } 1 

: WHEN conditlOn-2 NEXT SENTENCE ... 

8600 0296-000 9-111 



PROCEDURE DIVISION Statements 

9-112 

Explanation of Format 1 

Format! of the SEARCH statement serially searches a table for a table element that 
satisfies the WHEN conditions. The search begins at the current index setting. 

identifier -1 . 

Identifier-! must not be subscripted or indexed, but its description must contain an 
OCCURS clause and an INDEXED BY clause. 

VARYING 

The VARYING option increments an index. 

Identifier-2, when specified, must be described as USAGE IS INDEX or as a numeric 
elementary item without positions to the right of the assumed decimal point. 

If the VARYINGindex-name-l phrase is specified and ifindex-name-! appears in the 
. INDEXED BY phrase of identifier-I, that index-name-! is used for the search. If this 
is not the case, or if the VARYING identifier-2 phrase ,is specified, the first (or only) 
index-name given in the INDEXED BY phrase of identifier-I is used for the search. In 
addition~ the following operations occur: 

• If the VARYING index-name-l phrase is used, and ifindex-name-I appears in the 
INDEXED BY phrase of another table entry, the occurrence number represented 
by index-name-I is incremented by the same amount (and at the same time) as the 
occurrence number represented by the index-name associated with identifier-!. 

• If the VARYING identifier-2 phrase is specified and ifidentifier-2 is an index 
data item, then the data item referenced by identifier-2 is incremented by the 
same amount (and at the same time) as the index associated with identifier-!' If 
identifier-2 is not an index data item, the data item referenced by identifier-2 is 
incremented by the value I at the same time the index referenced by the index-name 
associated with identifier-! is incremented. 

AT END 

An AT END phrase can be used if the search ends and none of the conditions are 
satisfied. 

WHEN 

The WHEN phrase determines the ending condition for the search operation. You can 
specify a number of conditions for ending the search by using multiple WHEN phrases. 

Condition-I, condition-2, and so on can be any conditional expression. 

8600 0296-000 



PROCEDURE DIVISION Statements 

Figure 9-3 shows a flowchart of the Format I SEARCH statement containing two 
WHEN phrases. 

Start 

Index setting: 
highest permi'ssible 

occurence number 

Increment index-name' 
for identifier-l 

(i ndex-name'-l 
if appl i cabl e) 

TRUE 

TRUE 

~--------------------~* 

Intrement index-name-l 
(for a different table) 

or identifier-2 

>At End* imperative
stateme'nt-l 

imp'erative
stateme'nt-2 

~-----..... * 
i mp'erat i ve 
statement-3 

* These operations are included 
only when specified in the 
SEARCH statement. 

** Control transfers to the 
next executable sentence 
unless the imperative 
stateme'nt ends wi th a 
GO TO stateme'nt 

Figure 9-3. Flowchart for the SEARCH Statement Containing Two WHEN Phrases 

The following list describes the flow of control shown in Figure 9-3. 

• If, at the start of the execution of the SEARCH statement, the index-name 
associated with identifier-I contains a value that corresponds to an occurrence 
number greater than the highest permissible occurrence number for 

** 

identifier-l, the search ends immediately. If the AT END phrase is specified, the 
imperative-statement-I is executed. If the AT END phrase is not specified, control 
passes to the next executable sentence. 

• If, at the start of the execution of the SEARCH statement, the index-name 
associated with identifier-I contains a value that corresponds to an occurrence 

. number not greater than the highest permissible occurrence number for identifier-I, 
then the SEARCH statement operates by evaluating the conditions in their written 
order. The SEARCH statement makes use of index settings, wherever specified, to 
determine the occurrence of the items to be tested. 

8600 0296-000 9~113 



PROCEDURE DIVISION Statements 

• If none of the conditions is satisfied, the index-name for identifier-l is incremented 
to refer to the next occurrence. The process is then repeated using the new 
index-name settings. If the new value of the index-name settings for identifier-l 
corresponds to a table element outside the permissible range of occurrence values, 
the search ends as indicated in the first bulleted item of this list. 

• If one of the conditions is satisfied on evaluation, the search ends immediately 
and the imperative-statement associated with that condition is executed. The 
index-name remains set at the occurrence that caused the condition to be satisfied. 

See Also 

The number of occurrences of identifier-I, the last of which is the highest permissible 
value, is discussed in Section 7, "DATA DIVISION." 

Format 2 

SEARCH ALL identifier-l [ ; AT END imperative-statement-l ] 

. WHEN I data-name-! { IS ~QUAL TO } { ~~:~~~r-3 } I 
' "':"':""==;0.;.. IS . arithmetic-expression-l 

condition-name-l 

[ I { identifier-4 } 
IS EQUAL TO . 

AND data-name-2 _ literal-2 
-- {IS - } arithmetic-expression-2 

condition-name-2 

{
. imperative-statement-2 } 
NEXT SENTENCE 

II 

Note: The required relational character = is not underlined to avoid 
confusion with other symbols. 

Explanation of Format 2 

The binary search operation searches an ordered, one-dimensional array. The data 
description of the table referred to in the SEARCH ALL statement must contain a 
Format 2 OCCURS c1a~se with the INDEXED BY and KEY IS phrases. 

Identifier-l must not be subscripted or indexed. 

9-114 8600 0296-000 



PROCEDURE DIVISION Statements 

The index-name used for the search operation is the first (or only) index-name that 
appears in the INDEXED BY phrase of identifier-l. Any other index-names for 
identifier-l remain unchanged. 

All referenced condition-names must be defined as having only a single value. The 
data-name associated with a condition-name must appear in the KEY clause of 
identifier-l. Data-name-1 and data-name-2 can be qualified. In addition, data-name-1 
and data-name-2 must be indexed by the first index-name associated with identifier-1 
along with other indexes or literals (as required) and must be referenced in the KEY 
clause of identifier-l. 

Identifier-3, identifier-4, or identifiers specified in arithmetic-expression-1 or 
arithmetic-expression-2 must not be referenced in the KEY clause ofidentifier-1, nor 
must they be indexed by the first index-name associated with identifier-l. 

When a data-name in the KEY clause ofidentifier-1 is· referenced or when a 
condition-name associated with a data-name in the KEY clause of identifier-1 is 
referenced, all preceding data-names in the KEY clause ofidentifier-1 or their associated 
condition-names must also be referenced. 

The results of the SEARCH ALL statement are predictable only in the following cases: 

• The data in the table is ordered in the same manner as described in the 
ASCENDING/DESCENDING KEY clause associated with the description of 
identifier-I. 

• The contents of the keys referenced in the WHEN clause are sufficient to identify a 
unique table element. 

If the table is not ordered as specified, unpredictable results can be expected. 

When duplicates occur, the index indicates the occurrence of the duplicate closest to the 
beginning of the table. 

If any of the conditions specified in the WHEN clause cannot be satisfied for any setting 
of the index in the permitted range, control is passed to imperative-statement-1 of the 
AT EN.D phrase, when specified, or to the next executable sentence when this phrase is 
not specified. In either case, the final setting of the index is the value corresponding to 
an occurrence number that is one greater than the last element of the table. 

General Rules for Format 1 and Format 2 

If all the conditions can be satisfied, the index indicates an occurrence that allows the 
conditions to be satisfied and control passes to imperative-statement-2. 

Mter execution of imperative-statement-1, imperative-statement-2, or imperative
statement-3 that does not end with a GO TO statement, control passes to the next 
executable sentence. In Format 1, if the VARYING phrase is not used, the index-name 
used for the search operation is the first (or only) index-name that appears in the 
INDEXED BY phrase of identifier-I. Any other .index-names for identifier-1 remain 
unchanged. 

8600 0296-000 9-115 



PROCEDU RE DIVISION Statements 

If identifier-I is a data item subordinate to a data item containing an OCCURS clause 
(providing for a multidimensional table), an index-name must be associated with each 
dimension of the table through the INDEXED BY phrase of the OCCURS clause. Only 
the setting of the index-name associated with identifier-I (and the data item identifier-2 
or index-name-I, if present) is modified by the execution of the SEARCH statement. 
To search an entire multidimensional table, a SEARCH statement must be executed 
several times. Before each execution of a SEARCH statement, SET statements need to 
be executed whenever index-names need to be adjusted to appropriate settings. 

See Also 

• For information about conditional expressions, refer to "Conditional Expressions" in 
Section 8, "PROCEDURE DMSION Concepts." 

• For information about defining repeated data items, refer to "OCCURS Clause" in 
Section 7, "DATADMSION." 

SEEK (Unisys Extension) 
The SEEK statement repositions a mass-storage file for subsequent sequential access. 

The general format of this statement is as follows: 

SEEK file-name RECORD 

SET 

9-116 

Explanation of Format 

For files specified with sequential access, the SEEK statement repositions the file so that 
a succeeding READ or WRITE statement accesses the record sought. 

The value of the ACTUAL KEY clause specified for the file-name is used as the ordinal 
number of the record sought. If the actual key contains a negative number or 0 (zero), 
the first record of the file is sought. The ACTUAL KEY clause must be specified in the 
FILE-CONTROL entry for the file-name. 

The file-name must be the name of a mass-storage file of sequential organization. 

The execution ofa SEEK statement does not cause the contents of the STATUS KEY 
data item to be updated. 

The SET statement establishes reference points for table handling operations by setting 
index-names associated with table elements. The SET statement can also be used to 
modify a file or a task attribute. 

8600 0296-000 



PROCEDURE DIVISION Statements 

When a sending item and a receiving item in the same SET statement share a part, but 
not all, of their storage area, the result of the statement execution is undefined. 

The SET statement has the following four formats: 

Format 

1 

2 

3 

4 

Format 1 

Explanation 

Establishes an index value for table look-up operations 

Increments or decrements an index value 

Establishes the value of a table attribute 

Establishes the value of a file attribute 

. . {identifier-3 } 
SET {~dentifier-l } [, ~dent1fier-2 ] ... TO index-name.: 3 

mdex-name-l ,mdex-name-2 . 1 
mteger-

Explanation of Format 1 

All references to index-name-l and identifier~l also apply to index-name-2 and 
identifier-2, respectively. 

If index-name-l is specified, the val~e of the index after the execution of the SET 
statement should correspond to an occurrence number of an element in the associated 
table. 

Index-name-l can be set to any value, with the following restrictions: 

• If overflow occurs, the value in the index-name is left-truncated according to the' 
arithmetic rules for a Size Error condition without a SIZE ERROR phrase. 

• When a statement is executed using the index-name to refer to a table element, the 
value contained in the index or produced by relative indexing must fall in the range 
specified by the OCCURS clause that defines the table. Otherwise, an abnormal 
termination of the program occurs. 

If index-name-3 is specified, the value of the index before execution of the SET 
statement should correspond to an occurrence number of an element in the associated 
table. 

Identifier-l and identifier-3 must name either index data items or elementary items 
described as integers. 

Integer-l can be signed and can be 0 (zero). 

8600 0296-000 9-117 



PROCEDURE DIVISION Statements 

Table 9-16 shows the validity of various operand combinations of the SET statement. 

Table 9-16. Validity of Operands for the SET Statement 

Receiving Item Receiving Item Receiving Item 

Sending Item Integer Data Item Index·Name I ndex Data Item 

Integer literal Not valid Valid Not valid 

Integer data item Not valid Valid Not valid 

Index-name Valid Valid Valid 

Index data item Not valid Valid Valid 

In Format 1, the following actions occur: 

• Index-name-l is set to a value that causes it to refer to the table element whose 
occurrence number corresponds to the table element referenced by index-name-3, 
identifier-3, or integer-l. If identifier-3 is an index data item or if index-name-3 is 
related to the same table as index-name-l, no conversion takes place. 

• If identifier-l is an index data item, it can be set equal to either the contents of 
index-name-3 or to the contents ofidentifier-3, where identifier-3 is also an index 
data item. No conversion takes place in either case. 

• If identifier-l is not an index data item, it can be set only to an occurrence number 
that corresponds to the value ofindex-name-3. Neither identifier-3 nor integer-l can 
be used in this case. 

• These actions can be repeated for index-name-2, identifier-2, and so on, if these 
variables are specified. The value of index-name-3 or identifier-3 is used each time 
as it was at the beginning of the statement execution. Any subscripting or indexing 
associated with identifier-l and so on is evaluated immediately before the value of 
the respective data item is changed. 

Format 2 

. . {UP BY } {identifier-4} 
SET mdex-name-4 [ , mdex-name-5 ] . .. DOWN BY integer-2 

Explanation of Format 2 

All references to index-name-4 also apply to index-name-5. 

9-118 8600 0296-000 



PROCEDURE DIVISION Statements 

Index-name-4 can be set to any value, with the following restrictions: 

• If overflow occurs, the value in the index-name is left-truncated according to the 
arithmetic rules for a Size Error condition without a SIZE ERROR phrase. 

• At execution of a statement using the index-name to refer to a table element, the 
value contained in the index or produced by relative indexing should fall in the 
range specified by the OCCURS clause that defines the table. A program can be 
abnormally terminated if the index addresses an item beyond the limits of the 
o l-level record in which the table resides. Data can be retrieved from or modified 
within areas outside of the table (but still in the 01-level record in which the table 
resides) with unexpected results. 

• When integer-1 in a SET index-name-l TO integer-l statement exceeds the limits of 
the OCCURS clause to which index-name-l refers, object code is generated-for the 
SET statement that unconditionally terminates the program abnormally. 

In all other cases of the SET statement, the value to which index-name is set is not 
checked at execution time against the OCCURS clause for the table to which the 
index-name refers. 

You must ensure that the value to which index-name is set is appropriate, or you 
must ensure that the table associated with the index-name is correct. Unisys 
strongly discourages the use of inappropriate index-values to access parts of the 
Ol-level record outside the bounds of the table to which the index refers. 

The contents ofindex-name-4 are incremented-using the UP BY phrase or decremented 
using the DOWN BY phrase by a value corresponding to the number of occurrences 
represented by the value of integer-20r identifier-4. Thereafter, the incremental process 
is repeated for index-name-5, and so on. For each repetition, the value of identifier-4 is 
used as it was at the beginning of the statement execution. 

If index-name-4 is specified, the value of the index both before and after the execution 
of the SET statement should correspond to an occurrence number of an element in the 
associated table. 

Index-names are considered to be related to a given table and are defined by 
specification in the INDEXED BY clause. 

Identifier-4 must be described as an elementary numeric integer. 

Integer-2 can be signed. 

See Also 

• For information on handling Size Error conditions, refer to "SIZE ERROR Phrase" 
in Section 8, "PROCEDURE DMSION Concepts." 

• For information on handling tables, refer to "Tables" in Section 6, "Data Concepts." 

• For information about the validity of various operand combinations, refer to 
Table 9-16, "Validity of Operands for the SET Statement," earlier in this section. 

8600 0296-000 9-119 



PROCEDURE DIVISION Statements 

Format 3 

{

task-identifier } 
SET MYSELF 

MYJOB 

1 [ subscript-! , ] task -attribute-name L 

identifier-5 
literal-! 

TO arithmetic-expression-! 

9-120 

[ {~UE } 1 task-attribute-mnemonic 

Explanation of Format 3 

Note: Format 3 is considered an obsolete element of COBOL74. The 
CHANGE statement is the preferred syntax. 

The task-attribute-name must be a system-name that defines a task attribute. 
Subscript-! specifies the member of the task array that is affected, and can be an 
arithmetic expression. Subscript-! is required when the task-identifier requires a 
subscript. 

Identifier-5 or literal-! or the task~attribute-mnemonic must be consistent with the type 
of the task-attrihute-name. 

A task-attribute-mnemonic is a name associated with a constant value for an attribute 
that has a set number of predetermined possible values .. 

The choice of identifier, literal, arithmetic-expression, or task-attribute-mnemonic 
depends on the attribute being set and its declared value. (This is a U nisys extension.) 

If a data-name has the same name as a task-attribute-mnemonic, the value assigned to 
the attribute is determined by the use of the optional word VALUE. If the word VALUE 
is present, the attribute is set to the 'value of the mnemonic. If the word VALUE is 
omitted, the attribute is set to the current value of the data-name. 

8600 0296-000 



PROCEDURE DIVISION Statements 

Format 4 

SET file-name ~ [ subscript-2, ] file-attribute-name 2 

identifier-6 
literal-2 

TO arithmetic-expression-2 

SORT 

[ {~UE } 1 mnemonic-attribute-value . 

Explanation of Format 4 

Note: Format 4 is considered an obsolete element of COBOL 74. The 
CHANGE statement is the preferred syntax. 

The file-name qualifies the file-attribute-name enclosed the required parentheses. 

Subscript-2 can be used only with a port file. The subscript can be an arithmetic
expression, and the value of the expression specifies the subfile of the file that is 
affected. 

The choice ofliteral-2, arithmetic-expression-2, identifier-6, or the mnemonic-attribute
value depends on the type of the attribute and the static or dynamic nature of the value 
to which the attribute is to be set. 

Mnemonic-attribute-values can be used as data-names or procedure-names in the 
program if they are not COBOL reserved words. (This is a Unisys extension.) 

Boolean or integer task attributes accept a numeric item or literal or the value associated 
with a mnemonic. If the value is not in the permissible range for the attribute specified, 
an error occurs at compilation time or at execution time. Task or file attributes of type 
POINTER accept alphanumeric items. 

If a data-name has the same name as a mnemonic-attribute-value, the value assigned to 
the attribute is determined by the use of the optional word VALUE. If the word VALUE 
is present, the attribute is set to the value of the mnemonic. If the word VALUE is 
omitted, the attribute is set to the current value of the data-name. 

The SORT statement creates a sort file by executing input procedures or by transferring 
records from another file. Records are sorted by the sort file using a set of specified 
keys. In the final phase of the sort operation, each record is made available in sorted 
order to output procedures or to an output file. 

8600 0296-000 9-121 



PROCEDURE DIVISION Statements 

SORT statements can appear anywhere except in the DECLARATIVES SECTION 
of the PROCEDURE DIVISION or in an INPUT PROCEDURE or an OUTPUT 
PROCEDURE clause associated with a SORT or a MERGE statement. 

The general format of the SORT statement is as follows: 

[ {
TAG-KEY }] [ { PURGE} .] 

SORT TAG-SEARCH file-name-I ~~~ ON ERROR 

{ {
ASCENDING} } 

ON DESCENDING KEY {data-name-I} . . . . .. 

[ COLLATING SEQUENCE IS alphabet-name] 

[ {

WORDS }] 
MEMORY SIZE IS {integer-l } CHARACTERS . 

data-name-2 MODULES 

[
DISK SIZE IS {integer-2 } {WORDS } ] 
-- data-name-3 MODULES 

INPUT PROCEDURE IS section-name-l [ {~::~UGH} section-name-2] 

USING file-name-2 { [=E ]} ... 
RELEASE 

OUTPUT PROCEDURE IS section-name-3 [ {=UGH} section-name-4 ] 

SAVE 
LOCK 

GIVING file-name-3 RELEASE 
NO REWIND 
CRUNCH 

9-122 8600 0296-000 



PROCEDURE DIVISION Statements 

Explanation of Format 

TAG-KEY (Unisys Extension) 

When the TAG-KEY option is used, sorting is performed on keys rather than on the 
entire record. The record numbers are placed in the sorted order in the GIVING file, 
which is restricted to records with a size of 8 DISPLAY digits. The TAG-KEY option 
prohibits the use of input and output procedures. 

TAG-SEARCH (Unisys Extension) 

When the TAG~SEARCH option is used, sorting is performed on keys rather than on the 
entire record. The records are then ordered in the GIVING file according to the sorted 
order of the record numbers. The TAG-SEARCH option prohibits the use of input and 
output procedures. 

Note: The file-name specified in the GNING clause of a SORT 
TAG-SEARCH statement must not be the same as that specified in 
the USING clause. 

The TAG-SEARCH option is not supported for tape input files or for multiple-file input. 

file-name-l 

File-name":l must be described in a sort-merge file-description entry in the DATA 
DIVISION. 

ON ERROR (Unisys Extension) 

The ON ERROR option enables you to limit irrecoverable parity errors when input and 
output procedures are not present in a program. 

The PURGE phrase causes all records in a block that contains irrecoverable parity errors 
to be dropped; processing is continued after an aDT message is printed that gives the 
relative position in the file of the bad block. 

The RUN phrase causes the bad block to be used by the program and provides the same 
message as defined for the PURGE phrase. 

The END phrase causes program termination and is the default if no other phrase is 
specified. 

ASCENDING 

When the ASCENDING phrase is specified, the sorted sequence is from the lowest value 
of the contents of the data items identified by the KEY data-names to the highest value, 
according to the rules for comparison of operands in a relation condition. 

8600 0296-000 9-123 



PROCEDURE DIVISION Statements 

9-124 

DESCENDING 

When the DESCENDING phrase is specified, the sorted sequence is from the highest 
value of the contents of the data items identified by the KEY data-names to the lowest 
value, according to the rules for comparison of operands in a relation condition. 

1ata-name-l, data-name-2, and data-name 3 

Data-name-!, data-name-2, and data-name-3 are KEY data-names and are subject to the 
following rules: 

• The data items identified by KEY data-names must be described in records 
associated with file-name-1. 

• KEY data-names can be qualified. 

• The data items identified by KEY data-names must not be variable-length items. 

• If file-name-! has more than one record description, then all the data items identified 
by the KEY data-names can be described in one of the record descriptions or in any 
combination of record descriptions. The KEY data-names in each record description 
need not be described again. 

• None of the data items identified by KEY data-names can be described by an entry 
that either contains an OCCURS clause or is subordinate to an entry that contains 
an OCCURS clause. 

• The data-names are listed from left to right in order of decreasing significance 
without regard to their division into KEY phrases. In the format, data-name-! is the 
major key, data-name-2 is the next most significant key, and so on. 

COLLATING SEQUENCE 

The collating sequence that applies to the comparison of the nonnumeric key data items 
specified is determined in the following order of precedence: 

1. The collating sequence established by the COLLATING SEQUENCE phrase, if 
. specified, in the SORT statement 

2. The collating sequence established as the program-collating sequence 

MEMORY SIZE (Unisys Extension) 

The MEMORY SIZE option is a guideline for allocating the SORT memory area and 
takes precedence over the same clause in the OBJECT-COMPUTER paragraph. This 
option can be allocated as MODULES, WORDS, or CHARACTERS. If the MEMORY 
SIZE option is not specified, either in the OBJECT-COMPUTER paragraph or in the 
SORT statement, a default value of 12,000 words is assumed. If the number of records 
to be sorted varies from run to run, the memory size can be allocated by specifying 
data-name-5. 

8600 0296-000 



PROCEDURE DIVISION Statements 

DISK SIZE (Unisys Extension) 

The DISK SIZE option is a guideline for allocating the SORT disk area and takes 
precedence over the same clause in the OBJECT-COMPUTER paragraph. This option 
can be allocated as WORDS or MODULES. If the DISK SIZE option is not specified, 
either in the OBJECT-COMPUTER paragraph or in the SORT statement, a default 
value of 900,000 words is assumed. One module of disk is equivalent to 1.8 million words 
of disk. If the number of records to be sorted varies from run to run, the disk size can be 
allocated by specifying data-name-6. 

INPUT PROCEDURE 

The input procedure must consist of one or more procedures that appear contiguously in 
a source program and do not form a part of any output procedure. To transfer records to 
the file referenced by file-name-I, the INPUT PROCEDURE clause must include at least 
one RELEASE statement. Control must not be passed to the input procedure except 
when a related SORT statement is being executed. The input procedure can include any 
sections needed to select, create, or modify records. The restrictions on the procedural 
statements in the INPUT PROCEDURE clause are as follows: 

• The INPUT PROCEDURE clause must not contain any SORT or MERGE 
statements. 

• The remainder of the PROCEDURE DMSION must not contain any transfers 
of control to points inside the input procedure; ALTER, GO TO, and PERFORM 
statements in the remainder of the PROCEDURE DMSION must not refer to 
section-names in the INPUT PROCEDURE clause. Also, while the input procedure 
can perform a program portion outside of itself, control must always return to the 
input procedure. 

If an input procedure is specified, control is passed to the input procedure before 
file-name-I is sequenced by the SORT statement. The compiler inserts a one-time-only 
return mechanism at the end of the last section in the input procedure; an EXIT 
statement cannot be used to return control to the SORT statement. Control then passes 
to the last statement in the INPUT PROCEDURE clause and the records that have been 
released to file-name-I are sorted. 

In the input procedure, excessive use of GO TO statements to transfer control out of 
blocks being executed by PERFORM statements can cause the program to fault with an 
Invalid Index condition at the RETURN statement. 

The words THRU and THROUGH are equivalent. 

Section-name-I represents the name of an input procedure. 

8600 0296-:-000 9-125 



PROCEDURE DIVISION Statements 

9-126 

USING 

If the USING phrase is specified, all records in file-name-2 are transferred automatically 
to file-name-!. At execution of the SORT statement, file-name-2 must not be open. The 
SORT statement automatically does the following: 

• Starts the processing offile-name-2 

• Makes the logical records for file-name-2 available 

•. Ends the processing offile-name-2 

These implicit functions are performed so that any associated USE procedures are 
executed. Also, the SORT statement automatically and implicitly moves the records 
from the file area offile-name-2 to the file area offile-name-!, and releases records to the 
initial phase of the sort operation. 

file-name-2 and file-name-3 

File-name-2 and file-name-3 must be described in a file-description entry (not a 
sort-merge file-description entry) in the DATA DIVISION. The actual size of the logical 
records described for file-name-2, file-name-3, and file-name-4 must equal the actual size 
of the logical records described.for file-name-!. 

LOCK, PURGE, and RELEASE (Unisys Extension) 

The LOCK, PURGE; and RELEASE options can be used to specify the type of file close 
operation for the USING files, file-name-2, file-name-3, and so on. The TAG-SEARCH 
option prohibits the use of the close options LOCK and PURGE on the USING file. 

OUTPUT PROCEDURE 

The output procedure must consist of one or more procedures that appear contiguously 
in a source program and do not form part of any input procedure. To make sorted 
records available for processing, the OUTPUT PROCEDURE clause must include at 
least one RETURN statement. Control must not be passed to the output procedure, 
except when a related SORT statement is being executed. The output procedure can 
consist of any procedures needed to select, modify, or copy the records that are being 
returned, one at a time and in sorted order, from the sort file. The restrictions on the 
procedural statements in the OUTPUT PROCEDURE clause are as follows: 

• The OUTPUT PROCEDURE clause must not contain any SORT or MERGE 
statement. 

• The remainder of the PROCEDURE DIVISION must not contain any transfers of 
control to points inside the output procedure; ALTER, GO TO, and PERFORM 
statements in the remainder of the PROCEDURE DIVISION cannot refer to 
section-names in the OUTPUT PROCEDURE clause. Also, while an output 
procedure can perform a program portion outside of itself, control must always 
return to the output procedure. 

If an output procedure is specified, control passes to the output procedure after 
file-name-! has been sequenced by the SORT statement. The compiler inserts a return 

86000296-000 



PROCEDURE DIVISION Statements 

mechanism at the end of the last section in the output procedure. When control passes 
the last statement in the OUTPUT PROCEDURE clause, the return mechanism 
provides for termination of the sort operation and then passes control to the next 
executable statement after the SORT statement. Before entering the output procedure, 
the sort procedure reaches a point at which it can select the next record in sorted order, 
when requested. The" RETURN statements in the OUTPUT PROCEDURE clause are 
the requests for the next record. 

In the output procedure, excessive use of GO TO statements to transfer control out of 
blocks being executed by PERFORM statements can cause the program to fault with an 
Invalid Index condition at the RETURN statement. 

Section-name-3 represents the name of an output procedure. 

GIVING 

If the GIVING phrase is specified, all sorted records in file-name-l are automatically 
written on file-name-3 as the implied output procedure for this SORT statement. At 
execution of the SORT statement, file-name-3 must not be open. The SORT statement 
automatically does the following: 

• Starts the processing of file-name-3 

• Releases the logical records to file-name-3 

• Ends the processing of file-name-3 

The terminating function is performed as if a CLOSE statement without optional 
phrases had been executed for the file. These implicit functions are performed so that 
any associated USE procedures are executed. Also, the SORT statement automatically 
and implicitly returns the sorted records from the final phase of the sort operation and 
moves the records from the file area for file-name-l to the file area for file-name-3. 

The SAVE, LOCK, PURGE, RELEASE, NO REWIND, and CRUNCH options can be 
used to specify the type of file dose operation for the GIVING file, file-name-4, and so on~ 

See Also 

For information on the SAVE, LOCK, PURGE, RELEASE, NO REWIND, and 
CRUNCH options for closing files, refer to "CLOSE" earlier in this section. 

Examples 

In Example 9-28, the files defined by the FD entries are opened before the SORT 
statement is executed. The SORT statement sets the sorting mechanism in motion 
by transferring control to the input procedure. The files can be opened with the input 
procedure, but the input file must not be opened more than once or closed before input is 
completed. 

Sorting is conducted on an ascending key. Note that the key identifiers are defined in 
the sort file WORK-lNG, not the input file TO-BE-SORTED. 

8600 0296-000 9-127 



PROCEDURE DIVISION Statements 

9-128 

The input procedure is completed when the entire input file has been transferred to 
the sort file. The sort mechanism then transfers control to the output procedure, 
and records are written on the file AFTER-THE-SORT in the order specified by the 
key parameters. The sorted records are then listed after the sort operation has been 
completed. 

IDENTIFICATION DIVISION. 
* 
*THIS SORT PROGRAM EXAMPLE SHOWS HOW THE IIINPUT PROCEDURE ISII 
*AND IIOUTPUT PROCEDURE ISII OPTIONS WORK. 
* 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. B7900. 
OBJECT-COMPUTER. B7900. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT TO-BE-SORTED ASSIGN TO DISK. 
SELECT AFTER-THE-SORT ASSIGN TO DISK. 
SELECT WORK-ING ASSIGN TO SORT. 
SELECT FOR-THE-PRINTER ASSIGN TO PRINTER. 

DATA DIVISION. 
FI LE SECTION. 
FD TO-BE-SORTED 

LABEL RECORDS ARE OMITTED 
DATA RECORD IS A-FILE. 

01 A-FI LE. 
02 1-ACCOUNT PICTURE IS X(4). 
02 1-TYPE PICTURE IS X. 
02 1-AREA PICTURE IS XXX. 
02 1-BODY PICTURE IS X(72). 

FD AFTER-THE-SORT 
LABEL RECORDS ARE OMITTED 
DATA RECORD IS B-FILE. 

01 B-FILE PIC IS X(80). 
SD WORK-ING 

DATA RECORD IS C-FILE. 
01 C-FILE. 

02 3-ACCOUNT PIC IS X(4). 
02 3-TYPE PIC IS X. 
02 3-AREA PIC IS XXX. 
02 3-BODY PIC IS X(72). 

FD FOR-THE-PRINTER 
LABEL RECORDS ARE OMITTED 
DATA RECORD IS D-FILE. 

01 D-FILE PIC IS X(80). 
PROCEDURE DIVISION. 

* 
*FILES DEFINED BY FD ENTRIES ARE OPENED. 
* 

Example 9-28. Sort Program Using INPUT PROCEDURE IS and OUTPUT 
PROCEDURE IS Options 

86000296-000 



PROCEDURE DIVISION 'Statements 

OPENING SECTION. 
OPENER. 

OPEN INPUT TO-BE-SORTED. 
OPEN OUTPUT AFTER-THE-SORT FOR-THE-PRINTER. 

* 
*SORTING BEGINS AS CONTROL IS PASSED TO THE INPUT PROCEDURE. 
*SORTING IS CONDUCTED ON 3 ASCENDING KEYS DEFINED IN WORK-ING. 
*THE INPUT PROCEDURE IS COMPLETED WHEN THE ENTIRE INPUT FILE IS 
*TRANSFERRED TO THE SORT FILE. 
* 
*THE SORT FILE THEN TRANSFERS CONTROL TO THE OUTPUT PROCEDURE, AND 
*RECORDS ARE WRITTEN ON THE FILE AFTER-THE-SORT IN THE ORDER 
*SPECIFIED BY THE KEY PARAMETERS. THE SORTED RECORDS ARE THEN 
*LISTED AFTER THE SORT FUNCTION IS DONE. 
* 

A-SORT SECTION. 
Pl. SORT WORK-ING ON ASCENDING KEY 3-ACCOUNT 3-TYPE 3-AREA 

INPUT PROCEDURE IS B-SORT THROUGH BI-SORT 
OUTPUT PROCEDURE IS C-SORT THROUGH CI-SORT. 
GO TO OK-PRINT. 

B-SORT SECTION. 
P2. READ TO-BE-SORTED AT END GO TO BI-SORT. 

RELEASE C-FILE FROM A-FILE. 
GO TO B-SORT. 

BI-SORT SECTION. 
P3. CLOSE TO-BE-SORTED. 
C-SORT SECTION. 
P4. RETURN WORK-ING RECORD INTO B-FILE AT END GO TO CI-SORT. 

WRITE B-FI LE. 
GO TO C-SORT. 

CI-SORT SECTION. 
P5. CLOSE AFTER-THE-SORT. 
OK-PRINT SECTION. 
P6. OPEN INPUT AFTER-THE-SORT. 
A-LOOP SECTION. 
P7. READ AFTER-THE-SORT AT END GO TO,A-I-MOVE. 

PERFORM A-MOVE. 
WRITE' D- FI LE. 
GO TO A-LOOP. 

A-MOVE SECTION. 
P8. MOVE B-FILE TO D-FILE. 
A-I-MOVE SECTION. 
P9. EXIT. 
ALL-DONE SECTION. 
PA. CLOSE AFTER-THE-SORT FOR-THE-PRINTER. 

STOP RUN. 

Example 9-28. Sort Program Using INPUT PROCEDURE IS and OUTPUT 
PROCEDURE IS Options (cont.) 

8600 0296-000 9-129 



PROCEDU RE DIVISION Statements 

START 
The START statement positions records logically in a relative or an indexed file for 
sequential record retrieval. 

The general format of this statement is as follows: 

IS EQUAL TO 
IS = 

START file-name 
IS GREATER THAN 

KEY IS> data-name 

IS NOT LESS THAN 
IS NOT < 

[ ; INVALID KEY imperative-statement] 

9-130 

Note: The required'relational characters >, <, and = are not underlined 
to avoid confusion with other symbols. 

Explanation of Format 

file-name 

The file-name must be the name of a file with sequential or dynamic access. 

The file-name must be open in the INPUT or I -0 mode when the START statement is 
executed. 

Execution of the START statement causes the value of the FILE STATUS data item, if 
any, associated with the file-name to be updated. 

KEY 

For relative I/O, any specified data-name must be the data item specified in the 
RELATIVE KEY phrase of the associated file-control entry. 

For indexed I/O, if the KEY phrase is specified, the data-name can reference either of the 
following: 

• A data item specified as a record key associated with the file-name 

• Any alphanumeric data item subordinate to the data item specified as a record key, 
and associated with a file-name with a leftmost character position corresponding to 
the leftmost character position of that record key data item 

If the KEY phrase is not specified, the relational operator IS EQUAL TO is implied. 

8600 0296-000 



PROCEDURE DIVISION Statements 

If execution of the START statement is unsuccessful, the reference key is undefined. 

The data-name can be qualified. 

imperative-statement 

Th~ imperative-statement can be the NEXT SENTENCE phrase. 

See Also 

• For information about the status of I/O operations, refer to "I/O Status" in 
Section 5, "ENVIRONMENT DMSION." 

• For information about the INVALID KEY phrase, refer to "READ" earlier in this 
section. 

Relative I/O Comparison 

The type of comparison specified by the relational operator in the KEY phrase occurs 
between a key associated with a record in the file referenced by the file-name and the 
data item referenced by the RELATIVE KEY clause associated with the file-name. The 
following occurs during a relative I/O comparison: 

• The current-record pointer is positioned to the first logical record in the file with a 
key that satisfies the comparison. 

• If the comparison is not satisfied by any record in the file, then an Invalid Key 
condition exists, execution of the "START statement is unsuccessful, and the position 
of the current-record pointer is undefined. 

Indexed I/O Comparison 

The type of comparison specified by the relational operator in the KEY phrase occurs 
between a key associated with a record in the file referenced by the file-name and a 
data itel!! referenced by the data-name. If the file-name references an indexed file 
and the operands are of unequal size, comparison proceeds as if the longer operand 
were truncated on the right so that its length equals that of the shorter operand. All 
other nonnumeric comparison rules apply, except that the presence of the PROGRAM 
COLLATING SEQUENCE clause does not affect the comparison. The following occurs 
in an indexed I/O comparison: 

• The current record pointer is positioned to the first logical record currently existing 
in the file that has a key that satisfies the comparison. 

• If the comparison is not satisfied by any record in the file, then an Invalid Key 
condition exists, a value of 23 is returned to the status key, execution of the 
START statement is unsuccessful, and the position of the current record pointer is 
undefined. 

If the KEY phrase is not specified, the comparison previously described uses the data 
item referenced in the RECORD KEY clause associated with the file-name. 

8600 0296-000 9-131 



PROCEDURE DIVISION Statements 

Reference Key Use 

STOP 

When the START statement has successfully executed, a reference key is established 
and used in subsequent Format 3 READ statements as follows: 

• If the KEY phrase is not specified, the prime record key specified for the file-name 
becomes the reference key. 

• If the KEY phrase is specified and the data-name is specified as a record key for 
file-name, that record key becomes the reference key. 

• If the KEY phrase is specified and the data-name is not specified as a record key for 
the file-name, the record key with the leftmost character position corresponding to 
the leftmost character position of the data item specified by the data-name becomes 
the reference key. 

The STOP statement permanently ends or temporarily suspends the object program. 

The general format of this statement is as follows: 

STOP {RUN} 
-- literal 

9-132 

Explanation of Format 

STOP RUN 

When the STOP RUN statement is executed, all open files are closed, all storage areas 
are returned to the system, and th~ program· is terminated normally. If the program is 
linked to other programs as a run-unit through the standard COBOL Inter-Program 
Communication (IPC) mechanism, or if the program is operating as a library, these 
programs are also ended. 

STOP literal 

If the STOP literal statement is specified, the literal is displayed to the operator. 
When the operator responds with an OK response for the program, the object program 
continues with the next executable statement. 

If the program is rWl from CANDE, the literal is also displayed on the remote terminal. 
The OK response can also be entered from the terminal. For more information, refer to 
the A Series CANDE Operations Reference Manual. 

The literal can be numeric or nonnumeric, and can be any figurative constant that does 
not include the optional word ALL. 

8600 0296-000 



PROCEDURE DIVISION Statements 

If the literal is numeric, it must be an unsigned integer. 

A STOP literal statement in a called program that is part of an IPC run-unit is ignored 
at execution time. 

See Also 

Execution of the STOP RUN statement in a called program is described under "CALL" 
in this section. 

STRING 
The STRING statement joins several data items to form one data item. This process is 
termed concatenation. 

The general format of this statement is as follows: 

STRING { identifier-l } [, { identifier-2 } ] ... 
literal-l literal-2 

FOR { identifier-9 } 
-- integer-l 

{ 

identifier-3 } 
DELIMITED BY literal-3 

SIZE 

, { identifier-4 } [, identifier-5] ... 
literal-4 , literal-5 

FOR { identifier-lO } 
-- integer-2 

{ 

identifier-6 } 
DELIMITED BY literal-6 

SIZE 

INTO identifier-7 [WITH POINTER identifier-8] 

[ ; ON OVERFLOW imperative-statement] 

8600 0296-000 9-133 



PROCEDU RE DIVISION Statements 

9-134 

Explanation of Format 

All references to identifier-I, identifier-2, identifier-3, identifier-9, literal-I, literal-2, 
literal-3, and integer-l apply. equally to identifier-4, identifier-5, identifier-6, identifier-IO, 
literal-4, literal-5, literal-6, and integer-2, respectively. (Identifier-9, integer-I, 
identifier-IO, andinteger-2 are Unisys extensions.) 

All literals must be described as nonnumeric literals, and all identifiers except 
identifier-8, identifier-9, and identifier-lO must be described implicitly or explicitly as 
USAGE IS DISPLAY 

When a sending item and a receiving item in the same STRING statement share a 
part, but not all, of their storage areas, the result of the execution of the statement is 
undefined. 

identifier -lor literal-I 

Identifier-lor literal-l and any repetition represent the sending items. 

Characters from literal-I, literal-2 or from the contents of identifier-I, identifier-2 are 
transferred to identifier-7 under the rules for alphanumeric-to-alphanumeric moves, 
except that no space-filling is provided. . 

Literal-l can be any figurative constant that does not include the optional word ALL. 

If identifier-! or any repetition is an elementary numeric data item, then the data item 
must be described as an integer. 

When a figurative constant is specified as literal-I, it refers to an implicit I-character 
data item with USAGE IS DISPLAY 

FOR (Unisys Extension) 

If the FOR phrase is specified,· the contents of identifier-I, identifier-2 or the contents of 
literal-I, literal-2 are transferred to identifier-7 in the sequence specified in the STRING 
statement. This sequence begins with the leftmost character and continuing from left to 
right until the end of identifier-7 is reached, or until the number of characters specified 
by integer-lor by the contents of identifier-9 are moved. 

Identifier-9 and identifier-IO must represent data items that are elementary numeric 
integers. 

Integer-l and identifier-9 indicate the number of characters to be moved. 

DELIMITED BY identifier-3 or Iiteral-3 

This phrase specifies the characters that delimit the end of the data item to be joined. 

The contents of identifier-I, identifier-2 or the contents of literal-I, literal-2 are 
transferred to identifier-7 in the sequence specified in the STRING statement. This 
sequence begins with the leftmost character and continuing from left to right until 

8600 0296-000 



PROCEDURE DIVISION Statements 

the end of the data item is reached, or until the characters specified by literal-3 or by 
the contents of identifier-3 are encountered. The characters specified by literal-3 or 
identifier-3 are not transferred. 

When a figurative constant is used as a delimiter, it stands for a single-character, 
nonnumeric literal. 

When a figurative constant is specified as literal-3, it refers to an implicit l-character 
data item with display usage. Literal-3 can be any figurative constant that does not 
include the optional word ALL. 

Literal-3 or identifier-3 indicates the characters delimiting the move. 

DELI MITED BY SIZE 

If the SIZE phrase is used, the complete data item defined by identifiers or literals is 
moved. 

The contents of literal-I, literal-2 or the contents of identifier-l, identifier-2 are 
transferred (in the sequence specified in the STRING statement) to identifier-7 until all 
the data has been transferred or until the end of identifier-7 is reached. 

INTO 

Identifier-7 represents the receiving item. 

When characters are transferred to identifier-7, they are moved in the following two 
ways: 

• As if the characters were moved one at a time from the source into the character 
position of the data item referenced by identifier-7 and designated by the value 
associated with identifier-So 

• As if identifier-8 were increased by one prior to the movement of the next character. 
The value associated with identifier-S is changed during execution of the STRING 
statement only as specified in the previous paragraph. 

At the end of the execution of the STRING statement, only the portion ofidentifier-7 
that was referenced during the STRING statement's execution is changed. 

Identifier-7 must represent an alphanumeric data item without editing symbols or the 
JUSTIFIED clause. 

POINTER 

This option indicates the starting position for data to be moved to the receiving field. 

The initial value of identifier-S must not be less than 1. 

Identifier-8 must represent an elementary-numeric-integer data item large enough to 
. contain a value equal to the size of the area referenced by identifier-7 plus 1. 

8600 0296-000 9-135 



PROCEDURE DIVISION Statements 

If, at any time during or after the STRING-statement initialization but before the 
completion of the STRING statement execution, the value of identifier-8 is less than 1 or 
exceeds the number of character positions in identifier-7, no further data is transferred 
to identifier-7. The imperative-statement in the ON OVERFLOW phrase is then 
executed, if specified. ' 

If the POINTER phrase is not specified, the following overflow rules apply as if 
identifier-8 were specified with an initial value of 1. 

ON OVERFLOW 

An overflow condition occurs when the receiving field is full and the sending field still has 
characters to be moved, or when the pointer does not specify a valid value. 

If the ON OVERFLOW phrase is not specified when the overflow conditions are 
encountered, control is transferred to the next executable statement. 

The imperative-statement can be the NEXT SENTENCE phrase. 

SUBTRACT 
The SUBTRACT statement subtracts one numeric data item or the sum of two or more 
numeric data items from one or more items, and sets the values of one or more items 
equal to the results. 

The SUBTRACT statement has the following three formats: 

Format 

1 

2 

3 

Format 1 

Explanation 

Adds the operands preceding the word FROM and subtracts the total from the 
current value of identifier-m; the results of the subtraction are stored in 
identifier-no This process is repeated for each operand following the word FROM. 

Adds the operands preceding the word FROM and subtracts the total from 
identifier -m. The resu It is stored in identifier -n. 

Subtracts corresponding items. 

SUBTRACT {identifier-I} [,{identifier-2}] ... 
. literal-I literal-2 

FROM identifier-m [ ROUNDED] [, identifier-n [ ROUNDED J ] ... 

[ ; ON SIZE ERROR imperative-statement J 

9-136 8600 0296-000 



PROCEDURE 'DIVISION Statements 

Explanation of Format 1 

In Format 1, all literals or identifiers preceding the word FROM are added together. 
This total is subtracted from the current value of identifier-m. The result is immediately 
stored in identifier-m; the process is then repeated for each operand following the word 
FROM. 

Each identifier must refer to a numeric elementary item. 

Each literal must be a numeric literal. 

The imperative-statement can be the NEXT SENTENCE phrase. 

Format 2 

SUBTRACT {identifier-I} [, i~entifier-2l ... FROM {identifier-m} 
literal-l ,literal-2 -- literal-m 

GIVING identifier-n [ROUNDED] [, identifier-o [ROUNDED]] ... 

[; ON SIZE ERROR imperative-statement] 

Explanation of Format 2 

In Format 2, all literals or identifiers preceding the word FROM are added together, 
the sum is subtracted from literal-m or identifier-m, and the result of the subtraction is 
stored as the new value ofidentifier-n, identifier-o, and so on. 

Each identifier must refer to a numeric elementary item. 

Each identifier following the word GIVING must refer to either an elementary numeric 
item or an elementary numeric-edited item. 

Each literal must be a numeric literal. 

8600 0296-000 9-137 



PROCEDURE DIVISION Statements 

Format 3 

SUBTRACT {;SPONDING} identifier-l 

FROM identifier-2 [ROUNDED] 

[ ; ON SIZE ERROR imperative-statement] 

Explanation of Format 3 

If Format 3 is used, data items in identifier-l are subtracted from, and stored into, 
corresponding data items in identifier-2. 

Each identifier must refer to a group item. 

CORR is an abbreviation for CORRESPONDING. 

The imperative-statement can be the NEXT SENTENCE phrase. 

General Rules 

When a sending item and a receiving item in the same SUBTRACT statement share a 
part, but not all, of their storage areas, the result of the execution of the statement is 
undefined. 

Note that unpredictable results occur in a Format 1 SUBTRACT statement if the same 
operand appears more than once in the list of operands that follows the word FROM in 
the statement. For example, assuming X contains the value 9 and Y contains the value 2, 
the value of X is 7 instead of 3 after execution of the following statement: 

SUBTRACT Y FROM X, X, X 

See Also 

• For information on the format rules for arithmetic statements, refer to "Common 
Rules for Arithmetic Statements" in Section 8, "PROCEDURE DIVISION 
Concepts." 

• For information about corresponding fields in group items, refer to 
"CORRESPONDING Phrase" in Section 8, "PROCEDURE DIVISION Concepts." 

• For information about storing the result of the subtraction in more than one field, 
refer to "Calculating Multiple Results with One Arithmetic Statement" in Section 8, 
"PROCEDURE DIVISION Concepts." 

9-138 86000296-000 



PROCEDURE DIVISION Statements 

• For information on truncation and rounding of results, refer to "ROUNDED Phrase" 
in Section 8, "PROCEDURE DIVISION Concepts." 

• For information on handling Size Error conditions, refer to "SIZE ERROR Phrase" 
in Section 8, "PROCEDURE DIVISION Concepts." 

UNLOCK (Unisys Extension) 
The UNLOCK statement is used in an asynchronous processing environment in 
conjunction with the LOCK statement. 

The general format of this statement is as follows: 

UNLOCK {lOCk-identifier } 
event-identifier 

Explanation of Format 

The UNLOCK statement acts as the logical opposite of the LOCK statement by 
releasing the imposed conunon resource restriction. 

The system intrinsic LIBERATE function is invoked by the UNLOCK statement. 

Lock-identifiers must be declared with the phrase USAGE IS LOCK. Event-identifiers 
must be declared with the phrase USAGE IS EVENT or event-valued task attributes. 

See Also 

For information about locking common storage areas and testing for a locked condition, 
refer to "LOCK (Unisys Extension)" earlier in this section. 

UNSTRING 
The UNSTRING statement separates contiguous data in a sending field and places it in 
multiple receiving fields. 

When a sending item and a receiving item in the same UNSTRING statement share a 
part, but not all, of their storage areas, the result of the execution of the statement is 
undefined. 

86000296-000 9-139 



PROCEDU RE DIVISION Statements 

The UNSTRING statement has the following two formats: 

Format 

1 

2 

Format 1 

Explanation 

Separates one field into a number of fields. A delimiter specifies the location at 
which to separate the field. 

Specifies a number of consecutive characters in a sending field to be moved to a 
receiving field. 

UNSTRING identifier-! lIteral-! 
[

DELIMITED BY [ALL] {i~entifier-2} 1 
[

OR [ALL] {identifier-3 }] ... 
'- -- literal-2 

INTO identifier-4 [, DELIMITER IN identifier-5] [, COUNT IN identifier-6] 

[, identifier-7 [, DELIMITERINidentifier-8] [, COUNT IN identifier-9]] ... 

[, WITH POINTER identifier-IO] [, TALLYING IN identifier-II] 

[; ON OVERFLOW imperative-statement] 

9-140 

Explanation of Format 1 

Each literal must be a nonnumeric literal and can be any figurative constant that does 
not include the optional word ALL. Identifier-!, identifier-2, identifier-3, identifier-5, and 
identifier-8 must be described as alphanumeric data items. 

Identifier-6, identifier-9, identifier-IO, and identifier-I! must be described as 
elementary-numeric-integer data items. 

All references in this discussion to identifier-2, literal-I, identifier-4, identifier-5, 
and identifier-6 apply equally to identifier-3, literal-2, identifier-7, identifier-8, and 
identifier-9, respectively. (Integer-2 is a Unisys extension.) 

identifier -1 

Identifier-! represents the sendinR area. 

8600 0296-000 



PROCEDURE DIVISION Statements 

DELIMITED BY 

Literal-lor identifier-2 specifies a delimiter. 

ALL 

When the optional ALL phrase is specified, one or more contiguous occurrences of the 
delimiter are considered to be one delimiter (for matching purposes), but only one of 
these occurrences is moved to the receiving area for delimiters. 

literal-lor identifier-2 

Each literal-lor identifier-2 represents one delimiter. When a delimiter contains two 
or more characters, all of the characters must be present in contiguous positions of the 
sending item, in the order given, to be recognized as a delimiter. 

When the program encounters two contiguous delimiters, the current receiving area is 
eith~r space- or zero-filled, according to the description of the receiving area. 

OR 

When two or more delimiters are specified in the DELIMITED BY phrase, an Or 
condition exists between them. Each delimiter is compared to the sending field. If a 
match occurs, multiple characters in the sending field are considered to be a single 
delimiter. No characters in the sending field can be considered a part of more than one 
delimiter. 

Each delimiter is applied to the sending field in the sequence specified in the 
UNSTRING statement. 

When a figurative constant is used as a deliiniter, it stands for a single-character, 
nonnumeric literal. 

INTO 

Identifier-4 represents the data receiving area and is described as USAGE IS DISPLAY. 

Identifier-4 can be described as one of the following: 

• Alphabetic (except that the symbol B cannot be used in the PICTURE character 
string) 

• Alphanumeric (except that the symbol P cannot be used in the PICTURE character 
string) 

• Numeric (except that the symbol P cannot be used in the PICTURE character 
string) 

8600 0296-000 9-141 



PROCEDURE DIVISION Statements 

9-142 

DELI MITER IN 

If several delimiters are used to split a field, the DELIMITED IN option can be used to 
identify the delimiter that unstrung the field. 

Identifier-5 represents the receiving area for delimiters. 

The DELIMITER IN phrase can be specified only if the DELIMITED BY phrase is 
specified. 

COUNT IN 

This phrase counts the number of characters in each field. 

Identifier-6 represents the number of characters in identifier-l that are isolated by 
the delimiters for the move to identifier-4. This value does not include the number of 
delimiter characters. 

The COUNT IN phrase can be specified only if the DELIMITED BY phrase is specified. 

POINTER 

Identifier-IO must be described as an elementary-numeric-integer data item. 

The initializatiori of the contents of the data items associated with the POINTER phrase 
is your responsibility. 

The contents ofidentifier-IO are incremented by 1 for each character examined in 
identifier-I. When execution of an UNSTRING statement with a POINTER phrase is 
completed, identifier-IO contains a value equal to its initial value plus the number of 
characters examined in identifier-I. 

TALLYING 

Identifier-II is a counter that records the number of data items acted on during the 
execution of an UNSTRING statement. When the execution of an UNSTRING 
statement with a TALLYING phrase is completed, identifier-II contains a value equal to 
its initial value plus the number of data receiving items acted upon. 

Identifier-II must be described as an elementary-numeric-integer data item. 

The initialization of the contents of the data items associated with the TALLYING 
phrase is your responsibility. 

·8600 0296-000 



PROCEDURE DIVISION Statements 

ON OVERFLOW 

Either of the following situations causes an overflow condition: 

• An UNSTRING statement is initiated, and the value in identifier-10 is less than 1 or 
greater than the size of identifier-l. 

• During execution of an UNSTRING statement, all data receiving areas have been 
acted upon and identifier-l contains characters that have not been examined. 

When an overflow condition exists, the unstring operation ends. If an ON OVERFLOW 
phrase is specified, the imperative-statement included in the ON OVERFLOW phrase is 
executed. If the ON OVERFLOW phrase is not specified, control is transferred to the 
next executable statement. 

The imperative-statement can be the NEXT SENTENCE phrase. 

Rules for Data Transfer 

When the UNSTRING statement is i.,.~tiated~ the current receiving area is identifier-4. 
Data is transferred from identifier-l to identifier-4 according to the following rwes: 

• If the POINTER phrase is specified, the string of characters referenced by 
identifier-l is examined beginning with the relative character position indicated by 
the value of identifier-10. If the POINTER phrase is not specified, the string of 
characters is examined beginning with the leftmost character position. 

• If the DELIMITED BY phrase is specified, the examination proceeds from left to 
right until a delimiter specified either by literal-lor by identifier-2 is encountered. 
If the DELIMITED BY phrase is not specified, the number of characters examined 
equals the size of the current receiving area. However, if the sign of the receiving 
item is defined as occupying a separate character position, the number of characters 
examined is one less than the size of the current receiving area. 

If the end of identifier-l is encountered before the delimiting condition is met, the 
examination terminates with the last character examined. 

• The characters thus examined, except any delimiting characters, are treated as 
elementary alphanumeric data items and are moved into the current receiving area 
according to the rules for the MOVE statement. 

• If the DELIMITER IN phrase is specified, the delimiting characters are treated as 
elementary alphanumeric data items and are moved into identifier-5 according to the 
rules for the MOVE statement. If the delimiting condition is the end of identifier-l, 
then identifier-5 is space-filled. 

• If the COUNT IN phrase is specified, a value equal to the number of characters thus 
examined, except any delimiting characters, is moved into identifier-6 according to 
the rwes for a MOVE statement with elementary items. 

86000296-000 9-143 



PROCEDURE DIVISION Statements 

• If the DELIMITED BY phrase is specified, the string of characters is further 
examined beginning with the first character to the right of the delimiter. If the 
DELIMITED BY phrase is not specified, the stririg of characters is further examined 
beginning with the character to the right of the last character transferred. 

• After data is transferred to identifier-4, the current receiving area is identifier-7. 
The action· described in the preceding paragraphs is repeated until the characters in 
identifier-I are depleted or until no receiving areas remain. 

Format 2 (Unisys Extension) 

UNSTRING identifier-l INTO identifier-4 FOR {~dentifielr-12} 
-- mteger-

[ 
.. {identifier-13}] ,ldentifier-7 FOR. 2 ... -- mteger-

[, WITH POINTER identifier-IO] [, TALLYING IN identifier-II] 

[; ON OVERFLOW imperative-statement] 

9-144 

Explanation of Format 2 

All references to identifier-4, identifier-12, and integer-I apply equally to identifier-7, 
identifier-13, and integer-2, respectively. 

identifier-l 

Identifier-l represents the sending area and must be described as an alphanumeric data 
item. 

identifier -4 

Identifier-4 represents the data receiving area and must be described as USAGE IS 
DISPLAY. 

Identifier-4 can be described as alphabetic (except that the symbol B cannot be used in 
the PICTURE character string), alphanumeric, or numeric (except that the symbol P 
cannot be used in the PICTURE character string). 

The imperative-statement can be the NEXT SENTENCE phrase. 

8600 0296-000 



PROCEDURE DIVISION Statements 

FOR 

Integer-lor identifier-l2 specifies the number of characters in identifier-l that are 
moved to identifier-4. If the number of characters remaining in identifier-l is less than 
the number of characters specified by integer-lor referenced by identifier-l2, then the 
short field is transferred. Any characters examined, except delimiting characters, are 
treated as elementary alphanumeric data items and are moved into the current receiving 
area according to the rules for the MOVE statement. 

Identifier-l2 must be described as an elementary-numeric-integer data item (except that 
the symbol P cannot be used in the PICTURE character string). 

POINTER 

When the UNSTRING statement is initiated, the current receiving area is identifier-4. 
Data is transferred from identifier-l to identifier-4 according to the following rules: 

• If the POINTER phrase is specified, the string of characters referenced by 
identifier-l is examined beginning with the relative character position indicated by 
the value ofidentifier-lO. If the POINTER phrase is not specified, the string of 
characters is examined beginning with the leftmost character position. 

• The characters thus examined, except any delimiting characters, are treated as 
elementary alphanumeric data items and are moved into the current receiving area 
according to the rules for the MOVE statement. 

Identifier-lO must be described as an elementary-numeric-integer data item. 

The initialization of the contents of the data items associated with the POINTER phrase 
is your responsibility. 

The contents of identifier-lO are incremented by one for each character examined in 
identifier-!. When execution of an UNSTRING statement with a POINTER phrase is 
completed, identifier-lO contains a value equal to the initial value plus the number of 
characters examined in identifier-l. 

TALLYING 

Identifier-ll is a counter that records the number of data items acted on during the 
execution of an UNSTRING statement. When the execution of an UNSTRING 
statement with a TALLYING phrase is completed, identifier-ll contains a value equal to 
its initial value plus the number of data receiving items acted upon. 

Identifier-ll must be described as an elementary-numeric-integer data item. 

The initialization of the contents of the data items associated with the TALLYING 
phrase is your responsibility. 

8600 0296--000 9-145 



PROCEDURE DIVISION Statements 

9-146 

ON OVERFLOW 

Each of the following situations causes an overflow condition: 

• An UNSTRING statement is initiated, and the value in identifier-IO is less than I or 
greater than the size of identifier-I. 

• During execution of an UNSTRING statement, all data receiving areas have been 
acted upon and identifier-I contains characters that have not been examined. 

• An UNSTRING statement is initiated, and the value in identifier-12 is less than I or 
greater than the size of identifier-I. (This is a Unisys extension.) 

• During execution of an UNSTRING statement, all data receiving areas have been 
acted upon and the number of characters acted upon is less than the value of 
identifier-12 or integer-I. (This is a U nisys extension.) 

When an overflow condition exists, the unstring operation ends. If an ON OVERFLOW 
phrase is specified, the imperative-statement included in the ON OVERFLOW phrase is 
executed. If the ON OVERFLOW phrase is not specified, control is transferred to the 
next executable statement. 

The imperative-statement can be the NEXT SENTENCE phrase. 

See Also 

For information about the rules of move operations, refer to "MOVE" earlier in this 
. section. 

Examples of Format 1 

The following five examples illustrate Format I of the UNSTRING statement. 

Example 9-29 causes the contents of identifier-l to be moved to identifier-4. 

UNSTRING identifier-l INTO identifier-4. 

Variable 

identifier -1 

identifier-4 

Before 

123ABC 

3456789 

After 

123ABC . 

123ABC 

Example 9-29. Coding a Simple UNSTRING Statement 

8600 0296-000 



PROCEDU RE DIVISION Statements 

Example 9-30 causes the first three characters of identifier-1 to be moved to identifier-4. 
The delimiter G ends the unstring operation. 

UNSTRING identifier-l DELIMITED BY literal-l INTO identifier-4. 

Variable 

Iiteral-1 

identifier -1 

identifier -4 

Before 

G 

STAGE 

CLUMP 

After 

G 

STAGE 

STA 

Example 9~30. Coding an UNSTRING Statement Using the DELIMITED BY Option 

Example 9-31 causes the characters before the delimiter S to be moved to identifier-4. 
Identifier-7 becomes the receiving field, and the remaining characters are moved to this 
field. 

UNSTRING identifier-l DELIMITED BY ALL literal-l INTO identifier-4, 
identifier-7. 

Variable 

identifier -1 

literal-1 

identifier -4 

identifier -7 

Before 

MISSIN 

S 

WWXXVYZZ 

ABC123 

After 

MISSIN 

S 

MI 

IN 

Example 9-31. Coding an UNSTRING Statement Using the DELIMITED BY ALL 
Option 

At the end of the unstring operation in Example 9-32, the pointer points one character 
beyond the last character processed. Therefore, the pointer, which is identifier-10, 
equals 9 because it points to the ninth character in the string. 

UNSTRING identifier-l INTO identifier-4 WITH POINTER identifier-10. 

Variable 

identifier -1 

identifier -4 

identifier -10 

Before 

BASEBALL 

FOOTBALL 

5 

After 

BASEBALL 

BALL 

9 

Example 9-32. Coding an UNSTRING Statement Using the WITH POINTER Option 

8600 0296-000 9-147 



PROCEDURE DIVISION Statements 

9-148 

In Example 9-33, the sending string, ZSITXBYXRUN, cannot be entirely processed. 
The unstring operation ends before the remaining characters R, U, and N are 
encountered. This action causes an overflow condition. 

The TALLYING IN phrase starts a count of the number of receiving strings filled. 

UNSTRING identifier-l DELIMITED BY literal-l INTO identifier-4, 
DELIMITER IN identifier-5, COUNT IN identifier-6, identifier-7, 
DELIMITER IN identifier-8, COUNT IN identifier-9 WITH POINTER 
identifier-10 TALLYING IN identifier-II. 

Variable 

Iiteral-1 

identifier -1 

identifier -4 

identifier -5 

identifier -6 

identifier -7 

identifier -8 

identifier-9 

identifier -10 

identifier-II 

Before 

X 

ZS.lTXBYXRUN 

ABCDEF 

GHIJKL 

2 

After 

X 

ZSITXBYXRUN 

SIT 

X 

3 

BY 

X 

2 

9 

2 

Example 9-33. Coding an UNSTRING Statement U,sing Many Options 

Examples of Format 2 

The following ~xamples illustrate Format 2 of the UNSTRING statement. 

In Example 9-34, use of the FOR phrase enables a specific number of consecutive 
characters. in a sending string to be moved to a receiving string. 

UNSTRING identifier-1 INTO identifier-4 FOR identifier-12, 
identifier-7 FOR identifier-13. 

Variable Before After 

identifier -1 XTOXBEXOFXDO XTOXBEXOFXDO 

identifier-4 SUXYZ XTO 

identifier -12 3 3 

identifier -7 CDEGJKLM XBEXOFX 

identifier -13 7 7 

Example 9-34. Coding an UNSTRING Statement Using the FOR Option 

8600 0296-000 



PROCEDURE DIVISION Statements 

In Example 9-35, use of the FOR phrase enables a specific number of consecutive 
characters in a sending string to be moved to a receiving string. The string of characters 
examined begins at position 2, as indicated by the POINTER phrase. 

Variable Before After 

identifier -1 WXYZABCD WXYZABCD 

identifier -12 5 5 

identifier-10 2 7 

identifier -4 CARTON XYZAB 

UNSTRING identifier-l INTO identifier-4 FOR identifier-12 with POINTER 
identifier-10. 

Example 9-35. Coding an UNSTRING Statement Using FOR, WITH POINTER Options 

Example 9-36 is a sample program that uses the preceding example fragments from both 
Format 1 and 2. 

002000 IDENTIFICATION DIVISION. 
004000 ENVIRONMENT DIVISION. 
006000 DATA DIVISION. 
008000 WORKING-STORAGE SECTION. 
010000 01 SOURCE6 PIC X(6). 
012000 01 SOURCES PIC X(5). 
014000 01 SOURCE8 PIC X(8). 
016000 01 SOURCE11 PIC X(ll). 
018000 01 DEST PIC X(8). 
020000 01 OTHERDEST PIC X(8). 
022000 77 P PIC S9(11) BINARY. 
024000 77 T PIC S9(11) BINARY. 
026000 77 D PIC X. 
028000 77 D2 PIC X. 
030000 77 C PIC 9. 
032000 77 C2 PIC 9. 
034000 PROCEDURE DIVISION. 
036000 LBL. 
038000 
040000 
042000 
044000 
046000 

. 048000 
050000 
052000 
054000 
056000 
058000 
060000 
062000 
064000 
066000 

86000296-000 

MOVE 1123ABC" TO SOURCE6. 
MOVE "3456.789" TO DEST. 
DISPLAY "1. II SOURCE6 II II DEST. 
UNSTRING SOURCE6 INTO DEST. 
DISPLAY "1. II SOURCE6 II II DEST. 

MOVE "STAGE" TO SOURCES. 
MOVE "CLUMP" TO DEST. 
DISPLAY "2. II SOURCES II II DEST. 
UNSTRING SOURCES DELIMITED BY "G" INTO DEST. 
DISPLAY "2. II SOURCES II II DEST. 

MOVE IIMISSIN II TO SOURCE6. 
MOVE IIWWXXYYZZ II TO DEST. 
MOVE IIABC123" TO OTHERDEST. 

Example 9-36. Sample Program Using Format 1 and 2 Examples 

9-149 



PROCEDURE DIVISION Statements 

9-150 

DISPLAY "3. II SOURCE6 II II DEST II II OTHERDEST. 1368131313 
13713131313 
1372131313 
1374131313 

UNSTRING SOURCE6 DELIMITED BY ALL "S" INTO DEST, OTHERDEST. 
DISPLAY "3. II SOURCE6 II II DEST II II OTHERDEST. 

1376131313 
1378131313 
13813131313 
1382131313 
1384131313 
1386131313 
1388131313 

MOVE "BASEBALL" TO SOURCE8. 
MOVE "FOOTBALL II TO DEST. 
MOVE 5 TO P. 
DISPLAY 114. II SOURCE8 II II DEST II II P. 
UNSTRING SOURCE8 INTO DEST WITH POINTER P. 
DISPLAY "4. II SOURCE8 II II DEST II II P. 

13913131313 MOVE "ZSITXBYXRUN II TO SOURCEll 
1392131313 MOVE IIABCDEF II TO DEST. 
1394131313 MOVE IIGHIJKL II TO· OTHERDEST. 
1396131313 MOVE 2 TO P. 
1398131313 MOVE 13 TO T. 
11313131313 MOVE II II TO 0, 02. 
1132131313 MOVE 13 TO C, C2. 
1134131313 DISPLAY "5. II SOURCEll II II DEST II II 0 II. II C. 
1136131313 DISPLAY 115. II OTHERDEST II II 02 II II C2 II II P II II T. 
1138131313 UNSTRING SOURCEll DELIMITED BY IIX II INTO DEST 
1113131313 DELIMITER IN 0, COUNT IN C, 
112131313 OTHERDEST, DELIMITER IN 02, COUNT IN C2 
114131313 WITH POINTER P TALLYING IN T. 
116131313 DISPLAY 115. II SOURCE11 II II DEST II II 0 II II C. 
118131313 DISPLAY 115. II OTHERDEST II II 02 II II C2 II II P II II T. 
1213131313 
122131313 MOVE IIXTOXBEXOFXDO II TO SOURCE11. 
124131313 MOVE IISUXYZ" TO DEST. 
126131313 MOVE 3 TO C. 
128131313 MOVE "CDEGJKLW' TO OTHERDEST. 
1313131313 MOVE 7 TO C2. 
132131313 rISPLAY 116. II SOURCEll II II DEST II II C II II OTHERDEST II II C2. 

134131313 UNSTRING SOURCE11 INTO DEST FOR C, OTHERDEST FOR C2. 
136131313 DISPLAY 116. II SOURCEll II II DEST II II C II II OTHERDEST II II C2. 

138131313 
1413131313 MOVE IIWXYZABCD II TO SOURCE11. 
142131313 MOVE IICARTON II TO DEST. 
144131313 MOVE 5 TO C. 
146131313 MOVE 2 TO P. 
148131313 DISPLAY 117. II SOURCEll II II C II II P II II DEST. 
1513131313 UNSTRING SOURCE11 INTO DEST FOR C WITH POINTER P. 
152131313 DISPLAY 117. II SOURCEll II II C II II P II II DEST. 
154131313 
156131313 STOP RUN. 

Example 9-36. Sample Program Using Format 1 and 2 Examples (cont.) 

8600 0296-000 



USE 

PROCEDURE DIVISION Statements 

Example 9-37 shows the output from the previous program. 

RUN UNSTRING/TEST 
#RUNNING 5109 
#5109 DISPLAY:1. 123ABC 3456789 • 
#5109 DISPLAY:1. 123ABC 123ABC • 
#5109 DISPLAY:2. STAGE CLUMP 
#5109 DISPLAY:2. STAGE STA 
#5109 DISPLAY:3. MISSIN WWXXYYZZ ABC123 • 
#5109 DISPLAY:3. MISSIN MI IN 
#5109 DISPLAY:4. BASEBALL FOOTBALL +00000000005. 
#5109 DISPLAY:4. BASEBALL BALL +00000000009. 
#5109 DISPLAY:5. ZSITXBYXRUN ABCDEF 0. 
#5109 DISPLAY:5. GHIJKL 0 +00000000002 +00000000000. 
#5109 DISPLAY:5. ZSITXBYXRUN SIT X 3. 
#5109 DISPLAY:5. BY X 2 +00000000009 +00000000002. 
#5109 DISPLAY:6. XTOXBEXOFXD SUXYZ 3 CDEGJKLM 7. 
#5109 DISPLAY:6. XTOXBEXOFXD XTO 3 XBEXOFX 7. 
#5109 DISPLAY:7. WXYZABCD 5 +00000000002 CARTON . 
#5109 DISPLAY:7. WXYZABCD 5 +00000000007 XYZAB 

Example 9-37. Display from UNSTRING Program 

A USE statement, when present, must immediately follow a section header in the 
DECLARATIVES SECTION and must be followed by a period. The remainder of the 
sections consist of any number of procedural paragraphs that define the procedures. to be 
used. 

The USE statement itself is never executed; it merely defines conditions that call for the 
execution of USE procedures. 

The USE statement has the following four formats: 

Format 

1 

2 

3 

4 

Explanation 

Specifies supplemental procedures for 1-0 error and tape-label handling 

Specifies procedures for tape-file-Iabel handling 

Specifies procedures to be employed in a parallel processing environment 

Specifies interrupt procedures 

8600 0296-000 9-151 



PROCEDURE DIVISION Statements 

OUTPUT 

The exception handling procedures are executed for any file opened in output mode, 
or in the process of being opened in output mode, except if the file is referenced by 
file-name in another USE statement specifying the same condition. 

I/O 

The exception handling procedures are executed for any file opened in I/O mode, or in 
the process of being opened in I/O mode, except if the file is referenced by file-name in 
another USE statement specifying the same condition. 

EXTEND 

The EXTEND phrase applies only to sequentially organized files. The exception 
handling procedures are executed for any file opened in extended mode, or in the process 
of being opened in extended mode, except if the file is referenced by file-name in another 
USE statement specifying the same condition. 

Format 2 

USE {AFTER } STANDARD BEGINNING] rLE] LABEL PROCEDURE ON 
- BEFORE ENDING REEL 

{

INPUT } 
OUTPUT 
file-name-l [, file-name-2] ... 

Explanation of Format 2 

Format 2 enables you to define up to nine tape labels (header and trailer records) that 
are each 80 characters long. The first four characters of each labei .are used by the 
system for maintaining the label identity. For example, header labels contain UHLn, and 
trailer labels contain UTLn, where n can be a number from 1 through 9. You can use the· 
remaining 76 characters for storing any desired information. 

You can define the labels in the WORKING-STORAGE SECTION or in the FILE 
SECTION in the respective file-description (FD) entry for the file. If you use multiple 
labels, you must define all labels in the same area, either in the FD entry, or in the 
WORKING-STORAGE SECTION. 

AFTER or BEFORE 

The AFTER and BEFORE phrases determine when the I/O subsystem executes the 
designated procedures. 

8600 0296-000 9-153 



PROCEDURE DIVISION Statements 

The INPUT and OUTPUT phrases can each be specified only once for any USE AFTER 
LABEL or USE BEFORE LABEL statement. The procedures are not executed for any 
file whose file-description (FD) entry specifies LABEL RECORDS ARE OMITTED. 

When the INPUT phrase or OUTPUT phrase is used, references to label data items 
must be qualified. 

file-name 

When the USE BEFORE LABEL file-name-l clause is specified, the designated 
procedure is executed before the tape header or trailer records are read or written. 

When the USE AFTER LABEL file-name-l clause is specified, the designated procedure 
is executed after the tape header or trailer records are read 'or written. 

The appearance of file-name-l in a USE AFTER LABEL or a USE BEFORE LABEL 
statement must not cause the simultaneous request for execution of more than one 
USE AFTER LABEL or USE BEFORE LABEL procedure. That is, when file-name-l is 
specified explicitly, no other USE AFTER LABEL or USE BEFORE LABEL statement 
can apply to file-name-I. The file-description (FD) entry for file-name-l must not specify 
LABEL RECORDS ARE OMITTED. 

The program must not open or close the file associated with the USE AFTER LABEL or 
USE BEFORE LABEL statement within that procedure. 

Those files referenced by file-name-l in USE AFTER LABEL or USE BEFORE LABEL 
statements are not included in any input or output procedures. 

The same file-name can appear in a.different specific arrangement of the format. The 
appearance of a file-name in a USE statement must not cause a simultaneous request for 
execution of more than one USE procedure. 

See Also 

Further information on labels can be found in the I/O Subsystem Programming Guide. 

Format 3 (Unisys Extension) 

{

EXTERNAL {identifie~-l } AS PROCEDURE} 
USE mnemomc-name 

AS GLOBAL PROCEDURE 

[

; WITH {local-storage-name-l} [, {lOCal-storage-name-2 }] .. 'J 
file-name-l file-name-2 

; USING identifier-2 [, identifier-3] ... 

8600 0296-000 9-155 



USE 

PROCEDU RE DIVISION Statements 

Example 9-37 shows the output from the previous program. 

RUN UNSTRING/TEST 
#RUNNING 5109 
#5109 DISPLAY:1. 123ABC 3456789 . 
#5109 DISPLAY:1. 123ABC 123ABC . 
#5109 DISPLAY:2. STAGE CLUMP 
#5109 DISPLAY:2. STAGE STA 
#5109 DISPLAY:3. MISSIN WWXXYYZZ ABC123 . 
#5109 DISPLAY:3. MISSIN MI IN 
#5109 DISPLAY:4. BASEBALL FOOTBALL +00000000005. 
#5109 DISPLAY:4. BASEBALL BALL +00000000009. 
#5109 DISPLAY:5. ZSITXBYXRUN ABCDEF 0. 
#5109 DISPLAY:5. GHIJKL 0 +00000000002 +00000000000. 
#5109 DISPLAY:5. ZSITXBYXRUN SIT X 3. 
#5109 DISPLAY:5. BY X 2 +00000000009 +00000000002. 
#5109 DISPLAY:6. XTOXBEXOFXD SUXYZ 3 CDEGJKLM 7. 
#5109 DISPLAY:6. XTOXBEXOFXD XTO 3 XBEXOFX 7. 
#5109 DISPLAY:7. WXYZABCD 5 +00000000002 CARTON . 
#5109 DISPLAY:7. WXYZABCD 5 +00000000007 XYZAB 

Example 9-37. Display from UNSTRING Program 

A USE statement, when present, must immediately follow a section header in the 
DECLARATIVES SECTION and must be followed by a period. The remainder of the 
sections consist of any number of procedural paragraphs that define the procedures. to be 
used. 

The USE statement itself is never executed; it merely defines conditions that call for the 
execution of USE procedures. 

The USE statement has the following four formats: 

Format 

1 

2 

3 

4 

Explanation 

. Specifies supplemental procedures for 1-0 error and tape-label handling 

Specifies procedures for tape-file-Iabel handling 

Specifies procedures to be employed in a parallel processing environment 

Specifies interrupt procedures 

8600 0296-000 9-151 



PROCEDURE DIVISION Statements 

Format 1 

{file-name} ... 
INPUT 

USE AFTER STANDARD {EXCEPTION} PROCEDURE ON ~ OUTPUT > 
- ERROR 1-0 

9-152 

EXTEND 

Explanation of Format 1 

The USE AFTER statement specifies procedures for I/O exception handling. 

Mter execution of a USE procedure, control is returned to the invoking routine. 

The status key of a file can be used to determine the nature of the exception that 
occurred. 

In a USE procedure, no reference can be made to any nondeclarative procedure. 
Conversely, in the nondeclarative portion of a program, no reference can be made to 
procedure-names that appear in the DECLARATIVES SECTION. The exception is that 
PERFORM statements in the nondeclarative portion of a program can refer to Format 1 
USE statements or to procedures associated with a Format 1 USE statement. 

ERROR and EXCEPTION 

The words ERROR and EXCEPTION are synonymous and can be used interchangeably. 

file-name 

The designated procedures are executed on recognition of any error or exception for the 
file, including an end-of-file exception when no AT END clause has been specified. 

The same file-name can appear in a different specific arrangement of the format. The 
appearance of a file-name in a USE statement must not cause a simultaneous request for 
execution of more than one USE procedure. 

The files implicitly or explicitly referenced in a USE statement need not all have the 
same organization or access. 

INPUT 

The exception handling procedures are executed for anyJile opened in input mode, or in 
the process of being opened in input mode, except if the file is referenced by file-name in 
another USE statement specifying the same condition. 

86000296--000 



PROCEDURE DIVISION Statements 

OUTPUT 

The exception handling procedures are executed for any file opened in output mode, 
or in the process of being opened in output mode, except if the file is referenced by 
file-name in another USE statement specifying the same condition. 

I/O 

The exception handling procedures are executed for any file opened in I/O mode, or in 
the process of being opened in I/O mode, except if the file is referenced by file-name in 
another USE statement specifying the same condition. 

EXTEND 

The EXTEND phrase applies only to sequentially organized files. The exception 
handling procedures are executed for any file opened in extended mode, or in the process 
of being opened in extended mode, except if the file is referenced by file-name in another 
USE statement specifying the same condition. 

Format 2 

USE {AFTER } STANDARD BEGINNING] [FILE] LABEL PROCEDURE ON 
- BEFORE ENDING REEL 

{

INPUT } 
OUTPUT 

, file-name-l [, file-name-2] ... 

Explanation of Format 2 

Format 2 enables you to defirie up to nine tape labels (header and trailer records) that 
are each 80 characters long. The first four characters of each label ,are used by the 
system for maintaining the label identity. For example, header labels contain UHLn, and 
trailer labels contain UTLn, where n can be a number from 1 through 9. You can use the' 
remaining 76 characters for storing any desired information. 

You can define the labels in the WORKING-STORAGE SECTION or in the FILE 
SECTION in the respective file-description (FD) entry for the file. If you use multiple 
labels, you must define all labels in the same ar,ea, either in the FD entry, or in the 
WORKING-STORAGE SECTION. 

AFTER or BEFORE 

The AFTER and BEFORE phrases determine when the I/O subsystem executes the 
designated procedures. 

8600 0296-000 9-153 



PROCEDURE DIVISION Statements 

9-154 

After ex;ecution of a USE AFTER LABEL or a USE BEFORE LABEL statement, control 
passes to the invoking routine in the I/O subsystem. If the 1-0 status value does not 
indicate a critical I/O error, the I/O subsystem returns control to the next executable 
statement that follows the I/O statement whose execution caused the USE procedure to 
be invoked. 

A USE AFTER or a USE BEFORE statement must immediately follow a section header 
in the DECLARATIVES SECTION and must appear in a sentence by itself. The 
remainder of the section must consist of any number of procedural paragraphs that 
define'the procedures to be used. 

The USE AFTER LABEL or the USE BEFORE LABEL statement is never executed 
itself; it merely defines the condition calling for the execution of the USE procedures. 

A declarative procedure must not reference any nondeclarative procedures. The 
procedure-names associated with the USE AFTER LABEL statement or the USE 
BEFORE LABEL statement can be referenced in a different DECLARATIVE 
SECTION, or in a nondeclarative procedure with only a PERFORM statement. 

BEGINNING or ENDING 

The BEGINNING phrase specifies that USE procedures are executed for header labels. 
The ENDING phrase specifies that USE procedures are executed for trailer labels. If 
the BEGINNING phrase or the ENDING phrase is not included, the USE procedure is 
executed for both header and trailer labels. 

FILE or REEL 

The REEL phrase specifies that the USE procedure is executed for reel labels. The 
FILE phrase specifies that the USE procedure is executed for file labels. If the FILE 
phrase or the REEL phrase is not included, the USE procedure is executed for both file 
and reel labels. 

I NPUT or OUTPUT 

The input procedure is a label-checking procedure. When the USE BEFORE LABEL 
INPUT clause is specified, the designated procedure is executed before the tape header 
or trailer label records are read. 

When the USE AFTER LABEL INPUT clause is specified, the designated procedure is 
executed after the tape header or trailer label records are read. 

The output procedure is a label writing procedure. When the USE BEFORE LABEL 
OUTPUT clause is specified, the designated procedure is executed before the tape 
header or trailer label records are written. 

When the USE AFTER LABEL OUTPUT clause is specified, the designated procedure 
is executed after the tape header or trailer label records are written. 

8600 0296-000 



PROCEDURE DIVISION Statements 

The INPUT and OUTPUT phrases can each be specified only once for any USE AFTER 
LABEL or USE BEFORE LABEL statement. The procedures are not executed for any 
file whose file-description (FD) entry specifies LABEL RECORDS ARE OMITTED. 

When the INPUT phrase or OUTPUT phrase is used, references to label data items 
must be qualified. 

file-name 

When the USE BEFORE LABEL file-name-l clause is specified, the designated 
procedure is executed before the tape header or trailer records are read or written. 

When the USE AFTER LABEL file-name-l clause is specified, the designated procedure 
is executed after the tape header or trailer records are read 'or written. 

The appearance of file-name-! in a USE AFTER LABEL or a USE BEFORE LABEL 
statement must not cause the simultaneous request for execution of more than one 
USE AFTER LABEL or USE BEFORE LABEL procedure. That is, when file-name-! is 
specified explicitly, no other USE AFTER LABEL or USE BEFORE LABEL statement 
can apply to file-name-!. The file-description (FD) entry for file-name-! must not specify 
LABEL RECORDS ARE OMITTED. 

The program must not open or close the file associated with the USE AFTER LABEL or 
USE BEFORE LABEL statement within that procedure. 

Those files referenced by file-name-! in USE AFTER LABEL or USE BEFORE LABEL 
statements are not included in any input or output procedures. 

The same file-name can appear in a.different specific arrangement of the format. The 
appearance of a file-name in a USE statement must not cause a simultaneous request for 
execution of more than one USE procedure. 

See Also 

Further information on labels can be found in the I/O Subsystem Programming Guide. 

Format 3 (Unisys Extension) 

{
EXTERNAL {iden.tifie~-l } AS PROCEDURE} 

USE mnemomc-name 
AS GLOBAL PROCEDURE 

[

; WITH {local-storage-name-l} [, {IOCal-storage-name-2}] ... ] 
file-name-l file-name-2 

; USING identifier-2 [, identifier-3] ... 

8600 0296-000 9-155 



PROCEDURE DIVISION Statements 

9-156 

Explanation of Format 3 

Format 3 enables untyped procedures or subroutines to be declared global in the same 
way that they can be declared external. The GLOBAL phrase identifies a procedure that 
exists in the host program and is to be called in a bound procedure. 

There must be no paragraphs in a section with a USE EXTERNAL or USE AS GLOBAL 
PROCEDURE phrase. 

EXTERNAL 

The EXTERNAL phrase identifies a separately compiled program that is to be used 
as a task when the section is referenced. The EXTERNAL phrase can also identify 
a separately compiled program to be bound into the COBOL74 host program. The 
distinction is made by the format of the CALL statement that invokes the procedure or 
initiates the task. 

Identifier-l must be defined in the WORKING-STORAGE SECTION in such a way 
that its value can be a program-name. If mnemonic-name is used, it must be defined in 
the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION to represent a 
program-name. 

A program with the USE EXTERNAL PROCEDURE statement is not marked as 
library-capable. 

GLOBAL 

The GLOBAL phrase identifies a procedure in the host program that is referenced in a 
bound procedure. 

WITH 

Local-storage-names must be defined in the LOCAL-STORAGE SECTION. A 
local-storage-name must be present if the USING phrase is present. 

The files implicitly or explicitly referenced in a USE' statement need not all have the 
same organization or access. 

USING 

The USING phrase is included in the USE statement if there is a USING phrase in 
the PROCEDURE DIVISION header of the referenced, separately compiled program. 
The number, type, and order of the operands in the two USING phrases must then be 
identical. 

Identifier-2 and so forth must be uniquely defined as files in the FILE SECTION or as 
Ol-levelor 77-level items of the local-storage-name specified in the WITH phrase. These 
identifiers can describe any combination of data items, task (controlpoint) items, EVENT 
items, or lock items. 

8600 0296-000 



PROCEDURE DIVISION Statements 

Format 4 (Unisys Extension) 

USE AS INTERRUPT PROCEDURE. 

Explanation of Format 4 

The INTERRUPT PROCEDURE phrase specifies a declarative as an interrupt 
procedure. 

An interrupt procedure provides a means of interrupting a process when an EVENT 
item attached to that procedure is caused. Statements to be executed when the event is 
caused and the interrupt procedure is allowed must follow the USE statement. 

When an interrupt procedure is being executed, all other interrupts are disallowed 
during the execution. That is, an interrupt procedure cannot itself be interrupted. 

See Also 

• For more information on the mechanism for handling interrupt procedures, refer to 
"ALLOW (Unisys Extension)," "ATTACH (Unisys Extension)," "CAUSE (Unisys 
Extension)," "DETACH (Unisys Extension)," "DISALLOW;" and "RESET (Unisys 
Extension)" earlier in this section. 

• For information on specifying an EVENT item, refer to "USAGE Clause" in 
Section 7, "DATA DIVISION." 

WAIT (Unisys Extension) 
The WAIT statement suspends the execution of the object program for a specified time 
or until one or more conditions are TRUE. 

The WAIT statement has the following three formats: 

Format 

1 

2 

3 

Format 1 

Explanation 

Suspends an object program for a specified number of seconds 

Suspends an object program until an event is caused 

Suspends an object program until execution of an interrupt procedure 

I. WAIT UNTIL arithmetic-expression 

8600 0296-000 9-157 



PROCEDURE DIVISION Statements 

Explanation of Format 1 

When an arithmetic-expression is specified, the execution of the object program is 
suspended for the number of seconds determined by the value of the expression. 

Format 2 

WAIT [ AND RESET] UNTIL [ arithmetic-expression, ] 

{

ODT-INPUT-PRESENT } 
, event-identifier-l ... [ GMNG identifier-I] 
READ-OK [ ON] file-name 1 

9-158 

Explanation of Format 2 

Format 2 causes a suspension for the number of seconds specified by the 
arithmetic-expression (if present) or until one of the event-identifiers has been caused. 

If any event in the list is TRUE, the WAIT statement ends and control passes to the next 
executable statement. 

If, in the iilltial scan of the events, no event is found to be TRUE, program execution is 
suspended until any event in the list becomes TRUE. When an event becomes TRUE, 
the WAIT statement ends and control passes and the next executable statement. 

AND RESET 

If the AND RESET phrase is specified, the event-identifier that causes the 
WAIT statement to end is reset. If the number of seconds specified by the . 
arithmetic-expression has elapsed before an event is caused, the AND RESET phrase 
has no effect. 

arithmetic-expression 

When an arithmetic-expression is specified, the execution of the object program is 
suspended for the number of seconds determined by the value of the expression. 

No more than one arithmetic-expression can be specified, and if specified, it must be the 
first item in the list. 

8600 0296-000 



PROCEDURE DIVISION Statements 

ODT-I NPUT-PRESENT 

The ODT-INPUT-PRESENT clause is a special event-identifier. This event is caused 
whenever input is sent to the process by way of the AX (accept) system command. Using 
an ODT device to execute an ACCEPT statement causes the event to be reset. The 
event can also be reset with the AND RESET syntax. 

No more than one aDT -INPUT-PRESENT clause can be specified. 

Note: No more than one ACCEPT message can be queued. This event 
corresponds to the system attribute ACCEPT EVENT. 

event-identifiers 

Event-identifiers must be either data items with event usage or file or task attributes of 
type EVENT. 

The EXCEPTIONEVENT attribute of a task-identifier is a special case event-identifier. 
The behavior of the WAIT statement is the same as that for other event-identifiers. 

READ-OK 

When the READ-OK option is specified, the program is suspended until there is at least 
one record to be read in file-name-!. For files that are not op~n, the event is always 
FALSE. This event can only be used with port files and remote files. 

GIVING 

When the GIVING option is specified, the data item referenced by identifier-! is set to 
the position in the list of the data item that ended the WAIT statement. For example, if 
the second event in the list of events is TRUE, the data item referenced by identifier-! is 
set to the value 2. 

Identifier-! must be described as an elementary-numeric-integer data item without the 
symbol P in its PICTURE character string. 

See Also 

For information about the event-identifier condition, refer to "Conditional Expressions" 
in Section 8, "PROCEDURE DMSION Concepts." 

8600 0296-000 9-159 



PROCEDURE DIVISION Statements 

Format 3 

I. WAIT UNTIL INTERRUPT 

Explanation of Format 3 

The INTERRUPT phrase causes execution of this task to be suspended until at least 
one of its interrupt procedures has been executed. Mter execution of the interrupt 
procedure, the task is again suspended. Thus, the WAIT INTERRUPT construct 
provides a mechanism for an interrupt-driven program. The program runs indefinitely 
unless one or more of the interrupt procedures contain a STOP RUN statement. 

WRITE 

9-160 

The WRITE statement releases a logical record to a file. Also, it specifies the vertical 
position of lines on a logical page. 

The file must be open in the OUTPUT, 1-0, or EXTEND mode for the write operation to 
be successful. 

The WRITE statement does not affect the current-record pointer. 

A write operation updates the value of the FILE STATUS data item associated with the 
file. 

The WRITE statement has the following five formats: 

Format 

1 

2 

3 

4 

5 

Explanation 

Writes records to a sequential file, and positions lines vertically on a logical page. 

Records to sequential, relative, and indexed files. This format can be used with 
port files. 

Creates Kanji records, positions lines vertically on a logical page, and writes the 
records to a sequential file. This format is for use with remote or printer files. 

Creates Kanji records and writes them to sequential, relative, or indexed files. 

Used with form libraries. Refer to Volume 2 for information on the WRITE FORM 
statement. 

8600 0296-000 



PROCEDURE DIVISION Statements 

Format 1: Sequential I/O and Vertical Positioning of Lines 

Format 1 is used for files of sequential organization that are not on mass-storage devices. 

Format 1 

WRITE record-name [ FROM identifier-l ] 

[ ( 

{ identifier-
2 

} [LINE ll] 
{

BEFORE} ADVANCING . integer. LINES 
AFTER { mnemoruc-name } 

PAGE 

[ {
END-OF-PAGE} .. 1 ; AT EOP unperatIve-statement 

Explanation of Format 1 

record-name 

The record-name is the name of a logical record in the FILE SECTION of the DATA 
DMSION and can be qualified. 

FROM 

The FROM option makes the WRITE statement operate like a MOVE statement 
followed by a WRITE statement. The move takes place according to the rules of the 
MOVE statement without the CORRESPONDING option. . 

Record-name and identifier-l must not reference the same storage area 

BEFORE 

If the BEFORE phrase is used, the line is presented before the representation of the 
printed page is advanced according to rules described for the ADVANCING phrase. 

AFTER 

If the AFTER phrase is used, the line is presented after the representation of the 
printed page is advanced according to rules described for the ADVANCING phrase. 

8600 0296-000 9-161 



PROCEDU RE DIVISION Statements 

9-162 

ADVANCING 

The ADVANCING phrase controls the vertical positioning of each line on a 
representation of a printed page. If the ADVANCING phrase is not used, automatic 
advancing is provided as if AFTER ADVANCING 1 LINE were specified. If the 
ADVANCING phrase is used, advancing is provided as follows: 

• If identifier-2 is specified, the representation of the printed page is advanced a 
number of lines equal to the value ofidentifier-2. The variable identifier-2 must be 
the name of an elementary integer data item and can be equal.to 0 (zero). 

• If an integer is specified, the representation of the printed page is advanced a 
number of lines equal to the value of integer. The integer can be 0 (zero). 

• If a mnemonic-name is specified, the representation of the printed page is advanced 
to the lirie number corresponding to the channel number. The mnemoniG-name 
must be associated with a channel number. The mnemonic-name is defined in the 
SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION. 

The ADVANCING mnemonic-name phrase cannot be specified when writing a 
record to a file that has a file-description (FD) entry that contains the LINAGE 
clause. 

• If the PAGE option is specified, the record is presented on the logical page either 
before or after the device is repositioned to the next logical page. If the record to 
be written is associated with a file that has a LINAGE clause in its file-description 
(FD) entry, the device is repositioned to the first line that can be written on the 
next logical page, as specified in the LINAGE clause. If the record to be written is 
associated with a file that does not have a LINAGE clause in its file-description (FD) 
entry, the device is repositioned to channel lor, when appropriate for the hardware 
device, to the next logical page. 

If the PAGE option has no meaning in conjunction with a specific device, then the 
page is adjusted as if BEFORE ADVANCING ONE LINE or AFTER ADVANCING 1 
LINE (depending on the phrase used) were specified. 

END-OF-PAGE (EOP) 

The END-OF-PAGE phrase enables you to control the vertical positioning of each line on 
a representation of a printed page. 

If the END-OF-PAGE phrase is specified, the LINAGE clause must be specified in the 
file-description (FD) entry for the associated file. 

If the logical end of the representation of the printed page is reached during execution 
ofa WRITE statement with the END-OF-PAGE phrase, the imperative-statement 
specified in the END-OF-PAGE phrase is executed. The logical end is specified in the 
LINAGE clause associated with record-name. 

An End-Of-Page condition is reached whenever execution of a given WRITE statement 
with the END-OF -PAGE phrase causes printing or spacing within the footing area of a 
page body. This condition occurs when execution of such a WRITE statement causes 
the LINAGE-COUNTER, a special register, to equal or exceed the value specified by 
integer-6 or by the data item referenced by data-name-7 of the LINAGE clause. If 

8600 0296-000 



PROCEDURE DIVISION Statements 

the End-Of-Page condition occurs, the WRITE statement is executed and then the 
imperative-statement in the END-OF -PAGE phrase is executed. 

An automatic Page-Overflow condition is reached whenever the execution of a WRITE 
statement (with or without an END-OF-PAGE phrase) carmot be fully accommodated 
within the current page body. This condition occurs when a WRITE statement 
causes the LINAGE-COUNTER register to exceed the value specified by integer-5 or 
data-name-6 of the LINAGE clause. If the Page-Overflow condition occurs, the record is 
presented on the logical page before or after (depending on the phrase used) the device 
is repositioned to the first line that can be written on the next logical page (as specified 
in the LINAGE clause). The imperative-statement in the END-OF-PAGE clause, if 
specified, is executed after the record is written and the device has been repositioned. 

If the FOOTING phrase of the LINAGE clause is not specified, no End-Of-Page (EOP) 
condition distinct from the Page-Overflow condition is detected. In this case, the 
End-Of-Page (EOP) condition and Page-Overflow condition occur simultaneously. 

If the FOOTING phrase of the LINAGE clause is specified, but execution ofa given 
WRITE statement causes the LINAGE-COUNTER register to simultaneously exceed 
the value of both of the following items, then the operation proceeds as if integer-6 or 
data-name-7 had not been specified: 

• Integer-6 or the data item referenced by data-name-7 

• Integer-5 or the data item referenced by data-name-6 

The words END-OF-PAGE and EOP are equivalent. 

The imperative-statement can be the NEXT SENTENCE phrase. 

Format 2: Sequential, Relative, and Indexed I/O 

Format 2 is used for mass-storage files of any organization. Format 2 must be used for 
port files. (Port files are a U nisys extension.) 

Format 2 

[ I 
{ NO WAIT } ) 1 WITH URGENT 

WRITE record-name NO WAIT URGENT 

SYNCHRONIZED 

[ FROM identifier-! ] 

[ ; INVALID KEY imperative-statement] 

8600 0296-000 9-163 



PROCEDURE DIVISION Statements 

9-164 

Explanation of Format 2 

record-name 

The record-name is the name of a logical record in the FILE SECTION of the DATA 
DIVISION and can be qualified. 

WITH 

The WITH phrase can be specified only for port files. The NO WAIT and URGENT 
phrases can be included only once each, either individually or together. (These phrases 
are Unisys extensions.) 

The WITH URGENT phrase is meaningful only when the Transmission Control 
Protocol/Internet Protocol (TCP/IP) is being used. The WITH URGENT phrase sets the 
urgent indicator associated with the data. For more information on TCP /IP, refer to the 
A Series Distributed Systems Services (DSS) Operations Guide. 

SYNCHRONIZED 

Synchronization of all output records can be designated with the SYNCHRONIZE 
file attribute. Synchronization means that output must be written to the physical 
file before the program initiating the output can resume execution, thereby ensuring 
synchronization between logical and physical files. The SYNCHRONIZED clause 
enables you to override the synchronization specified by the file attribute for a specific 
output record. A periodic synchronous WRITE statement that follows one or more 
asynchronous WRITE statements can be used as a checkpoint to ensure that all 
outstanding records are written to the file before the program continues execution. 
Synchronization is available for use by tape files and disk files with sequential 
organization only, and is not available for use by port files. 

FROM 

The results of the execution of the WRITE statement with the FROM phrase is 
equivalent to the execution of the statement MOVE identi/ier-l TO record-name 
according to the rules specified for the MOVE statement, followed by the same WRITE 
statement without the FROM phrase. 

Record-name and identifier-! must not reference the same storage area. 

INVALID KEY 

When the Invalid Key condition occurs, any FILE STATUS data item of the file is set to 
a value indicating the cause of the condition. 

The imperative-statement can be the NEXT SENTENCE phrase. 

8600 0296-000 



PROCEDURE DIVISION Statements 

See Also 

For information about the status of I/O operations, refer to "I/O Status" in Section 5, 
"ENVIRONMENT DNISION." , 

Seq uentia I I/O 

For a mass-storage file with sequential access mode, the execution of a Format 2 WRITE 
statement releases the record area to the next logical record in the file. 

If the ACTUAL KEY phrase is specified for a mass-storage file with sequential access 
mode, the successful execution of a Format 2 WRITE statement updates the contents of 
the ACTUAL KEY data item to the ordinal number of the logical record written. 

For a mass-storage file with random access mode, the execution of a Format 2 WRITE 
statement releases the record area to the logical record. of the file specified by the 
contents of the ACTUAL KEY data item. 

Additionally, for a mass-storage file with random access mode, an Invalid Key condition 
exists when the value of the ACTUAL KEY data item is less than one or greater than 
the ordinal number of the last logical record allowed for the file, if the maximum logical 
size of the file is specified. 

For a mass-storage file with sequential access mode, the Invalid Key' condition exists 
when a maximum logical size has been specified for the file and no more logical records 
can be written. 

Relative I/O 

When a file is opened in the OUTPUT mode, records can be placed in the file by one of 
the following methods: 

• If the access mode is sequential, the WRITE statement causes a record to be 
released to the I/O SUbsystem. The first record has an ordinal record number of 
1, and subsequent records released have ordinal record numbers of 2, 3, 4, and so 
on. If the relative key data item has been specified in the file-control entry for the 
associated file, the ordinal record number of the record just released is placed in 
the relative key data item by the I/O subsystem during execution of the WRITE 
statement. 

• If the access mode is random or dynamic, then prior to the execution of the WRITE 
statement, the value of the relative key data item must be initialized in the program 
with the relative record number to be associated with the record in the record area. 
Execution of the WRITE statement releases that record in the I/O subsystem. 

When a file is opened in the 1-0 mode and the access mode is random or dynamic, 
records are inserted in the associated file. The value of the RELATIVE KEY data item 
must be initialized by the program with the relative record number associated with the 
record in the record area. Execution of a WRITE statement then causes the contents of 
the record area to be released to the 1/0 subsystem. 

8600 0296-000 9-165 



PROCEDURE DIVISION Statements 

The Invalid Key condition occurs under the following circumstances: 

• The access mode is random or dynamic, and the RELATIVE KEY data item specifies 
a record already present in the file. 

• An attempt is made to write beyond the logical boundaries of the file. 

Indexed I/O 

. Execution of the WRITE statement causes the contents of the record area to be 
released. The I/O subsystem uses the contents of the record keys so that subsequent 
access of the record key can be made based on any of the specified record keys. 

The value of the prime record key must be unique within the records in the file. 

The data item specified as the prime record key must be set by the program to the 
desired value prior to execution of the WRITE statement. 

If sequential access mode is specified for the file, records must be released to the I/O 
subsystem in ascending order of prime record key values. 

If random or dynamic access mode is specified, records can be released to the I/O 
subsystem in any order. 

When the ALTERNATE RECORD KEY clause is specified in the file-control entry 
for an indexed file, the value of the alternate record key can be nonunique only if the 
DUPLICATES phrase is specified for that data item. In this case, the I/O subsystem 
provides storage of records so that when records are accessed sequentially, the order of 
retrieval of those records is the order in which they are released to the I/O subsystem. 

The Invalid Key condition occurs under the following circumstances: 

• Sequential access mode is specified for a file opened in the OUTPUT mode, and the 
value of the prime record key is not greater than the value of the prime record key of 
the previous record. 

• The file is opened in the OUTPUT or 1-0 mode, and the value of the prime record 
key equals the value of a prime record key of a record already present in the file. 

• The file is opened in the OUTPUT or 1-0 mode, and the value of an alternate record 
key for which duplicates are not allowed equals the corresponding data item of a 
record already present in the file. 

Port Files (Unisys Extension) 

9-166 

A WRITE statement causes the program to wait until a buffer is available to store the 
record. For port files, you can prevent the possibility of this suspension by using the 
WITH NO WAIT phrase. A status key value of 95 indicates that no buffer was available 
for the logical record. 

If you declare an ACTUAL KEY clause for a port file, you are responsible for updating 
the actual key with an appropriate value. A WRITE statement causes the actual key 

86000296-000 



PROCEDURE DIVISION Statements 

value to be passed to the I/O sUbsystem to indicate the desired subfile destination. If 
the actual key value is 0 (zero), the program performs a broadcast write operation. A 
broadcast write operation sends data to all opened subfiles of the port file. 

If no ACTUAL KEY clause is declared for the file, the file must contain a single subfile 
that is written. 

Formats 3 and 4: Kanji Delimiters 

The WRITE DELIMITED statement formats a record into a scratch array by inserting 
start-of-double-octet (SDO) and end-of-double-octet (EDO) delimiter.s before and after 
each eligible Kanji item in the specified format record. The resulting scratch array is 
then transferred to the I/O subsystem. 

The hexadecimal values for the delimiter characters are as follows: 

Delimiter 

SDO 

EDO 

Format 3 

Value 

28 

2C 

WRITE DELIMITED record-name [FROM identifier-!] 

[USING identifier-2] 

[ I { identifier-3} [LINE l)] 
{

BEFORE} ADVANCING integer LIN~S 
AFTER { mnemOnic-name} 

PAGE 

[ {
END-OF-PAGE}.. 1 ; AT EOP ImperatIve-statement 

Format 4 

WRITE DELIMITED record-name [FROM identifier-!] [USING identifier-2] 

[ ; INVALID KEY imperative-statement] 

8600 0296-000 9-167 



PROCEDURE DIVISION Statements 

9-168 

Explanation of Formats 3 and 4 

The records named in a WRITE DELIMITED statement are maintained according to the 
rules for a WRITE statement without the DELIMITED phrase. 

The WRITE DELIMITED statement can involve the physical areas that match any of 
the four following descriptions: ' 

• The target record is the'record described in the file description (FD) whose name 
follows DELIMITED in the syntax. 

• The source record is the record in the FROM phrase. . 

• The format record is the record in the USING phrase. ' 

• The output record is the actual physical array used to contain the formatted result. 

If neither the USING phrase nor the FROM phrase is specified, the target record is used 
as both the source record and the format record. If only the FROM phrase is used, the 
source record is tirst moved to the target record, and then the source record is used as 
the format record. If only the USING phrase is present, the target record is used as the 
source record, and the final formatting is performed using the format record. 

The compiler uses the descriptions of the format record to transfer the data into the 
output record. 

Eligible Kanji items are those elementary Kanji items that neither specify nor are 
subordinate to an item containing a REDEFINES or RENAMES clause. 

Record-name and identifier-l must not reference the same storage area. 

The record-name is the name of a logical record in the FILE SECTION of the DATA 
DMSION and can be qualified. 

When a mnemonic-name is specified, it must be associated with a channel number. The 
mnemonic-name is defined in the SPECIAL-NAMES paragraph of the ENVIRONMENT 
DMSION. . 

The integer and the value of the data item are referenced by identifier-2 and identifier-3, 
respectively. 

Format 3 can be used only for remote or printer files. 

Format 4 can be used only for remote files. 

When the FROM phrase is used, identifier-l and identifier-2 must not be the name ofa 
RENAMES clause. 

8600 0296-000 



PROCEDU RE DIVISION Statements 

The ADVANCING mnemonic-name phrase cannot be specified when writing a record to 
a file that has a file-description entry (FD) containing the LINAGE clause. 

The imperative-statement can be the NEXT SENTENCE phrase. 

When an Invalid Key condition occurs, any FILE STATUS data item of the file is set to a 
value indicating the cause of the condition. 

86000296--000 9-169 



9-170 8600 0296-000 



Section 10 
Segmentation 

Segmentation was designed to enable you to manually divide the PROCEDURE 
DMSION of a very large program into segments. The segments are stored on disk 
when there is not enough memory to store all the declared data items and the object 
program in main memory. The segments stored on disk are brought into main memory 
when program execution reaches that segment. 

Actual COBOL74 Segmentation 
On A Series systems, the COBOL74.compiler automatically handles program 
segmentation. The compiler normally creates a segment at the beginning of each section 
or at the first paragraph enco411tered after 1500 words of code have been produced. The 
compiler does not change segments in the middle of a paragraph. Because the maximum 
segment size is 8192 words, you must ensure that rio paragraph exceeds this limit. 

If you use segment numbers in section headers, the compiler includes sections with the 
same segment number (other than 0) in one segment. 

Standard COBOL74 Segmentation 
Because many systems are incapable of automatic program-segment overlay, the 
standard COBOL segmentation facility is oriented toward a user-controlled grouping of 
sections into one of three types of segments. This segmentation is based on the value 
of an optional integer (or segment number) following the word SECTION in the section 
header. 

The general format is as follows: 

Section-name SECTION [ segment-number] . 

The value of the segment-number can range from 0 through 9999, although the system 
allows only a physical maximum of 8192 code segments. If the segment-number 
is omitted from the section header, the value is assumed to be O. Sections in the 
DECLARATIVES SECTION must declare segment-numbers less than 50. Sections with 
the same segment-numbers need not be adjacent to one another. 

Segments are of three types, depending on the segment-number: fixed permanent, fixed 
overlayable, and independent. Segments with segment-numbers less than 50 belong to 
the fixed portion of the program, which is composed of two types of segments: fixed 

8600 0296-000 10-1 



Segmentation 

permanent segments and fixed overlayable segments. The SEGMENT-LIMIT clause in 
the OBJECT-COMPUTER paragraph is used to specify the cutoff point between fixed 
permanent and fixed overlayable segments. 

The general format of this clause is as follows: 

[, SEGMENT-LIMIT IS segment-number] 

Explanation of Format 

The distinction between fixed permanent and fixed overlayable is irrelevant in COBOL 
because both types of segments are always made available in their last-used state. Thus, 
the SEGMENT-LIMIT clause is ignored. (This is a U nisys extension.) 

The third type of segment, the independent segment, has segment-numbers ranging 
from 50 through 9999. An independent segment is made available in its initial state 
under the following circumstances: 

• When control is transferred to the segment as a result of an implicit transfer 
of control between consecutive statements from a segment with a different 
segment-number 

• When control is transferred to the segment as a result of an implicit transfer of 
control between a SORT or a MERGE statement in a segment with a different 
segment-number and an input or an output procedure in the independent segment 

• When control is transferred explicitly to the segment with a GO or a PERFORM 
statement from a segment with a different segment-number 

In all other cases, an independent segment is made available in its last-used state. 

Although COBOL conforms to the preceding rules, the use of independent segments 
containing altered GO TO statements can be restricted for the following two reasons 
(U nisys extension): 

• Because code is not modified on U nisys computers, altered GO TO statements are 
handled using references located in the stack of the program. When an independent 
segment must be made available in the initial state, these references must be 
changed to the initial value. 

• Most important, the control path of a program can be changed simply by changing a 
segment-number in a section header. 

10-2 86000296-000 



Section 11 
Debugging 

The debug module provides a means for monitoring data item values and 
program-control status during execution of an object program. 

You control the monitoring and display of information on the output device; the debug 
facility simply provides a convenient access to pertinent information. 

The following features support the debug module: 

• Compile-time switch WITH DEBUGGING MODE 

• Object-time switch 

• USE FOR DEBUGGING statement 

• Special register DEBUG-ITEM 

• . De bugging lines 

Compile-Time Switch· 
The WITH DEBUGGING MODE clause is specified in the SOURCE-COMPUTER 
paragraph and serves as a compile-time switch to enable the debugging statements 
written in the program. 

When the WITH DEBUGGING MODE clause is specified, all debugging sections and 
debugging lines are compiled as executable procedures and statements. When the WITH 
DEBUGGING MODE clause is not specified, all debugging lines and debugging sections 
are compiled as comment lines. 

If you are using a debugging line in a program and are compiling the program from 
CANDE, you must change the FREE compiler control option to FALSE. The FREE 
option is TRUE by default when compiling from CANDE. (This is a Unisys extension.) 

Object-Time Switch 
The DEBUG option of the OPTION task attribute serves as an execution-time switch 
to enable or disable the debugging code enabled by the compile-time switch. The object 
program must be executed with OPTION = DEBUG to enable the debugging code. The 
statement RUN USER/PROGRAM; OPTION = DEBUG is an example of how to set the 
OPTION task attribute. 

The debugging lines are not affected by the use of this execution-time switch. Only those 
items associated with the USE FOR DEBUGGING statement are affected. 

8600 0296-000 11-1 



Debugging 

ENVIRONMENT DIVISION in the Debug Module 
The WITH DEBUGGING MODE clause is specified in the SOURCE-COMPUTER 
paragraph and activates all debugging sections and debugging lines. 

The general format is as follows: 

SOURCE-COMPUTER. computer-name [ WITH DEBUGGING MODE] . 

Explanation of Format 

If the WITH DEBUGGING MODE clause is specified, all USE FOR DEBUGGING 
statements and debugging lines are compiled. 

If the WITH DEBUGGING MODE clause is not specified, the compiler treats any USE 
FOR DEBUGGING statements or debugging lines and all associated debugging sections 
as comment lines. . 

PROCEDURE DIVISION in the Debug Module 
The USE FOR DEBUGGING statement identifies the items to be monitored by the 
associated debugging section. 

The general format is as follows: 

section-name SECTION [ segment-number]. USE FOR DEBUGGING ON 

cd-name-l 

11-2 

[ALL REFERENCES OF] identifier-l 
file-name-l 
procedure-name-l 
ALL PROCEDURES 

cd-name-2 
[ALL REFERENCES OF] identifier-2 
file-name-2 
procedure-name-2 
ALL PROCEDURES 

8600 0296-000 



Debugging 

Explanation of Format 

Debugging sections, if specified, must appear together, immediately after the 
DECLARATIVES SECTION header. 

Except in the USE FOR DEBUGGING statement itself, no reference can be made to 
any nondeclarative procedure in the debugging section. 

Statements appearing outside the set of debugging sections must not reference 
procedure-names defined in the set of debugging sections. 

Except for the USE FOR DEBUGGING statement itself, statements appearing in a 
given debugging section can reference procedure-names defined in a different USE 
procedure only by using a PERFORM statement. 

Procedure-names defined in debugging sections must not appear in USE FOR 
DEBUGGING statements. 

Any identifier, cd-name, file-name, or procedure-name can appear in only one USE FOR 
DEBUGGING statement and can appear only once in that statement. 

The ALL PROCEDURES phrase can appear only once in a program. 

When the ALL PROCEDURES phrase is specified, procedure-name-I, 
procedure-name-2, and so forth must not be specified in any USE FOR DEBUGGING 
statement. 

Identifier-I, identifier-2, and so on must not refer to any data item defined in the 
REPORT SECTION except sum counters, and must not refer to any item in the 
DATA-BASE SECTION. Refer to Volume 2 for information about data management. 

If the data-description entry of the data item referenced by identifier-I, identifier-2, 
and so forth contains an OCCURS clause or is subordinate to a data-description entry 
that contains an OCCURS clause, then identifier-I, identifier-2, and so forth must be 
specified without the subscripting or indexing normally required. 

References to the special register DEBUG-ITEM are restricted to references in a 
debugging section. 

General Rules 

In the following general rules, all references to cd-name-I, identifier-I, procedure
name-I, and file-name-I also apply to cd-name-2, identifier-2, procedure-name-2, and 
file-name-2, respectively. 

Automatic execution of a debugging section is not caused by a statement appearing in a 
debugging section. ' 

86000296-000 11-3 



Debugging 

When file-name-I is specified in a USE FOR DEBUGGING statement, that debugging 
section is executed at each of the following times: 

• After execution of any OPEN or CLOSE statement that references file-name-l 

• After execution of any READ statement (and after any other specified USE 
procedure) not resulting in execution of an associated AT END or INVALID KEY 
imperative-statement 

• After execution of any DELETE or START statement that references file-name-I 

When procedure-name-I is specified in a USE FOR DEBUGGING statement, that 
debugging section is executed at each of the following times: 

• Immediately before each execution of the named procedure 

• Immediately after execution of an ALTER statement that references 
procedure-name-l 

The ALL PROCEDURES phrase causes the effects described previously for 
procedure-name-I to occur for every procedure-name in the program except those 
appearing in a debugging section. 

When the ALL REFERENCES OF identifier-l phrase is specified, that debugging 
section is executed for every statement that explicitly references identifier-I at each of 
the following times: 

• In a WRITE or a REWRITE statement, immediately before execution of that 
WRITE or REWRITE statement and after execution of any implicit move resulting 
from the presence of the FROM phrase 

• In a GO TO statement with a DEPENDING ON phrase, immediately before control 
is transferred and before the execution of any debugging section associated with the 
procedure-name to which control is to be transferred 

• In a PERFORM statement in which a VARYING, an AFTER, or an UNTIL phrase 
references identifier-I, immediately after each initialization, modification, or 
evaluation of identifier-l 

• In any other COBOL statement, immediately after execution of that statement 

When identifier-I is specified without the ALL REFERENCES OF phrase, that 
debugging section is executed at each of the following times: 

• In a WRITE or a REWRITE statement that explicitly references identifier-I, 
immediately before execution of that WRITE or REWRITE statement and after 
execution of any implicit move resulting from the presence of the FROM phrase 

• In a PERFORM statement in which a VARYING, an AFTER, or an UNTIL phrase 
references identifier-I, immediately after each initialization, modification, or 
evaluation of identifier-l 

• In any other COBOL statement, immediately after execution, if it explicitly 
references the data item referenced by identifier-l and causes the contents to be 
changed 

11-4 8600 0296-000 



Debugging 

If identifier-I is specified in a phrase that is not executed or evaluated, the associated 
debugging section is not executed. 

The associated debugging section is not executed for a specific operand more than once 
as a result of the execution of a single statement, regardless of the number of times that 
operand is explicitly specified. In a PERFORM statement that causes iterative execution 
of a referenced procedure, the associated debugging section is executed orice for each 
iteration. . 

In an imperative-statement, each individual occurrence of an imperative verb identifies a 
separate statement for debugging purposes. 

When cd-name-I is specified in a USE FOR DEBUGGING statement, that debugging 
section is executed at each of the following times: 

• After execution of any ENABLE, DISABLE, or SEND statement that references 
cd-name-l 

• After execution of a RECEIVE statement referencing cd-name-l that does not result 
in execution of the NO DATA imperative.:.statement 

• After execution of an ACCEPT MESSAGE COUNT statement that references 
cd-name-l 

A reference to file-name-I, identifier-I, procedure-name-l, or cd-name-I as a qualifier 
does not constitute a reference to that item for debugging, as described in the preceding 
general rules. 

DEBUG-ITEM Special Register 
The reserved word DEBUG-ITEM is the name ofa special register that is generated 
automatically. Only one DEBUG-ITEM reserved word is allocated for each program. 
The names of the subordinate data items in DEBUG-ITEM are also reserved words. 

8600 0296-000 11-5 



Debugging 

11-6 0 

The special register DEBUG-ITEM is associated with each execution ofa debugging 
section. This register provides information about the conditions that caused execution 
ofa debugging section. The DEBUG-ITEM special register has the implicit description 
shown in Example 11-1. 

01 DEBUG-ITEM. 
02 DEBUG-LINE 
02 FILLER 
02 DEBUG-NAME 
02 FILLER 
02 DEBUG-SUB-l 
02 FILLER 
02 DEBUG-SUB-2 
02 FILLER 

PIC X(6). 
PIC X VALUE SPACE. 
PIC X(30). 
PIC X VALUE SPACE. 
PIC S9999 SIGN IS LEADING SEPARATE CHARACTER. 
PIC X VALUE SPACE. 
PIC S9999 SIGN IS LEADING SEPARATE CHARACTER. 
PIC X VALUE SPACE. 

02 DEBUG-SUB-3 PIC S9999 SIGN IS LEADING SEPARATE CHARACTER. 
02 FILLER PIC X VALUE SPACE. 
02 DEBUG-CONTENTS PIC X(n). 

Example 11-1. Implicit Description of DEBUG-ITEM Special Register 

Before each execution of a debugging section, the contents of the data item referenced 
by the reserved word DEBUG-ITEM are space-filled. The contents of data items 
subordinate to DEBUG-ITEM are then updated immediately before control is passed 
to that debugging section. The contents of any data item not specified in the following 
general rules remain space-filled. 

Updating occurs according to the rules for the MOVE statement. The sole 
exception is the move to the DEBUG-CONTENTS item, which is treated as an 
alphanumeric-to-alphanumeric elementary move with no conversion of data from one 
form of internal representation to another. 

The DEBUG-LINE data item identifies the particular source statement that caused the 
debugging section to be executed. The DEBUG-LINE item contains the line number of 
the source image. 

The DEBUG-NAME data item contains the first 30 characters of the name that caused 
the debugging section to be executed. 

All qualifiers of the name are separated in the DEBUG-NAME item by the word OF. 
Subscripts or indexes, ifany, are not entered into the,DEBUG-NAME item. 

If the reference to a data item that causes the debugging section to be executed 
is SUbscripted or indexed, the occurrence number of each level is entered in the 
DEBUG-SUB-1, DEBUG-SUB-2, and DEBUG-SUB-3 data items, as necessary. 

If the data item is subscripted with more than three subscripts or indexes, only the 
occurrence numbers of the first three levels are entered into the DEBUG-ITEM item. 
(This is a Unisys extension.) 

The DEBUG-CONTENTS data item is large enough to contain the data required by the 
following general rules. 

8600 0296-000 



Debugging 

General Rules 

If the first execution of the first nondeclarative procedure in the program causes the 
debugging section to be executed, the following conditions result: 

• The DEBUG-LINE item identifies the first statement of that procedure. 

• The DEBUG-NAME item contains the name of that procedure. 

• The DEBUG-CONTENTS item contains the START PROGRAM statement. 

If a reference to procedure-name-l in an ALTER statement causes the debugging section 
to be executed, the following conditions result: 

• The DEBUG-LINE item identifies the ALTER statement that references 
procedure-name-I. 

• The DEBUG-NAME item contains procedure-name-L' 

• The DEBUG-CONTENTS item contains the applicable procedure-name associated 
with the TO phrase of the ALTER statement. 

If the transfer of control associated with the execution of a GO TO statement causes the 
debugging section to be executed, the following conditions result: 

• The DEBUG-LINE item identifies the GO TO statement that transfers control to 
procedure-name-l when executed. 

• The DEBUG-NAME item contains procedure-name-I. 

If the reference to procedure-name-l in the INPUT or the OUTPUT phrase ofa SORT 
or a MERGE statement causes the debugging section to be executed, the following 
conditions result: 

• The DEBUG-LINE item identifies the SORT or the MERGE statement that 
references procedure-name-I. 

• The DEBUG-NAME item contains procedure-name-I. 

• The DEBUG-CONTENTS item contains the following: 

The SORT INPUT statement if the reference to procedure-name-l is in the 
INPUT phrase of a SORT statement 

The SORT OUTPUT statement if the reference to procedure-name-l is in the 
OUTPUT phrase of a SORT statement 

86000296-000 

The MERGE OUTPUT statement if the reference to procedure-name-l is in the 
OUTPUT phrase of a MERGE statement 

11-7 



Debugging 
~----------------------------------------------------------------------

If the transfer of control from the control mechanism associated with a PERFORM 
statement causes the debugging section associated with procedure-name-I to be 
executed, the following conditions result: 

• The DEBUG-LINE item identifies the PERFORM statement that references 
procedure-name-I. 

• The DEBUG-NAME item containsprocedure-name-I. 

• The DEBUG-CONTENTS item contains the PERFORM LOOP statement. 

If procedure-name-I is a USE procedure that is to be executed, the following conditions 
result: 

• The DEBUG-LINE item identifies the statement that causes execution of the USE 
procedure. 

• The DEBUG-NAME item contains procedure-name-I. 

• The DEBUG-CONTENTS item contains the USE PROCEDURE statement. 

If an implicit transfer of control from the previous sequential paragraph to 
procedure-name-I causes the debugging section to be executed, the following conditions 
result: 

• The DEBUG-LINE item identifies the previous statement. 

• The DEBUG-NAME item contains procedure-name-I. 

• The DEBUG-CONTENTS item contains the FALL THROUGH statement. 

If references to a file-name-I or a cd-name-I data item cause the debugging section to be 
executed, the following conditions result: 

• The DEBUG-LINE item identifies the source statement that references a 
file-name-I or a cd-name-I data item. 

• The DEBUG-NAME item contains the name of the file-name-I or the cd-name-I 
data item. 

• For a READ statement, the DEBUG,.CONTENTS item contains the entire record 
read. 

• For all other references to file-name-I, the DEBUG-CONTENTS item contains 
spaces. 

• For any reference to cd-name-I, the DEBUG-CONTENTS item contains the 
contents of the area associated with the cd-name. 

If a reference to identifier-I causes the debugging section to be executed, the following 
conditions result: 

• The DEBUG-LINE item identifies the source statement that references identifier-I. 

• The DEBUG~NAME item contains the name of identifier-I. 

• The DEBUG-CONTENTS item contains the contents of identifier-I at the time 
control passes to the debugging section. 

11-8 8600 0296-000 



Debugging 

Debugging Lines 
A debugging line is any line with the letter D in the indicator area of the line. Any 
debugging line consisting solely of spaces from margin A to margin R is considered a 
blank line. 

A debugging line is considered a comment line if the WITH DEBUGGING MODE clause 
is not specified in the SOURCE-COMPUTER paragraph. The contents of a debugging 
line must be such that a syntactically correct program is formed whether or not the 
debugging lines are considered comment lines. 

Successive debugging lines are allowed. 

A debugging line is permitted in the program only after the OBJECT-COMPUTER 
paragraph. 

Debug Module Program Sample 
Example 11-2 uses the debug module to produce the output shown in Figure 11-1. 

* 
* 
* 
* 
* 
* 
* 

IDENTIFICATION DIVISION. 
PROGRAM-ID. DEBUGTEST. 

This program is an example of the COBOL74 debug module. 
Note that the WITH DEBUGGING MODE statement in the SOURCE
COMPUTER paragraph instructs the compil er to compil e debugging 
statements into the object code. Setting OPTION = DEBUG 
at run time enables the effects described in 
the USE FOR DEBUGGING statement. 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. B7900 WITH DEBUGGING MODE. 
OBJECT-COMPUTER. B7900. 
INPUT-OUTPUT SECTION. 
FI LE-CONTROL. 

SELECT PRINTFILE ASSIGN TO PRINTER. 
D SELECT DBGFILE ASSIGN TO PRINTER. 

DATA DIVISION. 
FILE SECTION. 
FD PRINTFILE. 
01 PRINT -REC 

D FD DBGFILE. 
o 01 DEBUG-REC 

WORKING-STORAGE SECTION. 
77 ALFA 
77 BRAVEO 
77 CHARLIE 

o 77 FLAG 
o 88 NEED-IT 

PIC X(132). 

PIC X(132). 

PIC 9 VALUE 4. 
PIC 99 VALUE 16. 
PIC 99. 

PIC 9. 
VALUE ZERO. 

Example 11-2. Debug Module Sample Program 

8600 0296-000 .11-9 



Debugging 

11-10 

0 

* 

88 FILE-OPEN VALUE 1. 
01 BARBARA. 

03 CHERYL. 
05 DIANNE PIC 99 VALUE 16. 

77 ANN PIC 9(1) VALUE 8. 
77 ELVA PIC 9(18) • 
77 FRAN PIC X(32) VALUE "TEST PROGRAM FOR COBOL74 MANUAL". 
77 GOLDIE PIC 9 VALUE 1. 
01 HIED!. 

03 ILENE PIC 9(8) OCCURS 5 TIMES. 
03 JANIS PIC 9. 

PROCEDURE DIVISION. 
DECLARATIVES. 
D-BUG SECTION. 

USE FOR DEBUGGING ON 
ALL REFERENCES OF CHARLIE 
ALL REFERENCES OF BRAVEO 
ALL PROCEDURES. 

* RECORD DESCRIPTION FOR DEBUG-ITEM. 
* 
* 01 DEBUG-ITEM. 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

02 DEBUG-LINE PIC X(6). 
02 FILLER PIC X VALUE SPACE. 
02 DEBUG-NAME PIC X (30). 
02 FILLER PIC X VALUE SPACE. 
02 DEBUG-SUB-1 PIC S9(4) SIGN IS LEADING 

SEPARATE CHARACTER. 
02 FILLER PIC X VALUE SPACE. 
02 DEBUG-SUB-2 PIC S9(4) SIGN IS LEADING 

SEPARATE CHARACTER. 
02 FILLER PIC X VALUE SPACE. 
02 DEBUG-SUB-3 PIC S9(4) SIGN IS LEADING 

SEPARATE CHARACTER. 
02 FILLER 
02 DEBUG-CONTENTS 

DEBUG-OUT. 
IF NEED-IT 

OPEN OUTPUT DBGFILE. 
MOVE 1 TO FLAG. 

PIC X VALUE SPACE. 
PIC X(n). 

WRITE DEBUG-REC FROM DEBUG-ITEM. 
END DECLARATIVES. 
WORK SECTION. 
START-IT. 

SUBTRACT ALFA FROM BRAVEO GIVING CHARLIE. 
DIVIDE BRAVEO BY CHARLIE GIVING ALFA. 
SUBTRACT ALFA FROM BRAVEO GIVING CHARLIE. 

FOLLOW-UP. 
SUBTRACT 4 FROM ANN. 
DIVIDE ANN INTO DIANNE GIVING JANIS. 

Example 11-2: Debug Module Sample Program (cont.) 

8600 0296-000 



Debugging 

ACCEPT ILENE (GOLDIE) FROM TIME. 
OPEN OUTPUT PRINTFILE. 
WRITE PRINT-REC FROM FRAN. 
WRITE PRINT-REC FROM ILENE(GOLDIE). 
WRITE PRINT-REC FROM JANIS. 

CLOSE-SHOP. 
CLOSE PRINTFILE RELEASE. 

o IF FILE-OPEN 
o CLOSE DBGFILE RELEASE. 

STOP RUN. 

Example 11-2. Debug Module Sample Program (cont.) 

Figure 11-1 shows output from the debug module sample program when it is run with 
OPTION = DEBUG. 

150000 WORK START PROGRAM 
150000 START-IT START PROGRAM 
150000 CHARLI E 12 
150000 BRAVEO 16 
152000 CHARLIE 12 
152000 BRAVEO 16 
154000 CHARLI E 15 
154000 BRAVEO 16 
154000 FOLLOW-UP FALL THROUGH 
168000 CLOSE-SHOP FALL THROUGH 

Figure 11-1. Debugging Output from Debug Module Sample Program 

8600 0296-000 11-11 



11-12 8600 0296-000 



Section 12 
Report Writer 

Report Writer is a special-purpose language subset of COBOL that provides a convenient 
way to produce reports. 

The fil~-description (FD) entry for Report Writer requires a REPORT clause to name 
the reports that are created. The other FD clauses that can be used are described in 
Section 7, "DATA DIVISION." 

Most of the coding required for Report Writer is in describing the data. The REPORT 
SECTION of the DATA DIVISION defines the logical organization, format, contents, 

. and structure of the report. A hierarchy of levels defines the logical organization. Each 
report consists of report groups; these groups are divided into sequences of items. 

U sing the report description (RD) in the REPORT SECTION, the compiler automatically 
generates PROCEDURE DIVISION code. This code moves data, constructs print lines, 
counts line and page numbers, produces heading and footing lines, sums information, and 
checks control breaks. 

Example 12-1, which appears at the end of this section, is a complete program that 
illustrates many of the features of Report Writer. 

FILE SECTION REPORT Clause 
In the FILE SECTION, Report Writer requires the REPORT clause to list the names of 
the reports to be produced. 

The general format is as follows: 

FILE SECTION. 

. {REPORT IS } 
FD report-file REPORTS ARE report-name-1 [, report-name-2] ... 

Explanation of Format 

report-file 

Report-file identifies the file to which reports are written when a GENERATE statement 
is executed. 

8600 0296--000 12-1 



Report Writer 

A report-file can be referenced only by the OPEN OUTPUT statement or by the CLOSE 
statement. 

After the execution of an INITIATE statement and before the execution of a 
TERMINATE statement for the same report file, no other explicit I/O operation can 
reference that report file or the record-description (RD) entries associated with it. (This 
is a Unisys extension.) 

REPORT or REPORTS 

The REPORT clause specifies the names of reports that make up a report file. 

More than one report-name in a REPORT clause indicates that the report file contains 
more than one report. 

report-name 

Each report-name specified in a REPORT clause must be the subject of a 
report-description (RD) entry in the REPORT SECTION. The order of appearance of 
the report-names is not significant. A report-name must appear in only one REPORT 
clause. 

REPORT SECTION Report-Description Entry 

12-2 

The REPORT SECTION includes a report-description (RD) entry and one or more 
report group descriptions. 

The RD entry describes the general organization of the report, including the layout of 
elements on a page. This entry is uniquely identified in the REPORT SECTION by the 
level indicator RD. The RD entry is analogous to the FD entry in the FILE SECTION. 

The report group descriptions provide information about each part of the report and 
about sources of information for the report. The clauses that follow the report-name are 
optional, and the order of appearance is not significant. These clauses are discussed 
separately on the following pages. 

You must use a period at the end of the report-description (RD) entry. 

8600 0296-000 



Report Writer 

The general format is as follows: 

RD report-name 

[ ; CODE literal-I] 

[ {
CONTROL IS } {data-narne-l [, data-name-2] ... } 1 

., CONTROLS ARE FINAL [ , data-name-l [ , data-name-2 ] ... ] 

[ {
LIMIT IS } l- [{LINE } 1 ; PAGE LiMiTs ARE mteger-l LINES 

[ , HEADING integer-2 ] 

[ , FIRST DETAIL integer-3 ] 

[, LAST DETAIL integer-4] 

[, FOOTING integer-5] 

Explanation of Format 

RD 

The level indicator RD identifies the beginning of a report description and must precede 
the report-name. The report-name must appear in one, and only one, REPORT clause. 

report-name 

Report-name is the highest permissible qualifier that can be specified for 
LINE-COUNTER, PAGE-COUNTER, and all data-names defined in the REPORT 
SECTION. 

CODE Clause (Unisys Extension) 

The CODE clause places a nonnumeric value on each line of the report for identification 
purposes. 

If more than one report is associated with a file and the reports are produced 
simultaneously, the CODE clause must be used so that the individual lines of each report 
can be identified by the operating system printer-backup routine. 

8600 0296-000 12-3 



Report Writer 

The format of the CODE clause is as follows: 

CODE literal-1 

12-4 

Explanation of Format 

CODE 

When the CODE clause is specified, literal-1 is automatically placed in each record 
generated. The positions occupied by literal-1 are not included in the description of the 
print line, but are included in the size of a logical record. 

If the CODE clause is specified for any report in a file, it must be specified for all reports 
in that file. 

literal-l 

Literal-! must be a 2-character, nonnumeric literal. 

Example 

The following paragraphs detail the use of the CODE clause with WFL. 

The backup printer file that is on disk, for the purpose of producing a report, has the 
following title when the CODE clause is specified: 

BDREPORT/job-number/task-number/count-ID 

The job-number is the mix number assigned to the job that created the report and is 
expressed as a 7-digit number. The task-number is the mix number assigned to the task 
that created the report and is expressed as a 7-digit number. The count is 001 for the 
first time the file is opened within the task, 002 for the second time, and so forth. The 
ID is taken from the VALUE OF TITLE clause specified for the file. For example, if 

. the job-number is 325 and the task-number is 327 and the VALUE OF TITLE clause 
specifies the value ABCD, then the file title assigned to a backup disk file is 

BDREPORT/0000325/0000327/001ABCD 

The second time the file is opened within that task, the file title is 

BDREPORT/0000325/0000327/002ABCD 

The backup disk files can be printed by using either of the following WFL statements: 

PB D job-number KEY REPORT EQUAL literal-l 

PB D * KEY REPORT EQUAL literal-l 

8600 0296-000 



Report Writer 

Job-number is the 4-digit mix number of the job that created the report. The 
asterisk (*) indicates that the job-number to be used is the job-number of the WFL job 
itself. The asterisk function is useful a PB (Printer Backup) statement is included in a 
WFL statement that both creates and prints the report. 

When the KEY clause is used in the WFL statement literal-l must match literal-l used 
in the CODE clause. For example: 

PB 0 0325 KEY REPORT EQUAL IA2" 

The backup tape file of a Report Writer report for which a CODE clause was specified 
can be printed by using the following WFL statement: 

\ 

PB MT xxx [FILE integer] KEY REPORT EQUAL literal-l 

In the preceding statement, xxx is the tape unit on which the backup tape resides, and 
literal-l is used as shown in the backup disk file example. 

When a printer file with an associated CODE clause is opened, the object code generated 
includes instructions to the operating system to set the BDNAME attribute of the 
program task to BDREPORT. In a program that contains multiple printer files'- some 
of which contain CODE clauses and some of which do not - BDREPORT is used as the 
file title prefix for all files that are opened after a file with an associated CODE clause is 
.opened, even if the remaining files do not have associated CODE clauses. If this is not 
the desired result and multiple printer files are required in the program, the printer files 
that do not have an associated CODE clause should be opened before the ones that do. 

CONTROL Clause 

The CONTROL clause specifies the names of the control data items, in order from the 
most significant to the least significant. 

The CONTROL clause is required when control headings, control footings, or both 
groups are used. 

The CONTROL clause establishes the level of the control hierarchy for the report. 

The general format of this-clause is as follows: 

{
CONTROL IS } {data-name-l [ , data-name-2 ] . .. } 
CONTROLS ARE FINAL [ , data-name-l [ , data~name-2 ] ... ] 

Explanation of Format 

The data-names specified in the CONTROL clause are the only data-names referred 
to by the RESET and TYPE clauses in the report-group descriptions for a report. No 

8600 0296-000 12-5 



Report Writer 

12-6. 

data-name, including the word FINAL, can be referenced by more than one CONTROL 
HEADING report group and one CONTROL FOOTING report group. 

The data-names and the word FINAL specify the levels of the control hierarchy. FINAL, 
if specified, is the highest control; data-name-I is the major control; data-name-2 is an 
intermediate control; and so forth. The last data-name specified is the minor control. 

Data-name-I and data-name-2 must not be defined in the REPORT SECTION. 
Data-name-I and data-name-2 can be qualified but must not be subscripted or indexed. 

Each data-name must identify a different data item. 

Data-name-I, data-name-2, and so on must not have subordinate variable-occurrence 
data items. Control data items are subject to the same rules that apply to sort keys. 

Causing a Control Break 

A control break is a change in the value of a data item. The data item, which is 
referenced in the CONTROL clause, controls the hierarchical structure of the report. 

The execution of the first chronological GENERATE statement for a report causes the 
values of all control data items associated with that report to be saved. On subsequent 
executions of all GENERATE statements for that report, Report Writer tests control 
data items for a change of value. A change of value in any control data item causes a 
control break to occur. The control break is associated with the highest level for which a 
change of value is noted. 

Report Writer tests for a control break by comparing the contents of each control data 
item with the prior contents saved from the execution of the previous GENERATE 
statement for the same report. Report Writer applies the relation test as follows: 

• If the control data item is a numeric data item, the program compares two numeric 
operands. 

• If the control data item is an index data item, the program compares two index data 
items. 

• If the control data item is a data item other than a numeric or an index data iteIJl, 
the program compares two nonnumeric operands. 

A control break for the word FINAL occurs before the first detailline is printed and 
whenever a TERMINATE statement is executed. A control break occurring at a 
particular level implies a control break for each lower level in the control hierarchy. 

8600 0296-000 



Report Writer 

For example, when control headings and footings are coded, the CONTROL clause 
CONTROLS ARE MAJ-KEY, INT-KEY, MIN-KEY causes the control headings and 
footings to be printed in the following order on a control break. on MAJ-KEY: 

CONTROL FOOTING 
CONTROL FOOTING 
CONTROL FOOTING 
CONTROL HEADING 
CONTROL HEADING 
CONTROL HEADING 

PAGE Clause 

(for MIN-KEY) 
(for INT-KEY) 
(for MAJ-KEY) 
(for MAJ-KEY) 
(for INT-KEY) 
(for MIN-KEY) 

. The PAGE clause defines the length of a page and the vertical subdivisions within which 
report groups are presented. If the P AG E clause is omitted, the report consists of a 
single page of indefinite length. 

The general format of this clause is as follows: 

PAGE [ {LIMIT IS } 1 inte ~r-l [ {LINE } 1 
-- LIMITS ARE g LINES 

[, HEADING integer-2] [, FIRST DETAIL integer-3] 

[, LAST DETAIL integer-4] [, FOOTING integer-5] 

Note: The HEADING, FIRST DETAIL, LAST DETAIL, and FOOTING 
phrases can be written in any order. 

Explanation of Format 

LIMIT IS integer-! LINES· 

The words LIMIT IS or LIMITS ARE and LINE or LINES are optional and can be 
omitted. 

Integer-l defines the vertical length of a report page by specifying the number of lines 
available on each page. 

Integer-l must not be greater than 255. (This is a Unisys extension.) Also, integer-l 
must be greater than or equal to integer-5. 

Absolute LINE NUMBER or absolute NEXT GROUP spacing must be consistent with 
controls specified in the PAGE LIMIT clause. 

86000296-000 12-7 



Report Writer 

12-8 

HEADING 

A heading can be one of the following types: 

Purpose 

Appears at the beginning of a report only 

Appears at the beginning of a page 

Type 

R.EPORT 

PAGE 

CONTROL Appe~rs at the beginning of the control group to which it belongs 

The HEADING integer-2 phrase defines the first line number on which a REPORT 
HEADING or PAGE HEADING report group can begin. 

Integer-2 must be greater than or equal to 1. If the HEADING phrase is omitted, a 
value of 1 is assumed for integer-2. 

The following rules indicate the vertical subdivision of the page in which each type of 
report group can appear when the PAGE clause is specified: 

• If you want a REPORT HEADING report group to be on a page by itself, the 
program must define it to be within the vertical subdivision of the page that extends 
from the line number specified by integer-2 to the line number specified by integer-1, 
inclusive. 

• If you want a REPORT HEADING report group that is not on a page by itself, the 
program must define it to be within the vertical subdivision of the page that extends 
from the line number specified by integer-2 to the line number specified by integer-3 
minus 1, inclusive. 

• If you want a PAGE HEADING report group, the program must define it to be in 
the vertical subdivision of the page that extends from the line number specified by 
integer-2 to the line number specified by integer-3 minus 1, inclusive. 

• If you want a CONTROL HEADING or a DETAIL report group, the program must 
define it to be in the vertical subdivision of the page that extends from the line 
number specified by integer-3 to the line number specified by integer-4, inclusive. 

• If the HEADING phrase is omitted, a value of 1 is assumed for integer-2. 

FI RST DETAI L 

The FIRST DETAIL integer-3 phrase defines the first line number on which a body 
group can begin. REPORT HEADING and PAGE HEADING report groups cannot be 
on or beyond the line number specified by integer-3. 

Integer-3 must be greater than or equal to integer-2. 

If the FIRST DETAIL phrase is omitted, a value equal to integer-2 is given to integer-3.· 

LAST DETAIL 

The LAST DETAIL integer-4 phrase defines the last line number on which a CONTROL. 
HEADING or a DETAIL report group can be presented. 

8600 0296-000 



Report Writer 

Integer-4 must be greater than or equal to integer-3. 

If the LAST DETAIL and FOOTING phrases are both omitted, the value ofinteger-l is 
given to both integer-4 and integer-5. 

If the LAST DETAIL phrase is specified and the FOOTING phrase is omitted, the value 
ofinteger-4 is given to integer-5. 

If absolute line spacing is indicated for all report groups, integer-2 through integer-5 
need not be specified. If relative line spacing is indicated for individual detail report 
group entries, some or all of the limits must be defined (depending on the type of report 
groups within the report) for control of page formatting to be maintained. 

FOOTING 

A footing can be one of the following types: 

Type 

REPORT 

PAGE 

CONTROL 

Purpose 

Appea rs at the end of a report on Iy 

Appea rs at the end of a page 

Appears at the end of the control group to which it belongs 

The FOOTING integer-5 phrase defines the last line number on which a CUNTROL 
FOOTING report group can be presented. PAGE FOOTING and REPORT FOOTING 
report groups must follow the line number specified by integer-5. 

Integer-5 must be greater than or equal to integer-4. 

If the FOOTING phrase is specified and the LAST DETAIL phrase is omitted, U ~ value 
of integer-5 is given to integer-4. 

The folloWing rules indicate the vertical subdivision of the page in which each type of 
report group can appear when the PAGE clause is specified: 

• If you want a CONTROL FOOTING report group, the program must define it to be 
in the vertical subdivision of the page that extends from the line number specified by 
integer~3 to the line number specified by integer-5, inclusive. 

• If you want a PAGE FOOTING report group, the program must define it to be in 
the vertical subdivision of the page that extends from the line number specified by 
integer-5 plus 1 to the line number specified by integer-l, inclusive. 

• If you want a REPORT FOOTING report group to be on a page by itself, the 
program must define it to be in the vertical subdivision of the page that extends from 
the line number specified by integer-2 to the line number specified by integer-l, 
inclusive. 

• If you want a REPORT FOOTING report group that is not on a page by itself, the 
program must define it to be within the vertical subdivision of the page that extends 
from the line number specified by integer-5 plus 1 to the line number specified by 
integer-l, inclusive. 

86000296-000 12-9 



Report Writer 

12-10 

All report groups must be described so that they can be presented on one page. A 
multiline report group is never split across page boundaries. 

General Rules 

Figure 12-1 illustrates page format control of report groups when the PAGE LIMIT 
clause is specified. 

Heading Detai 1 Footing 

Report Page Control Control Page Report 

Integer-2 =r- ::::c -1-

Integer-3 

I I I 
I 

I I Integer-4 I I 
Integer-5 I ± Integer-l _1- :I 

Figure 12-1. Page Format Control 

The page regions established by the PAGE clause are shown in Table 12-1. 

Table 12-1. Page Regions Established by the PAGE Clause 

Report Groups That Can Be Presented in First Line Number of Last Line Number of 
the Region the Region the Region 

REPORT HEADING described with integer-2 integer-l 
NEXT GROUP NEXT PAGE phrase 

REPORT FOOTING described with LINE integer-2 integer-l 
integer-l NEXT PAGE phrase 

REPORT HEADING not described with integer-2 integer-3 minus 1 
NEXT GROUP NEXT PAGE phrase 

PAGE HEADING integer-2 integer-3 minus 1 

CONTROL HEADING integer-2 integer-4 

DETAIL integer-2 integer-4 

CONTROL FOOTING integer-3 integer-5 

PAGE FOOTING integer-5 plus 1 integer-l 

continued 

8600 0296-000 



Report Writer 

Table 12-1. Page Regions Established by the PAGE Clause (cont.) 

Report Groups That Can Be Presented in 
the Region 

First Line Number of 
the Region 

Last Line Number of 
the Region 

REPORT FOOTING not described with 
LINE integer-l NEXT PAGE phrase 

Special Registers 

integer-5 plus 1 integer-l 

The compiler automatically supplies the following two special registers for each report 
described in the REPORT SECTION: 

• PAGE-COUNTER 

• LINE-COUNTER 

Because the special registers are automatically suppUed, you do not have to code 
data-description entries for them. 

PAGE-COUNTER 

PAGE-COUNTER refers to a special register that the compiler automatically creates for 
each report specified in the REPORT SECTION. The purpose of PAGE-COUNTER is to 
provide consecutive page numbers for a report. 

In the REPORT SECTION, a reference to PAGE-COUNTER can appear only 
in a SOURCE clause. Outside the REPORT SECTION, the special register 
PAGE-COUNTER can be used in any context in which a data-name of integral value can 
appear. 

If more than one PAGE-COUNTER exists in a program, PAGE-COUNTER must be 
qualified by a report-name whenever it is referenced in the PROCEDURE DIVISION. 
In the REPORT SECTION, an unqualified reference to PAGE-COUNTER is implicitly 
qualified by the name of the report in which the reference is made; whenever the 
PAGE-COUNTER of a different report is referenced, PAGE-COUNTER must be 
explicitly qualified "by that report-name. 

Execution of an INITIATE statement resets to 1 the PAGE-COUNTER for the 
referenced report. 

PAGE-COUNTER can be altered by PROCEDURE DIVISION statements. If you 
want a starting value other than 1, the program should change the contents of 
PAGE-COUNTER following the INITIATE statement for that report. 

86000296-000 12-11 



Report Writer 

LINE-COUNTER 

LINE-COUNTER refers to a special register that the compiler automatically creates 
for each report for which the PAGE LIMIT clause is specified. If more than one 
LINE-COUNTER exists in a program, then all references to LINE-COUNTER must be 
qualified. In the REPORT SECTION, an unqualified reference to LINE-COUNTER is 
implicitly qualified by the name of the report in which the reference is made. 

In the REPORT SECTION, a reference to LINE-COUNTER can appear only 
in a SOURCE clause. Outside the REPORT SECTION, the special register 
LINE-COUNTER can be used in any context in which a data-name of integral value can 
appear. Changing the LINE-COUNTER by using PROCEDURE DMSION statements 
can cause page-format control to become unpredictable. 

Execution of an INITIATE statement resets to 0 (zero) the LINE-COUNTER for the 
referenced report. LINE-COUNTER is also reset to 0 each time a page is advanced for 
the associated report. 

Mter a report group is printed, LINE-COUNTER contains the line number that 
corresponds to the last line of the report group that was printed, unless the report 
group designates the NEXT GROUP clause or the specific line number. In that case, 
LINE-COUNTER contains the value 0 (zero). 

See Also 

For further information on line number positioning, refer to "LINE NUMBER Clause" 
and "NEXT GROUP Clause" later in this section. 

REPORT SECTION Report-Group Descriptions 

12-12 

One or more report groups follow each report-description (RD) entry. Each group 
describes one or more print lines related to a specific function in producing a report. A 
report group is described by a hierarc:hic data structure similar to record descriptions in 
the other sections of the DATA DMSION. 

The report-group descriptions can appear only in the REPORT SECTION. 

Except for the DATA-NAME clause (which, when present, must immediately follow the 
level-number), clauses can be written in any sequence. 

The description of a report· group c~ consist of one, two, or three hierarchic levels. 

The report-group descriptions have the following three formats: 

Format 

1 

2 

3 

Explanation 

Describes the OI-Ievel of the report group. 

Describes a single line of the report group. This format must be followed 
immediately by Format 3 entries that describe the items to be printed on the line. 

Describes the items to be printed on a line, or describes a line that contains only 
one item to be printed. 

8600 0296-000 



Report Writer 

Format 1 Report~Group Descriptions 

Format 1 describes the 01-level of the report group. The first entry of a report group 
must be a Format 1 entry, which is as follows: 

01 [ data-name-1 ] 

[
. LINE NUMBER IS {integer-1 ON NEXT PAGE} 1 
' -- PLUS integer-2 

[ { 

integer-3 } ] 
; NEXT GROUP IS PLUS integer-4 

NEXT PAGE 

; TYPE IS 

{::ORT HEADING} 
{~~GE HEADING} 
{

CONTROL HEADING} {data-name-2} 
CH FINAL 

{:TAIL } 
{

CONTROL FOOTING} {data-name-3} 
CF FINAL 

{~~GE FOOTING} 
{:PORT FOOTING} 

[; USAGE IS DISPLAY]. 

Explanation of Format 1 

In this format, the integers must be greater than O. 

8600 0296-000 12-13 



Report Writer 

data-name-l 

Data-name-! ofa Format! entry can be referenced only by a GENERATE statement, 
the UPON phrase of a SUM clause, a USE BEFORE REPORTING statement, or as a 
sum-counter qualifier. Data-name-! is required in a Format! entry only in the following 
cases: 

• When a DETAIL report group is referenced by a GENERATE statement 

• When a DETAIL report group is referenced by the.UPON phrase ofa SUM clause 

• When a report group is referenced in a USE BEFORE REPORTING sentence 

• When the name of a CONTROL FOOTING report group is used to qualify a 
reference to a sum counter 

LINE NUMBER Clause 

12-14 

The LINE NUMBER clause specifies information about the vertical positioning of the 
report group. 

A LINE NUMBER clause must be specified to establish each print line of a report group. 

Every entry that defines a printable item must either contain a LINE NUMBER clause 
or be subordinate to an entry that contains a LINE NUMBER clause. 

An entry that contains a LINE NUMBER clause must not have a subordinate entry that 
also contains a LINE NUMBER clause. 

Explanation of LINE NUMBER Clause Format 

integer-l 

Integer-! specifies the absolute line number on which the print line is printed. 

Integer-! must not exceed 3 significant digits in length. 

Integer-! cannot be specified in a way that would cause any line of a report group to be 
presented outside the vertical page subdivision which is defined for that report-group 
type by the PAGE clause. 

integer-2 

Integer-2 specifies a relative·line number. If a relative LINE NUMBER clause is 
specified, the line number on which the print line is printed is determined by the sum 
of the line number on which the previous print line of the report group was printed and 
integer-2 of the relative LINE NUMBER clause. 

Integer-2 must not exceed 3 significant digits in length. 

8600 0296-000 



Report Writer 

Integer-2 cannot be specified in a way that would cause any line ofa report group to be 
presented outside the vertical page subdivision designated for that report group type as 
defined by the PAGE clause. 

NEXT PAGE 

The NEXT PAGE phrase specifies that the report group is to be presented beginning on 
the indicated line number on a new page. 

A NEXT PAGE phrase can appear only once. If present, this phrase must be in the first 
LINE NUMBER clause. A LINE NUMBER clause with the NEXT PAGE phrase can 
appear only in the description of body groups and in a REPORT FOOTING report group. 

General Rules 

All absolute LINE NUMBER clauses must precede all relative LINE NUMBER clauses. 

Successive absolute LINE NUMBER clauses must specify integers in ascending. order. 
The integers need not be consecutive. 

If the PAGE clause is omitted, only relative LINE NUMBER clauses can be specified in 
any report-group description entry in the report. 

The vertical positioning specified by a LINE NUMBER clause occurs before the line 
established by that LINE NUMBER clause is printed. 

The first LINE NUMBER clause specified within a PAGE FOOTING report group must 
be an absolute LINE NUMBER clause. 

NEXT GROUP Clause 

The NEXT GROUP clause specifies information for vertical positioning of a page 
following the presentation of the last line of a report group. A report-group description 
entry must not contain a NEXT GROUP clause unless the description of that report 
group contains at least one LINE NUMBER clause. 

Integer-3 and integer-4 must not exceed the value 255. (This is a Unisys extension.) 

If the PAGE clause is omitted from the r~port-description entry, only a relative NEXT 
GROUP clause can be specified in any report-group description entry in that report. 

The NEXT PAGE phrase of the NEXT GROUP clause must not be specified in a PAGE 
FOOTING report group. 

The NEXT GROUP clause must not be specified in a REPORT FOOTING report group 
or in a PAGE HEADING report group. 

8600 0296-000 12-15 



Report Writer 

General Rules 

Integer-3 specifies the absolute line on which the next group is printed. The PLUS 
phrase designates the number of lines after the current line on which the next group is 
printed. The NEXT PAGE phrase prints the next group on the next page. 

Any positioning of the page specified by the NEXT GROUP clause takes place after the 
report group in which the clause appears is printed. 

The vertical positioning information supplied by the NEXT GROUP clause is interpreted 
along with information from the TYPE and PAGE clauses and the value in the 
LINE-COUNTER special register. This information is used to determine a new value for 
LINE-COUNTER. 

The NEXT GROUP clause is ignored when it is specified on a CONTROL FOOTING 
report group that is at a level other than the highest level at which a control break is 
detected. 

The NEXT GROUP clause ofa body group refers to the next body group to be printed 
and, therefore, can affect the location at which the next body group is printed. The 
NEXT GROUP clause of a REPORT HEADING report group can affect the location at 
which the PAGE HEADING report group is printed. The NEXT GROUP clause ofa 
PAGE FOOTING report group can affect the location at which the REPORT FOOTING 
report group is printed. 

TYPE Clause 

12-16 

The TYPE clause specifies the particular type of report group described by this 
report-group description and indicates the time at which the report group is to be 
processed. This clause is a required entry in Format 1. 

REPORT HEADING, PAGE HEADING, CONTROL HEADING FINAL, CONTROL 
FOOTING FINAL, PAGE FOOTING, and REPORT FOOTING report groups can 
appear no more than once in the description of a report. 

Explanation of TYPE Clause Format 

data-name-2, data-name-3, and FI NAL 

If present, these data items must be specified in the CONTROL clause of the 
corresponding report-description entry. At most, one CONTROL HEADING report 
group and one CONTROL FOOTING report group can be specified for each data-name 
or FINAL option in the CONTROL clause of the report-description entry. However, 
neither a CONTROL HEADING report group nor a CONTROL FOOTING report group 
is required for a data-name or a FINAL option specified in the CONTROL clause of the 
report-description entry. 

86000296-000 



Report Writer 

In CONTROL FOOTING, PAGE HEADING, PAGE FOOTING, and REPORT 
FOOTING report groups, the SOURCE clauses and the USE statements must not 
reference any of the following: 

• Group data items containing a control data item 

• Data items subordinate to a control data item 

• A redefinition or renaming of any part of a control data item 

In PAGE HEADING and PAGE FOOTING report groups, the SOURCE clauses and the 
USE statements must not reference control data-names. 

REPORT HEADI NG or RH 

The REPORT HEADING phrase specifies a report group that is processed only once for 
each report as the first report group of that report. The REPORT HEADING report 
group is processed during the execution of the first chronological GENERATE statement 
for that report. 

PAGE HEADI NG or PH 

The PAGE HEADING phrase specifies a report group that is processed as the first 
report group on each page of that report, except under the following conditions: 

• A PAGE HEADING report group is not processed on a page that is to contain only a 
REPORT HEADING report group or only a REPORT FOOTING report group. 

• A PAGE HEADING report group is processed as the second report group on a page 
when it is preceded by a REPORT HEADING report group that is not to be printed 
on a page by itself. 

• PAGE HEADING report groups can be specified only if a PAGE clause is specified in 
the corresponding report-description entry. 

CONTROL HEADING or CH 

The CONTROL HEADING phrase specifies a report group that is processed at the 
beginning of a control group for a designated control data-name or, in the case of the 
FINAL option, is processed during execution of the first chronological GENERATE 
statement for that report. If a control break is detected during the execution of any 
GENERATE statement, any CONTROL HEADING report groups associated with the 
highest level of the control break and lower levels are processed. 

DETAIL or DE 

The DETAIL report groups are processed as a direct result of GENERATE statements. 
If a report group is other than type DETAIL, processing is an automatic function. 

The DETAIL phrase specifies a report group that is processed when a corresponding 
GENERATE statement is executed. ' 

86000296-000 12-17 



Report Writer 

CONTROL FOOTING or CC 

The CONTROL FOOTING phrase specifies a report group that is processed at the end 
of a control group for a designated control data-name. In the case of the FINAL option, 
the CONTROL FOOTING report group is processed only once for each report, as the 
last body group of that report. During execution of any GENERATE statement in which 
a control break is detected, any CONTROL FOOTING report group associated with the 
highest level of the control break or with more minor levels is printed. All CONTROL 
FOOTING report groups are printed during execution of the TERMINATE statement if 
at least one GENERATE statement has been executed for the report. 

PAGE FOOTI NG or PF 

The PAGE FOOTING phrase specifies a report group that is processed as the last report 
group on each page, except under the following conditions: 

• A PAGE FOOTING report group is not processed on a page that is to contain only a 
REPORT HEADING report group or only a REPORT FOOTING report group. 

• A PAGE FOOTING report group is processed as the second-to-Iast report group on 
a page when it is followed by a REPORT FOOTING report group that is not to be 
processed on a page by itself. 

• PAGE FOOTING report groups can be specified only if a PAGE clause is specified in 
the corresponding report-description entry. 

REPORT FOOTING or RF 

The REPORT FOOTING phrase specifies a report group that is processed only once for 
each report as the last report group of that report. The REPORT FOOTING report 
group is processed during the execution of a corresponding TERMINATE statement if at 
least one GENERATE statement has been executed for the report . 

. USAGE Clause (Report Writer) 

12-18 

A USAGE clause specifies the format of a data item in computer storage. 

The USAGE clause can be used at either the elementary level or OI-level; however, the 
USAGE clause of all report groups and their elementary items must be the same as the 
USAGE clause of the file on which the report is written. 

See Also 

For a detailed description of the USAGE clause, refer to "USAGE Clause" in Section 7; 
"DATA DMSION." 

86000296-000 



Report Writer 

Processing Report Groups 

The sequence of steps executed when REPORT HEADING, PAGE HEADING, 
CONTROL HEADING, PAGE FOOTING, or REPORT FOOTING report groups are 
processed as discussed in the following list: 

1. If a USE BEFORE REPORTING procedure is present that references the 
data-name of the report group, the USE procedure is executed. 

2. If the report group is not printable, no further processing is done for the report 
group. 

3. Otherwise, the print lines are formatted and printed according to the rules for the 
given type of report group. 

Processing a CONTROL FOOTING Report Group 

The sequence of steps executed when a CONTROL FOOTING report group is processed 
is described in the following list: 

The GENERATE statement rules specify that when a control break. occurs, the 
CONTROL FOOTING report groups, beginning at the minor level and proceeding 
upwards, are processed through the level at which the highest control break was 
detected. Although no CONTROL FOOTING report group has been defined for a given 
control data-name, step 5 in the following procedure is executed if a RESET phrase 
within the report description (RD) specifies that control data-name. 

1. Sum counters are crossfooted; all sum counters defined in this report group that are 
operands of SUM clauses in the same report group are added to the sum counters. 

2. Sum counters are rolled forward; that is, all sum counters defined in this report 
group that are operands of SUM clauses in higher-level CONTROL FOOTING 
report groups are added to the higher-level sum counters. 

3. If a USE BEFORE REPORTING procedure references the data-name of the report 
group, the USE procedure is executed. 

4. If the report group is not printable, step 5 is executed next; otherwise, the print 
lines are formatted and the report group is printed according to the rules for 
CONTROL FOOTING report groups. 

5. Sum counters that are to be reset when this level is processed in the control 
hierarchy are reset. 

Processing a DETAIL Report Group 

The following five steps describe the detail-related processing that is executed in 
response to a GENERATE report-name statement when the description of the 
report includes exactly one DETAIL report group. These steps are performed as if a 
GENERATE data-name statement were being executed. 

86000296-000 12-19 



Report Writer 

When the description of a report includes no DETAIL report groups, the detail-related 
processing in response to a GENERATE report-name statement is executed as described 
in step 1. This step is performed as if the description of the report included exactly one 
DETAIL report group and a GENERATE data-name statement were being executed. 

1. Any subtotaIing designated for the DETAIL report group is performed. 

2. If a USE BEFORE REPORTING procedure refers to the data-name of the report 
group, the USE procedure is executed. 

3. If the report group is not print~ble, no further processing is done for the report 
group. 

4. If the DETAIL report group is processed as a consequence of a GENERATE 
report-name statement, no further processing is done for the report group. 

5. If these conditions are not applicable, the print lines are formatted, and the report 
group is printed according to the rules for DETAIL report groups. 

Processing After Printing a Body Group 

When a CONTROL HEADING, a CONTROL FOOTING, or a DETAIL report is 
processed, interruption of a previously described processing of that body group might 
be necessary after determining that the body group is to be printed. A page advance is 
executed (and PAGE FOOTING and PAGE HEADING report groups are processed) 
before the body group is actually printed. 

During control-break processing, the values of control data items used to detect a given 
control break are known as prior values. The following rules apply to prior values: 

• During control-break processing of a CONTROL FOOTING report group, any 
references to control data items in a USE procedure or a SOURCE clause associated 
with that CONTROL FOOTING report group are supplied with prior values. 

• When a TERMINATE statement is executed, the prior value for the control data 
item are made available to a SOURCE clause or USE procedure references in 
CONTROL FOOTING and REPORT FOOTING report groups as if a control break 
were detected in the highest control data-name. 

• All other data item references in report groups and USE procedures access the 
current values contained in the data items when the report group is processed. 

Format 2 Report-Group Descriptions' 

12-20 

A Format 2 entry describes a single line of the report group and must be followed 
immediately by Format 3 entries describing the printable items for the line. 

86000296-000 



Report Writer 

The general format of this clause is as follows: 

level-number [ data-name-l ] 

[ 
. LINE NUMBER IS {integer-l [ ON NEXT PAGE] } 1 
' -- PLUS integer-2 " 

[ ; [USAGE IS ] DISPLAY]. 

Explanation of Format 2 

The level-number in Format 2 can be any integer between" 02 and 48, inclusive. 

Data-name-l is optional. If present, it can be used only to qualify a sum-counter 
reference. 

A Format 2 entry must contain at least one of the optional clauses. 

LINE NUMBER 

The LINE NUMBER clause specifies vertical positioning information for its report 
group. A LINE NUMBER clause must be used to establish each print line of a report 
group. 

USAGE (Report Writer) 

A USAGE clause specifies the format of a data item in computer storage. 

The USAGE clause can be used at the elementary item level. The usage of all 
elementary items must be the same as the usage of the file on which the report is 
written. 

See Also 

For a detailed description of the USAGE clause, refer to "USAGE Clause" in Section 7, 
"DATA DMSION." 

For more details about the LINE NUMBER clause, refer to Format 1 earlier in this 
section. 

12-21 



Report Writer 

Format 3 Report-Group Descriptions (Unisys Extension) 

Format·3 entries, besides describing a single, printable item of a line, can also be used to 
describe a line that contains only one printable item. 

The general format of this clause is as follows: 

level-number [ data-name-l] 

[ ; BLANK WHEN ZERO] 

[ ; COLUMN NUMBER IS integer-3] 

t ; GROUP INDICATE] 

[ ; {~TIFIED} RIGHT] 

[
. LINE NUMBER IS {intege~-l ON NEXT PAGE} ] 
, -- PLUS mteger-2 

{

PICTURE} 
; :~C IS character-string 

. SOURCE IS {TODAYS-DATE} 
, identifier-l 

{ 
; SUM identifier-2 [ , identifier-3 ] ... } 

[ UPON data-name-2 [ , data-name-3 ] ... J ... 

[ RESET ON { FINAL } ] 
data-name-4 

; {~UE} ISliteral-l 

[ ; [USAGE IS ] DISPLAY]. 

12-22 



Report Writer 

Explanation of Format 3 

In this format, the integers must be greater than O. 

level-number 

The level-number in Format 3 can be any integer between 02 and 49, inclusive. 

data-name-l 

Data-name-! is optional and can be referenced only if the entry defines a sum counter. 

BLANK WHEN ZERO Clause 

The BLANK WHEN ZERO clause controls printing of spaces when the value of a data 
item is 0 (zero). The rules for using this clause in Report Writer are the same as those 
described for the clause in Section 7, "DATA DMSION." 

COLUMN NUMBER Clause 

The COLUMN NUMBER clause identifies an item to be printed and specifies the 
horizontal position of the item on the print line. 

The absence of a COLUMN NUMBER clause indicates that the entry is not to be 
printed. 

The COLUMN NUMBER clause indicates that the object of a SOURCE clause, the 
object ofa VALUE clause, or the sum counter defined by a SUM clause is to be printed 
with the leftmost character position indicated by integer-3. 

The COLUMN NUMBER clause can be specified only at the elementary level. When 
this clause is used, it must appear in, or be subordinate to, an entry that contains a LINE 
NUMBER clause. 

Integer-3 specifies the leftmost character position of the printable item. It is important 
to ensure that integer-3 is greater than 0, that printable items on a given print line are 
defined in ascending column-number order and do not overlap, and that each character 
occupies a unique position. 

Space characters are automatically provided for all positions of a print line that are not 
occupied by printable items. ' 

The first or leftmost character of a print line is column number 1. 

An entry that contains a COLUMN NUMBER clause but no LINE NUMBER clause 
must be subordinate to an entry that contains a LINE NUMBER clause. 

An entry that contains a VALUE clause must also have a COLUMN NUMBER clause. 

8600 0296--000 12-23 



Report Writer 

GROUP INDICATE Clause 

The GROUP INDICATE clause causes an associated elementary item to be produced at 
the top of a page or when a control break occurs. 

Ifa GROUP INDICATE clause is specified, it causes the SOURCE or VALUE clauses to 
be ignored and spaces to be provided except in the following cases: 

• On the first printing of the DETAIL report group in the report 

• On the first printing of the DETAIL report group after a page advance 

• On the first printing of the DETAIL report group after every control break 

If the report~description entry specifies neither a PAGE clause nor a CONTROL clause, 
then a GROUP INDICATE printable item is printed the first time the DETAIL report 
group is printed after the INITIATE statement is executed. Thereafter, spaces are 
supplied for indicated items with SOURCE or VALUE clauses. 

The GROUP INDICATE clause can appear only in a DETAIL re.f>ort group at the 
elementary item level within an entry that defines a printable item. 

A GROUP INDICATE clause can appear only in a DETAIL report group. 

JUSTIFIED Clause 

The JUSTIFIED clause causes alphanumeric data to be right~justified in a receiving 
field. The rules for using the JUSTIFIED clause in Report Writer are the same as those 
described for the clause in Section 7, ''DATA DIVISION." 

LINE NUMBER Clause 

The LINE NUMBER clause specifies vertical positioning information for its report 
group. A LINE NUMBER clause must be used to establish each print line of a report 
group. 

A LINE~NUMBER clause must not be the only clause specified. 

Refer to the description of the LINE NUMBER clause in Format 1 earlier in this section 
for details about this clause. 

PICTURE Clause 

12-24 

The PICTURE clause specifies the output format of an item and is required in Format 3. 

The rules for using the PICTURE claus~ in Report Writer are the same as those 
described for the clause in Section 6, "Data Concepts" and in Section 7, "DATA 
DMSION." 

8600 0296-000 



Report Writer 

SOURCE Clause 

The SOURCE clause specifies the data item to be printed or designates a data item to be 
summed in a CONTROL FOOTING report group. 

Identifier-l specifies the sending data item of the implicit MOVE statement that is 
executed to move identifier-l to the printable item. Identifier-l must be defined so 
that it conforms to the rules for sending items in the MOVE statement. In a Unisys 
extension, identifier-l can be any special register, attribute, intrinsic function, or 
identifier. 

The print lines of a report group are formatted immediately before presentation of the 
report group. At that time, the implicit MOVE statements specified by SOURCE clauses 
are executed. 

Identifier-l can be defined in any section of the DATADMSION. Ifidentifier-l is a 
REPORT SECTION item, it can be only PAGE-COUNTER, LINE-COUNTER, or a sum 
counter of the report in which the SOURCE clause appears. 

SUM Clause 

The SUM clause establishes a sum counter and names the data items to be summed. 

A SUM clause can appear only in a CONTROL FOOTING report group. 

Explanation of Sum Clause Format 

identifier-2 and identifier-3 

Identifier-2 and identifier-3 must be defined as numeric data items. When defined in the 
REPORT SECTION, identifier-2 and identifier-3 must be the names of sum counters. 
If the UPON phrase is omitted, any identifiers in the associated SUM clause that are 
themselves sum counters must be defined either in the same report group that contains 
the SUM clause or in a report group at a lower level in the control hierarchy of the 
report. If the UPON phrase is specified, any identifiers in the associated SUM clause 
must not be sum counters. 

UPON 

The UPON phrase selectively subtotals the DETAIL report groups named in the phrase. 

Data-name-2 and data-name-3 must be the names of DETAIL report groups described 
in the same report as the CONTROL FOOTING report group in which the SUM clause 
appears. Data-name-2 and data-name-3 can be qualified by a report-name. 

For more information on the CONTROL FOOTING report group, see "CONTROL 
Clause" earlier in this section. 

8600 0296-000 12-25 



Report Writer 

RESET ON data-name-4 

Data-name-4 must be one of the data-names specified in the CONTROL clause for this 
report. Data-name-4 must not be a lower-level control than the associated control for 
the report group in which the RESET phrase appears. 

For more information on the CONTROL clause, see "CONTROL Clause" earlier in this 
section. 

RESET ON FINAL 

The FINAL option, if specified in the RESET phrase, must also appear in the CONTROL 
clause for the report. 

VALUE Clause 

The VALUE clause defines the value of REPORT SECTION printable items. 

An entry that contains a VALUE clause must also have a COLUMN NUMBER clause. 

Only Format 1 of the VALUE clause is permitted in the REPORT SECTION. 

In a U nisys extension, VA is an abbreviation for VALUE. 

See Also 

For a more detailed description of the VALUE clause, refer to "VALUE Clause" in 
Section 7, "DATA DMSION." 

USAGE Clause (Report Writer) 

12-26 

A USAGE clause specifies the format of a data item in computer storage. 

The USAGE clause can be used at the elementary item level. The usage of all 
elementary items must be the same as the usage of the file on which the report is 
written. 

See Also 

For a detailed description of the USAGE clause, refer to "USAGE Clause" in Section 7, 
"DATA DIVISION." 

86000296-000 



Report Writer 

Summary of RD Entries 

Table 12:....2 shows all the possible combinations of clauses in Format 3. Each column 
represents an allowable combination of clauses. For example, the first column under 
"Permitted Combinations of Clauses" indica~es that when combining the required 
PICTURE and SUM clauses, the LINE clause is allowed but not required. All other 
remaining clauses are invalid for this combination. The PICTURE clause is always 
required. 

Table 12-2. Permissible Clause Combinations in Format 3 Report-Group Description 
Entries 

Clause Permitted Combinations of Clauses 

PICTURE Required Required Required Required Required 

COLUMN Invalid Required Allowed Allowed Required 

SOURCE Invalid Invalid Required Required Invalid 

SUM Required Required Invalid Invalid Invalid 

VALUE Invalid Invalid Invalid Invalid Required 

JUST Invalid Invalid Allowed Invalid Allowed 

BLANK Invalid Allowed Invalid Allowed Invalid 
ZERO 

GROUP Invalid Invalid Allowed Allowed Allowed 

USAGE Invalid Allowed Allowed Allowed Allowed 

LINE Allowed Allowed Allowed Allowed Allowed 

Understanding Sum Counters 

The SUM clause establishes a sum counter. The sum counter is a numeric data item 
with an operational sign. At run time, each of the values identifier-I, identifier-2, and so 
forth is added directly into the sum counter. This addition is performed under the ru1es . 
of the ADD statement. . 

The size of the sum counter is equal to the number of receiving character positions 
specified by the PICTURE clause that accompanies the SUM clause in the description of 
the elementary item. 

Only one sum counter exists for an elementary report entry, regardless of the number.of 
SUM clauses specified in the elementary report entry. 

If the elementary report entry for a printable item contains a SUM clause, the sum 
counter serves as·a source data item. The data contained in the sum counter is moved, 
according to the ru1es of the MOVE statement, to the printable item for printing. 

86000296--000 12-27 



Report Writer 

If the data-name appears as the subject of an elementary report entry that contains 
a SUM clause, the data-name is the name of the sum counter, not the name of the 
printable item that the entry can also define. 

The highest permissible qualifier of a sum counter is the report-name. 

PROCEDURE DIVISION statements can alter the contents of sum counters. 

If two or more identifiers specify the same addend, the addend is added into the sum 
counter as many times as the addend is referenced in the SUM clause. 

Two or more of the data-names can specify the same DETAIL report group. When 
a GENERATE data-name statement for such a DETAIL report group is given, the 
incrementing occurs as many times as data-name appears in the UPON phrase. 

In the absence of an explicit RESET phrase, the compiler sets the sum counter to the 
value 0 (zero) when Report Writer processes the CONTROL FOOTING report group 
within which the sum counter is defined. If an explicit RESET phrase is specified, the 
compiler sets the sum counter to 0 (zero) when Report Writer processes the designated 
level of the control hierarchy. The compiler initially sets the sum counter to 0 (zero) 
during execution of the INITIATE statement for the report containing the sum counter. 

Incrementing Sum Counters 

12-28 

Report Writer adds the identifiers into the sum counters during execution of the 
. GENERATE and TERMINATE statements. Report Writer adds each identifier to 
be added into the sum counter at a time that depends on the characteristics of the 
identifier. The characteristics of the identifiers to be added and the time of addition are 
described for each of the following three categories of sum-counter incrementing: 

Category 

Subtotaling 

Rolling Forward 

Identifier Characteristics and Time of Addition 

Subtotaling is the process of accumulating identifiers to be added 
into a sum counter. Subtotaling occurs only during execution of 
GENERATE statements, after Report Writer processes any control 
break, but before it processes the DETAIL report group. 

If the SUM clause contains the UPON phrase, Report Writer 
subtotals the identifiers to be added when it executes a GENERATE 
statement for the designated DETAIL report group. 

If the SUM clause does not contain the UPON phrase, Report Writer 
subtotals the identifiers that are not sum counters when it executes 
any GENERATE data-name statement for the report in which 
the SUM clause appears. 

Rolling forward is the process of accumulating sum counters defined 
in a lower-level CONTROL FOOTING report group into the sum 
counter. The program rolls forward a sum counter in a lower-level 
CONTROL FOOTING report group when a control break occurs and 
when the lower-level CONTROL FOOTING report group is processed. 

continued 

8600 0296-000 



continued 

Category 

Crossfooting 

Report Writer 

Identifier Characteristics and Time of Addition 

Crossfooting is the process of accumulating a sum counter defined 
in the same CONTROL FOOTING report group into the sum counter. 
Crossfooting occurs when a control break occurs and when the 
CONTROL FOOTING report group is processed. 

The program performs the crossfooting according to the sequence in 
which sum counters are defined in the CONTROL FOOTING report 
group; that is, the program completes all crossfooting into the first 
sum counter defined in the CONTROL FOOTING report group. Then 
the program completes all crossfooting into the second sum counter 
defined in the CONTROL FOOTING report group. The program 
repeats this procedure until it completes all the crossfooting 
operations. 

PROCEDURE DIVISION Statements 
The following statements apply in the PROCEDURE DMSION only with Report 
Writer: 

• INITIATE 

• GENERATE 

• TERMINATE 

• USE BEFORE REPORTING 

INITIATE Statement 

The INITIATE statement begins processing of a report. 

The general format of this statement is as follows: 

INITIATE report-name-l [ ,report-name-2 ] ... 

Explanation of Format 

INITIATE 

The INITIATE statement resets all data-name entries that contain SUM clauses 
associated with the desigriated report. 

The INITIATE statement does not open the file with which the report is associated; 
however, the associated file must be open when the INITIATE statement is executed. 

86000296--000 12-29 



Report Writer 

A second INITIATE statement for a particular report-name cannot be executed unless a 
TERMINATE statement has been executed for that report-name after the execution of 
the first INITIATE statement. 

report-name 

Each report-name must be defined by a report-description (RD) entry in the REPORT 
SECTION of the DATA DIVISION. 

Special Registers 

The PAGE-COUNTER register, if specified, is set to 1 during execution of the 
INITIATE statement. If a starting value other than 1 is desired for the associated 
PAGE-COUNTER, the counter can be reset after the INITIATE statement is executed. 

The LINE-COUNTER register, if specified, is set to 0 (zero) before or during execution 
of the INITIATE statement. 

GENERATE Statement 

The GENERATE statement links the PROCEDURE DIVISION to the Report Writer 
at processing time. The Report Writer is described in the REPORT SECTION of the 
DATA DIVISION. 

Data is moved to the data item in the report-group-description entry of the REPORT 
SECTION. This data is edited under the control of the Report Writer according to the 
same rules for movement and editing described for the MOVE statement. 

GENERATE statements for a report can be executed only after an INITIATE statement 
for the report has been executed and before a TERMINATE statement for the report 
has been executed. 

The general format of this statement is as follows: 

GENERATE identifier 

12-30 

Explanation of Format 

The identifier represents a DETAIL report group or an RD entry. 

If the identifier represents the name of a DETAIL report group, the GENERATE 
statement performs all automatic operations of the Report Writer and produces an 
output DETAIL report group on the output medium during processing. This type of 
reporting is called detail reporting. 

If the identifier represents the name of a report-description (RD) entry, the GENERATE 
statement performs all automatic operations of the Report Writer and updates the 

86000296-000 



Report Writer 

FOOTING report groups in a particular report description (RD) without producing 
a DETAIL report group associated with the report. In this case, all sum counters 
associated with the report description (RD) are algebraically incremented. This type of 
reporting is called summary reporting. For summary reporting, no more than one TYPE 
DETAIL report group and at least one body group must be present, and the CONTROL 
clause must be specified for the report. 

GENERATE Statement Actions 

A GENERATE statement implicitly produces the following automatic operations (if 
defined) in both detail and summary reporting: 

• Steps and tests the LINE-COUNTER register, the PAGE-COUNTER register, or 
both special registers to produce appropriate PAGE FOOTING, PAGE HEADING, 
or both report groups 

• Recognizes any specified control breaks to produce appropriate CONTROL 
FOOTING report groups, CONTROL HEADING report groups, or both report 
groups 

• Accumulates all specified identifiers into the sum counters, resets the sum counters 
on an associated control break, and performs an updating procedure between 
control-break levels for each set of sum counters 

• Executes any specified routines defined by a USE statement before the generation of 
the associated report groups 

Producing Report Groups 

During execution of the first GENERATE statement, the following report groups 
associated with the report, if specified, are produced in the specified order: 

• REPORT HEADING report group 

• PAGE HEADING report group 

• All CONTROL HEADING report groups in the following order: final, major, minor 

• DETAIL report group statement 

The following steps occur if the Report Writer recognizes a control break when the 
GENERATE statement is executed. The GENERATE statement cannot be the first 

. statement executed for a report. 

1. All CONTROL FOOTING report groups specified for the report are produced, 
from the minor report group up to and including the report group specified for the 
identifier that caused the control break. 

2. The CONTROL HEADING report groups specified for the report are produced 
descending order, from the report group specified for the identifier that caused the 
control break. down to the minor report group. 

3. The DETAIL report group specified in the GENERATE statement is produced. 

8600 0296-000 12-31 



Report Writer 

TERMINATE Statement 

The TERMINATE statement ends the processing of a report. 

The generalformat of this statement is as follows: 

TERMINATE report-name-l [ ,report-name-2] .... 

Explanation of Format 

Each report-name given in a TERMINATE statement must be defined by a 
report-description (RD) entry in the REPORT SECTION of the DATA DMSION. 

The TERMINATE statement produces all CONTROL FOOTING report groups 
associated with the report as if a control break had just occurred at the highest level, 
and the statement completes the Report Writer functions for the named reports. 
The TERMINATE statement also produces the last PAGE FOOTING and REPORT 
FOOTING report groups associated with the report. 

If no GENERATE statements have been executed for a report during the interval 
between the executioh of an INITIATE statement and a TERMINATE statement for the 
same report, then associated FOOTING report groups are not produced. 

Appropriate PAGE HEADING report groups, PAGE FOOTING report groups, or both 
report groups are prepared in their respective order for the report group description. 

A second TERMINATE statement for a particular report cannot be executed unless 
a second INITIATE statement has been executed for that report. Ifa TERMINATE 
statement has been executed for a report, a GENERATE statement for that report must 
not be executed unless an intervening INITIATE statement for that report is executed. 

The TERMINATE statement does not close the file associated with the report. You must 
use a CLOSE statement for the file. However, the associated file must be open at the 
time the TERMINATE statement is executed. The TERMINATE statement performs 
Report Writer functions for individually described reports analogous to the I/O functions 
that the CLOSE statement performs for individually described files. 

The SOURCE clauses used in the CONTROL FOOTING FINAL or REPORT FOOTING 
report groups refer to the values of the items during execution of the TERMINATE 
statement. 

USE BEFORE REPORTING Statement 

12-32 

This statement specifies PROCEDURE DIVISION statements to be executed 
immediately before Report Writer processes a report group named in the REPORT 
SECTION of the DATA DIVISION. 

8600 0296-000 



Report Writer 

The general format of this statement is as follows: 

USE BEFORE REPORTING identifier-1 

Explanation of Format 

A USE BEFORE REPORTING statement, when present, must immediately follow 
section header in the DECLARATIVES SECTION of the PROCEDURE DIVISION and 
must be followed by a period followed by a space. The remainder of the section must 
consist of one or more procedural paragraphs defining the procedures to be used. . 

Identifier-1 represents a report group named in the REPORT SECTION of the DATA 
DIVISION. An identifier must not appear in more than one USE statement. 

No Report Writer statement (GENERATE, INITIATE, or TERMINATE) can be 
written in a procedural paragraph or paragraphs following the USE statement in the 
DECLARATNES SECTION. 

The USE statement itself is never executed; rather, it defines the conditions that call for 
execution of the USE procedures. 

Report Writer executes the designated procedures immediately before it produces the 
named report group, regardless of control-break associations with report groups. 

A USE BEFORE REPORTING statement must not alter the value of any control data 
item. 

Report Writer Program Example 
The sample program in Example 12-1 uses the Report Writer program to produce the 
report shown in Figure 12-3. The data file input to the program is shown in Figure 12-2. 

Comment-entry lines in the program indicate the portions of code that describe the 
various report group types. The corresponding output is shown with numbers on the far 
right that indicate the report group type that caused the line to be printed. 

000200 IDENTIFICATION DIVISION. 
000300 PROGRAM-ID. FED-SCHOOL-SYSTEM. 
000400 AUTHOR. BERKOWITZ. 
000500 ENVIRONMENT DIVISION. 
000600 INPUT-OUTPUT SECTION. 
000700 FILE-CONTROL. 
000800 SELECT PENNI ASSIGN TO SORT DISK. 
000900 SELECT INFILE ASSIGN TO DISK. 
001000 SELECT REPORTFILE ASSIGN TO PRINTER. 
001100 DATA DIVISION. 
001200 FILE SECTION. 

Example 12-1. Sample Report Writer Program 

86000296-000 12-33 



Report Writer 

12-34 

001300 FD INFILE BLOCK CONTAINS 30 RECORDS. 
001350 01 IN-REC PICTURE X(84). 
001400 SO PENNI. 01 FROMM. 
001500 02 FILLER PICTURE xx. 
001600 02 STUDENT. 
001700 03 NAME-L PICTURE X(30). 
001800 03 NAME-F PICTURE X (10) . 
001900 02 FILLER PICTURE xx. 
002000 02 GRADE PICTURE 99. 
002100 02 FILLER PICTURE xx. 
002200 02 ROOM PICTURE 999. 
002300 02 FILLER PICTURE 99. 
002400 02 MONTHH PICTURE 99. 
002500 02 DAYY PICTURE 99. 
002600 02 YR PICTURE 99. 
002700 02 FILLER PICTURE X(2). 
002800 02 TAL PICTURE 9. 
002850 02 FILLER PICTURE X(22). 
002900 FD REPORTFILE REPORT IS ABS-REPORT. 
003000 WORKING-STORAGE SECTION. 
003100 77 SAVED-MONTH PICTURE 99 VALUE IS 0. 
003200 77 CONTINUED PICTURE X(II) VALUE IS SPACE. 
003300 77 ABSS PIC X(8) VALUE "ABSENCES". 
003400 77 CA PIC X(19) VALUE "CUMULATIVE ABSENCES". 
003500 77 TAL-CTR BINARY PIC 9999. 
003600 77 MTHIX 
003700 01 HEAD-1. 

PICTURE 99. 

003800 02 FILLER PIC X(22) VALUE SPACES. 
003900 02 HEAD-LINE PIC X(74) VALUE "MONTH DAY 
004000- II GRADE ROOM NAME II 
004100 02 FILLER PIC X(36) VALUE SPACES. 
004200 01 MONTH-TABLE. 
004300 02 MONTH-I. 
004400 03 FILLER PICTURE A(9) VALUE IS IIJANUARY 
004500 03 FILLER PICTURE A(9) VALUE IS IIFEBRUARY . 
004600 03 FILLER PICTURE A(9) VALUE IS IIMARCH 
004700 03 FILLER PICTURE A(9) VALUE IS "APRIL 
004800 03 FILLER PICTURE A(9) VALUE IS "MAY 
004900 03 FILLER PICTURE A(9) VALUE IS "JUNE 
005000 03 FILLER PICTURE A(9) VALUE IS "JULY 
005100 03 FILLER 'PICTURE A(9) VALUE IS "AUGUST 
005200 03 FILLER PICTURE A(9) VALUE IS "SEPTEMBER • 
005300 03 FILLER PICTURE A(9) VALUE IS "OCTOBER ". 
005400 03 FILLER PICTURE A(9) VALUE IS "NOVEMBER ". 
005500 03 FILLER PICTURE A(9) VALUE IS "DECEMBER ". 
005600 03 FILLER PICTURE A(9) VALUE SPACES. 
005700 02 MONTH-2 REDEFINES MONTH-I. 
005800 03 MONTHNAME PICTURE A(9) OCCURS 13 TIMES. 
005900 REPORT SECTION. 
006000 RD ABS-REPORT CONTROLS ARE FINAL, MONTHH, DAYY,. GRADE 
006100 PAGE LIMIT IS 56 LINES HEADING 2 

Example 12-1. Sample Report Writer P~ogram (cont.) 

8600 0296-000 



Report Writer 

006200 
006210* 

FIRST DETAIL 10 LAST DETAIL 45 FOOTING 55. 

006220* The following lines produce the report heading. 
006230* See <--1 in sample Report Writer report. 
006240* 
006300 01 TYPE IS REPORT HEADING. 
006400 
006500 
006510* 

02 LINE NUMBER IS 2 COLUMN 57 
VALUE "FED SCHOOL SYSTEM". 

. PIC X (17) 

006520* The following lines produce the page heading. 
006530* See <--2 in sample Report Writer report. 
006540* 
006600 01 PAGE-HEAD TYPE IS PAGE HEADING. 
006700 
006800 
006900 
007000 
007100 
007200 
007300 
007400 
007500 
007510* 

02 LINE NUMBER IS 3 COLUMN 52 PIC X(26) 
VALUE II STUDENT ABSENTEEISM REPORT". 

02 LINE NUMBER IS 6. 
03 COLUMN IS 56 PIC X(9) 

SOURCE IS MONTHNAME OF MONTH-2(MONTHH). 
03 COLUMN IS 66 PIC X(8) SOURCE IS ABSS. 
03 COLUMN IS 76 PIC X(II) SOURCE IS CONTINUED. 

02 LINE IS 8. 
03 COLUMN IS 1 PIC X (132) SOURCE HEAD-I. 

007520* The following lines produce the detail lines. 
007530* See <--3 in sample Report Writer report. 
007540* 
007600 01 DETAIL-LINE TYPE IS DETAIL LINE NUMBER IS PLUS 1. 
007700 02 COLUMN IS 24 GROUP INDICATE PIC X(9) 
007800 SOURCE IS MONTHNAME OF MONTH-2(MONTHH). 
007900 02 COLUMN IS 41 GROUP INDICATE PICTURE IS 99 
008000 SOURCE IS DAYY. 
008100 
008200 
008300 
008400 
008410* 

02 COLUMN IS 54 GROUP INDICATE PIC .99 SOURCE IS GRADE. 
02 COLUMN IS 67 PIC 999 SOURCE IS ROOM. 
02 COLUMN IS 80 PIC X(20) SOURCE IS NAME-L. 
02 COLUMN IS 101 PIC X(10) SOURCE IS NAME-F. 

008420* The following lines produce the grade control footing. 
008430* See <--4 in sample Report Writer report. 
008440* 
008500 01 TYPE IS CONTROL FOOTING GRADE. 
008600 
008700 
008710* 

02 ,LINE NUMBER IS PLUS 2. 
03 COLUMN 1 PIC X(132) VALUE SPACE. 

008720* The following lines produce the day control 
008730* See <--5 in sample Report Writer report. 
008740* 
008800 01 
008900 

TESTER TYPE IS CONTROL FOOTING DAYY. 
02 LINE NUMBER IS PLUS 2. 

footing. 

009000 
009100 
009200 

03 COLUMN 2 PIC X(12) VA JlABSENCES FOR n • 

03 COLUMN 24 PICTURE Z9 SOURCE SAVED-MONTH. 
03 COLUMN 26 PICTURE X VALUE --. 

Example 12-1. Sample Report Writer Program (cont.) 

8600 0296-000 12-35 



Report Writer 

12-36 

03 COLUMN 27 PICTURE 99 SOURCE DAYY. 009300 
009400 
009500 
009600 
009700 

03 NO-ABS COLUMN 49 PIC 999 SUM TAL. 
03 COLUMN 65 PIC X(19) SOURCE CA. 
03 COLUMN 85 PIC 999 SUM TAL RESET ON FINAL. 

02 LINE PLUS 1 COLUMN 1 PIC X(132) VA ALL *. 
009720* The following lines produce the month control footing. 
009730* See <--6 in sample Report Writer report. 
009740* 
009800 01 TYPE CONTROL FOOTING MONTHH 

LINE PLUS 2 NEXT GROUP NEXT PAGE. 009900 
010000 
010100 
010200 
010300 
010400 
010410* 

02 COLUMN 16 PIC X(28) VALUE "TOTAL NUMBER OF ABSENCES FOR". 
02 COLUMN IS 46 PIC X(9) 

SOURCE MONTHNAME OF MONTH-2(SAVED-MONTH). 
02 COLUMN 57 PIC XXX VALUE II WASil • 
02 TOT COLUMN 61 PIC 999 SUM NO-ABS. 

010420* The following lines produce the page heading. 
010430* See <--7 in sample Report Writer report. 
010440* 
010500 01 TYPE PAGE FOOTING LINE PLUS 1. 
010600 02 COLUMN 59 PICTURE X(12) VALUE "REPORT-PAGE-". 
010700 02 COLUMN 71 PICTURE 99 SOURCE PAGE-COUNTER. 
010710* 
010720* The following lines produce the report footing. 
010730* See <--8 in sample Report Writer report. 
010740* 
010800 01 TYPE REPORT FOOTING. 
010900 02 LINE PLUS 1 COLUMN 32 PICTURE A(13) 
011000 VALUE "END OF REPORT". 
011100 PROCEDURE DIVISION. 
011200 DECLARATIVES. 
011300 PAGE-HEAD-RTN SECTION. 
011400 USE BEFORE REPORTING PAGE-HEAD. 
011500 TEST-CONT. 
011600 IF MONTHH = SAVED-MONTH MOVE "(CONTINUED)" TO CONTINUED 
011700 ELSE MOVE SPACES TO CONTINUED 
011800 MOVE MONTHH TO SAVED-MONTH. 
011900 END DECLARATIVES. 
012000 SORTING SECTION. 
012100 SORTER. 
012200 SORT PENNI ON ASCENDING KEY 
012300 MONTHH, DAYY, GRADE, ROOM, STUDENT 
012320 USING INFILE OUTPUT PROCEDURE IS REPORTER. 
012330 DISPLAY MONTHH. 
012340 MOVE MONTHH TO MTHIX. 
012500 END-OF-THE-SORT. STOP RUN. 
012600 REPORTER SECTION. 
012700 INITIATE-REPORT. 
012900 OPEN OUTPUT REPORTFILE. 
013000 INITIATE ABS-REPORT. 
013100 UNWIND-THE-SORT. 

Example 12-1. Sample Report Writer Program (cont.) 

8600 0296-000 



Report Writer 

013200 
013300 
013400 
013460 

RETURN PENNI RECORD AT END 
TERMINATE ABS-REPORT STOP RUN. 
GENERATE DETAIL-LINE GO TO UNWIND-THE-SORT. 
STOP RUN. 

Example 12-1. Sample Report Writer Program (cont.) 

Figure 12-2 shows the input data file (INFILE) that produces the output shown in 
Figure 12-3. 

CODDINGTON KIMBERLY 03 125 091288 1 
MILLSTEIN SANDRA 03 121 091288 1 
BURKLAND JOSEPH 03 121 091288 1 
MCCOY JUDY 01 142 091088 1 
LUBASCH DANIEL 01 142 091088 1 
JOFFEE JOHN 01 142 091088 1 
EAGLE MIKE 05 153 090788 1 
DANIELSON FRED 05 153 090788 1 
HUBERT THOMAS 03 115 090788 1 
WONG SUSIE 03 111 090788 1 
CODDINGTON DARIN 02 103 090788 1 
CARROLL JENNIFER 02 102 090788 1 
HANSON KAREN 02 102 090788 1 
AUSTIN EUGENE 02 101 090788 1 

Figure 12-2. Input Data File to Sample Report Writer Program 

Figure 12-3 shows output from the sample Report Writer program. The numbers on the 
far right side (for example, < -1) indicate the report group type that caused the line to . 
be printed. These numbers shown on the output correspond to the numbers shown in 
the comment-entry lines of the program. 

8600 0296-000 12-37 



Report Writer 

12-38 

MONTH DAY 

SEPTEMBER 07 

SEPTEMBER 07 

SEPTEMBER 07 

FED SCHOOL SYSTEM 
STUDENT ABSENTEEIS~ REPORT 

SEPTEMBER ABSENCES 

GRADE 

02 

03 

05 

ROOM 

101 
102 
102 
103 

111 
115 

153 
153 

AUSTIN 
CARROLL 
HANSON 
CODDINGTON 

WONG 
HUBERT 

DANIELSON 
EAGLE 

NAME 

EUGENE 
JENNIFER 
KAREN 
DARIN 

SUSIE 
THOMAS 

FRED 
MIKE 

<-- 1 
<-- 2 

<-- 2 

<-- 2 

<-- 3 
<-- 3 
<-- 3 
<-- 3 

<-- 4 
<-- 3 
<-- 3 

<-- 4 
<-- 3 
<-- 3 
<-- 4 
<-- 5 

ABSENCES FOR 9-07 008 CUMULATIVE ABSENCES 008 <-- 5 
************************************************************** <-- 5 
SEPTEMBER 10 01 142 JOFFEE JOHN <-- 3 

ABSENCES FOR 9-10 003 

142 LUBASCH DANIEL <-- 3 
142 . MCCOY JUDY <-- 3 

<-- 4 
<-- 5 

CUMULATIVE ABSENCES 011 <-- 5 
************************************************************** <-- 5 
SEPTEMBER 12 

ABSENCES FOR 9-12 

03 

003 

121 
121 
125 

BURKLAND 
MILLSTEIN 
CODDINGTON 

JOSEPH 
SANDRA 
KIMBERLY 

CUMULATIVE ABSENCES 014 

<-- 3 
<-- 3 
<-- 3 
<-- 4 
<-- 5 
<-- 5 

************************************************************** <-- 5 

TOTAL NUMBER OF ABSENCES FOR SEPTEMBER WAS 014 

REPORT-PAGE-01 
END OF REPORT 

Figure 12-3. Sample Report Writer Report 

<-- 6 
<-- 6 

<-- 7 
<-- 8 

86000296-000 



Section 13 
ANSI Inter-Program Communication 
(IPC) 

The Inter-Program Communication (IPC) module provides a way for a program to 
communicate with one or more other programs. This communication is defined as 

• The ability to transfer control from one program to another within a run unit 

• The ability of both programs to have access to the same data items 

The ANSI-74 IPC module is a subset of libraries, which are described in Section 15, 
"Libraries." The IPC implementation requires that a called program adhere to the 
following rules: 

• The SHARING compiler control option has the value SHAREDBYRUNUNIT. 

• The program does not return a value. 

• The program haS a single entry point, named PROCEDUREDIVISION. 

See Also 

Deviations from these rules are Unisys extensions, which are described in Section 15, 
"Libraries .. " 

LINKAGE SECTION in the IPC Module 
You must code a LINKAGE SECTION in the DATA DIVISION when you are using IPC. 

The LINKAGE SECTION appears in a called program. It describes data that is available 
through the calling program but that is accessed in both the calling and the called 
programs. 

No space is allocated in the called program for data items referred to by data-names 
in the LINKAGE SECTION of that program. 'PROCEDURE DIVISION references 
to these data items are resolved at run time by equating the reference in the called 
program to the location used in the calling program. 

In the case of index-names, no such correspondence is established. Index-names in the 
called and calling programs always refer to separate indexes. 

The LINKAGE SECTION in a program is meaningful only if the object program 
functions under the control of a CALL statement and if the CALL statement in the 
calling program contains a USING phrase. 

8600 0296-000 13-1 



ANSI Inter-Program Communication (IPC) 

Data items defined in the LINKAGE SECTION of the called program can be accessed 
within the PROCEDURE DIVISION of the called program only if they are specified as 
operands of the USING phrase of the PROCEDURE DIVISION header or if they are 
subordinate to such operands and the object program is under the control of a CALL 
statement that specifies a USING phrase. 

The structure of the LINKAGE SECTION is the same as that previously described for 
the WORKING-STORAGE SECTION, beginning with a section header and followed by 
data-description entries for noncontiguous data items, record-description entries, or 
both. 

Each LINKAGE SECTION record-name and noncontiguous item name must be unique 
within the called program because it cannot be qualified. Data items defined in the 
LINKAGE SECTION of the called program must not be associated with data items 
defined in the REPORT SECTION of the calling program. 

·Ofthose items defined in the LINKAGE SECTION, the only items that can be referred 
to in the PROCEDURE DIVISION are the following: 

• Data-name-!, data-name-2, and so on,in the USING phrase of the PROCEDURE 
DIVISION header 

• Data items subordinate to these data-names 

• Condition-names, index-names, or both associated with data-names, subordinate 
data items, or both 

In both calling and called programs, the following rules apply to data items used by the 
operating system as parameters for parameter-matching: 

• Ol-level items of DISPLAY, COMp, or INDEX usages, and 77-level items with 
USAGE IS DISPLAY are treated as EBCDIC arrays. 

• 77-level COMP or INDEX items are treated as hex arrays. 

See Also 

Refer to Section 15, "Libraries," for information on designating data items of other 
usages as parameters. 

Noncontiguous Linkage Storage 

13-2 

Items in the LINKAGE SECTION that have no hierarchic relationship to one another 
need not be grouped into records. Instead, these items are classified and defined as 
noncontiguous elementary items. Each item is defined in a separate data-description 
entry that begins with the special level-number 77. 

8600 0296-000 



ANSI Inter-Program Communication (lPC) 

The following data clauses are required in each data-description entry: 

• Level-number 77 

• DATA-NAME 

• PICTURE clause or USAGE IS INDEX clause 

Other data-description clauses are optional and can be used to complete the description 
of the item, if necessary. 

Linkage Records 

Data elements in the LINKAGE SECTION that have a definite hierarchic relationship to 
one another must be grouped into records according to the rlies for formation of record 
descriptions. Any clause used in an input or an output record description can be used in 
a LINKAGE SECTION. 

, Usages other than DISPLAY, COMp, or INDEX are Unisys extensions and their use 
as parameters is described in Section 15, "Libraries." The WITH LOWER-BOUNDS 
clause, also a Unisys extension, is ignored for parameter-linking purposes in all IPC and 
library interfaces. 

The VALUE clause must not be specified in the LINKAGE SECTION except in 
condition-name entries (88-level). 

PROCEDURE DIVISIO.N in the IPC Module 
The following constructs apply to the PROCEDURE DIVISION when IPC is used. 

PROCEDURE DIVISION Header 

The PROCEDURE DMSION is identified by, and must begin with, the following 
header: 

PROCEDURE DMSION [ USING {data-name} ... J . 

. The USING phrase is present if the object program is to function under the control of 
a CALL statement and the CALL statement in the calling program contains a USING 
phrase. Each operand in the USING phrase of the PROCEDURE DMSION header 
must be defined as a data item in the LINKAGE SECTION of the program in which this 
header occurs, and each operand must have a level-number ofOl or 77. 

Within a called program, LINKAGE SECTION data items are processed according to the 
data descriptions given in the called program. 

8600 0296-000 13-3 



ANSI Inter-Program Communication (lPC) 

Inter-Program Communication (IPC) implementation is not allowed if a data item is 
declared RECEIVED BY CONTENT. The RECEIVED BY CONTENT declaration on a 
parameter is supported only for tasking and bound procedures. 

CALL Statement 

The execution of a CALL statement causes control to pass from a calling program to 
a called program. The calling program is the program in which the CALL statement 
appears. The called program is the program specified by the value of the identifier or the 
literal in the CALL statement. 

The general format of this statement is as follows: 

CALL . USING data-name-! [ , data-name-2 ] ... {
identifier-I} [ ] 
literal-l 

[ ; ON OVERFLOW imperative-statement] 

. 13-4 

Note: The following format instructions and general rules assume that the 
program being called is a COBOL74 program with the value of the 
SHARING compiler control option equal to SHAREDBYRUNUNIT 
(the default). This restriction is required for adherence to\ANSI-74 
COBOL Inter-Program Communication (IPC) conventions. For the 
effects of a CALL verb on programs that do not meet the preceding 
criteria, see Section 15, "Libraries." 

Explanation of Format 

The literal must be a nonnumeric literal. 

The identifier must be defined as an alphanumeric data item whose value can be a 
program-name. 

The USING option is included in the CALL statement only if a USING phrase is present 
in the PROCEDURE DMSION header of the called program. The number of operands 
in each USING phrase must be identical. 

The data-names indicate the data items available to a calling program that can be 
accessed in the called program. A data-name must be defined as a data item in the 
FILE, WORKING-STORAGE, COMMUNICATION, or LINKAGE SECTION; must 
have a level-number of 01 or 77; and must not redefine another data item. The 
data-name can be qualified when it refers to a data item defined in the FILE SECTION 
or COMMUNICATION SECTION. 

The order of appearance of the data-names in the USING phrase of the CALL 
statement and the USING phrase in the PROCEDURE DIVISION header is critical . 

8600 0296-000 



ANSI Inter-Program Communication (lPC) 

Corresponding data-names refer to a single set of data available to the called and calling 
programs. The correspondence is by position, not by name. In index-names, no such 
correspondence is established; index-names in the called and calling programs always 
refer to separate indexes. 

A parameter in a USING clause cannot redefine another item either implicitly in the 
FILE SECTION or explicitly with a REDEFINES clause. Also, 77-level items that have 
been redefined can yield unexpected results. For example, referring to a 77-level item in 
a REDEFINES clause can cause it to be treated as if it had been declared as a O!-level 
item. 

The ON OVERFLOW option performs the imperative-statement if a syntax error occurs. 

General Rules 

A called program is in the initial state the first time it is called within a run unit and the 
first time it is called after a CANCEL statement is sent to the called program. 

Called programs can contain CALL statements. However, a called program must not 
contain a CALL statement that directly or indirectly calls the calling program. 

If you are using the Segmentation module, the CALL statement can appear anywhere 
within a segmented program. The implementor must provide all controls necessary to 
ensure that the proper logic flow is maintained. Therefore, when a CALL statement 
appears in a section with a segment-number greater than or equal to 50, that segment 
is in the last-used state when the EXIT PROGRAM statement returns control to the 
calling program. 

CANCEL Statement 

The CANCEL statement releases the memory areas occupied by the called program. 

The general format of this statement is as follows: 

CANCEL { identifier-! } [, { identifier-2 } ] ... 
literal-! literal-2 

Explanation of Format 

The literal must be a nonnumeric literal. 

The identifier must be an alphanumeric data item. 

8600 0296-000 13-5 



ANSI Inter-Program Communication (lPC) 

General Rules 

Note: The following rules assume that the program being called is a 
COBOL74program with the value of the SHARING compiler control 
option equal to SHAREDBYRUNUNIT (the default). This restriction 
is required for adherence toANSI-74 COBOL Inter-Program 
Communication (IPC) conventions. For the effects of a CANCEL verb 
on programs that do not meet the preceding criteria, see Section 15, 
"Libraries. " 

Mter execution of a CANCEL statement, the called program ceases to have any logical 
relationship to the run unit in which the CANCEL statement appears. A CALL 
statement naming the same program that is subsequently executed results in initiation 
of that program in its initial state. The memory areas associated with the named 
program are released so as to be made available for disposition by the operating system. 

A program named in the CANCEL statement must not refer to any program that has 
been called and has not yet executed an EXIT PROGRAM statement. . 

A logical relationship to a canceled program is established only by execution of a 
subsequent CALL statement. 

A called program is canceled if it is used as the operand of a CANCEL statement or if the 
run unit of which the program is a member is terminated. 

No action is taken when an executed CANCEL statement names a program that has not 
been called in this run unit or that has been called and is canceled. Control passes to the 
next statement. 

EXIT PROGRAM Statement 

The EXIT PROGRAM statement marks the logical end of a called program. 

The general format of this statement is as follows: 

EXIT PROGRAM . 

13-6 

Explanation of Format 

The EXIT PROGRAM statement must appear in a sentence by itself. The EXIT 
PROGRAM sentence must appear in a paragraph by itself. 

An execution of an EXIT PROGRAM statement in a called program causes control to 
be passed to the calling program. Execution of an EXIT PROGRAM statement in a 
program that is not called causes the program to act as if the statement were an EXIT 
statement. 

86000296-000 



ANSI Inter-Program Communication (lPC) 

See Also 

For more information on the EXIT statement, refer to "EXIT" in Section 9, 
"PROCEDURE DMSION Statements." 

STOP RUN Statement 

The STOP RUN statement permanently ends the called program and all other programs 
in the run unit. 

The STOP literal statement in a called program has no effect and should not be used. 

See Also 

For more information on the STOP statement, refer to "STOP" in Section 9, 
"PROCEDURE DMSION Statements." 

8600 0296-000 13-7 



13-8 8600 0296-000 



Section 14 
COMMUNICATION SECTION 

The communication module provides the ability to access, process, and create messages 
or portions thereof. The module also gives you the capability to communicate through a 
message control system (MCS) with local and remote communication devices. 

Note: The ANSI-74 MCS concept differs from the Unisys MCS concept. 

Messages are communicated in a device-independent symbolic manner. Specific 
devices and system structures are mown to the COBOL74 user only symbolically. This 
generality between the compiled program and the particular system is achieved by 
an interface called data communications interface (DCI). The general abilities of the 
compiler are adapted to the specific device needs of an application through a DCI library. 

For information on using COMS headers, refer to Volume 2 of this manual. 

DCILIBRARY Library 
A DCI library is a library to which the compiler builds references whenever a program 
uses the ACCEPT, DISABLE, ENABLE, RECEIVE, or SEND statements; in fact, a DCI 
library must be present for a COBOL program to use these verbs. 

A DCI library allows programs to deal with symbolic sources and destinations instead of 
the actual peripherals and thus avoid recompilation when the actual peripherals are 
changed or rearranged. 

DCIENTRYPOINT 

The library reference is built with the title DCILIBRARY and the entry-point name 
DCIENTRYPOINT. This ~ntry point is an untyped procedure with the eight parameters 
described on the following pages. 

Parameter 1 of DCIENTRYPOINT 

Parameter 1 is an integer with a value indicating which one of the following 11 functions 
to perform: 

Value Function to Perform 

. 1 ACCEPT MESSAGE COUNT 

2 DISABLE 

3 ENABLE 

4 RECEIVE 

continued 

8600 0296-000 14-1 



COMMUNICATION SECTION 

continued 

Value Function to Perform 

5 SEND 

6 BEGIN TRANSACTION WITH TEXT (Unisys extension) 

7 BEGIN TRANSACTION ABORT (Unisys extension) 

8 MID TRANSACTION (Unisys extension) 

9 END TRANSACTION ABORT (Unisys extension) 

10 END TRANSACTION WITH NO TEXT (Unisys extension) 

11 END TRANSACTION WITH TEXT (Unisys extension) 

Refer to Volume 2 for additional information about parameters 6 through 11. 

Parameter 2 of DCIENTRYPOINT 

14-2 

Parameter 2 is an EBCDIC array (unindexed descriptor) of the COBOL.program 
communication description (CD). This parameter must have one of the following two 
formats. Format 1 is used with all input functions, and Format 2 is used with all output . 
functions. 

Format 1: (ACCEP'r, DISABLE input, ENABLE input, or RECEIVE) 

01 CD-ARRAY. 
02 QUEUE-NAME 

. 02 SUB-QUEUE-I-NAME 
02 SUB-QUEUE-2-NAME 
02 SUB-QUEUE-3-NAME 
02 MESSAGE-DATE 
02 MESSAGE-TIME 
02 SOURCE-NAME 
02 TEXT-LENGTH 
02 END-KEY 
02 STATUS-KEY 
02 MESSAGE-COUNT 

PIC X (12) . 
PIC X (12) • 
PIC X(12). 
PIC X (12) . 
PIC 9(6). 
PIC 9(8). 
PIC X (12) • 
PIC 9(4). 
PIC X. 
PIC XX. 
PIC 9(6). 

Format 2: (DISABLE output, ENABLE output, or SEND) 

01 CD-ARRAY. 
02 DESTINATION-COUNT 
02 TEXT-LENGTH 
02 STATUS-KEY 
02 DESTINATION-TABLE 

03 ERROR-KEY 
03 DESTINATION-NAME 

PIC 9(4). 
PIC 9(4). 
PIC XX. 

OCCURS <nnnn> TIMES. 
PIC X. 
PIC X (12) • 

8600 0296-000 



COMMUNICATION SECTION 

Parameter 3 of DCIENTRYPOINT 

Parameter 3 is an integer specifying the size of the destination array within the ANSI 
CD. This integer is meaningful only for the SEND verb and should be ignored by the 
custom-written DCILffiRARY for all other verbs. 

Note: Refer to Volume 2 for information about the procedure that links 
COMS to its own DCI library. 

Parameter 4 of DCIENTRYPOINT 

Parameter 4 is an EBCDIC ARRAY (unindexed descriptor) containing either the 
messages (if the function is a SEND statement or a RECEIVE statement) or the 
password (if the function is an ENABLE statement or a DISABLE statement. 

Parameter 5 of DCIENTRYPOINT 

Parameter 5 is an integer with a value indicating the length, in characters, of the array 
(in parameter 5) that contains the messages or the password. This value is distinct from 
the length of the information contained in this array, which you maintain in the CD 
TEXT-LENGTH field of the array in parameter 2. 

Parameter 6 of DCIENTRYPOINT 

Parameter 6 is an integer with a value indicating either the type of end indicator to be 
sent or received, or the type of enable or disable operation to be performed. For a SEND 
statement or a RECEIVE statement, the value specifies the end indicator as follows: 

Value End Indicator 

1 ESI (end of segment/receive segment) 

2 EMI (end of message/receive message) 

3 EGI (end of group) 

For a DISABLE statement or an ENABLE statement, the value specifies the device type 
as follows: 

Value Device Type 

11 Input terminal 

12 Input 

13 Output 

Parameter 7 of DCIENTRYPOINT 

Parameter 7 is an integer with a value that indicates advancing control when the 
function being performed is a SEND statement, and indicates whether or not to wait for 
messages when the function is a RECEIVE statement. 

8600 0296-000 14-3 



COMMUNICATION SECTION 

For a SEND statement, the value specifies advancing as follows: 

Value Type of Advancing 

0 No advancing 

1 After lines 

2 Before lines 

3 After page 

4 Before page 

For a RECEIVE statement, the value of the integer can be set in the COBOL program or 
by the DCI library. . 

When set·in the program, the value indicates to the DCI library whether or not to wait 
if no message or text is available. A value of 0 (zero) means do not wait, and a value 
greater than 0 means wait that number of seconds. If this parameter is set to 0 and a 
NO DATA clause is supplied, no waiting occurs and the action specified in the NO DATA 
clause is taken if no message is available. 

The DCI library, before returning control to the program, sets the value of the integer to 
\ 1 if no text is available; otherwise, a value of 0 is returned with the text to the program. 

Parameter 8 of DCIENTRYPOINT 

Parameter 8 is an integer that equa1~ the amol:IDt to advance in a SEND function. If a 
SEND function is not being performed, this parameter's value is O. 

Program Sample: CD Array 

14-4 

The second parameter, the CD array, allows communication between the COBOL 
program and the DCI library. The COBOL program maintains the CD array passed by 
the compiler. The DCI library updates information in the CD array it receives. 

The information in the CD should be updated in coordination with the COBOL74 
program according to the rules for updating items in the CD array. These updating 
operations include setting the values of the status key, collecting messages, handling 
queues, and checking password validity. 

The DCI library can be written in COBOL74, ALGOL, or DCALGOL and allows access 
to disk files, remote files, or port files. The symbolic queues, selection algorithms, and 
sources an,d destinations as established in the ANSI -7 4 COBOL standard can be tailored 
to the particular application by using the DCI library. 

Example 14-1 shows a typical DCI library entry point written in COBOL that declares 
eight parameters. 

86000296-000 



COMMUNICATION SECTION 

IDENTIFICATION DIVISION. 
PROGRAM-ID. DCIENTRYPOINT. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
LINKAGE SECTION. 

(1) 77 DCI-FUNCTION COMP PIC 9. 
(2) 01 THE-CD PIC X(244). 

01 INPUT-CD REDEFINES THE-CD. 
02 SYMBOLIC-QUEUE PIC X (12) • 
02 SYMBOLIC-SUB-QUEUE-l PIC X (12) • 
02 SYMBOLIC-SUB-QUEUE-2 PIC X(12). 
02 SYMBOLIC-SUB-QUEUE-3 PIC X (12) • 
02 MESSAGE-DATE PIC 9(6). 
02 MESSAGE-TIME PIC 9(8). 
02 SYMBOLIC-SOURCE PIC X (12) • 
02 TEXT-LENGTH PIC 9(4). 
02 END-KEY PIC X. 
02 STATUS-KEY PIC XX. 
02 MESSAGE-COUNT PIC 9(6). 

01 OUTPUT-CD REDEFINES THE-CD. 
02 DESTINATION-COUNT PIC 9(4). 
02 TEXT-LENGTH PIC 9(4). 
02 STATUS-KEY PIC XX. 
02 DESTINATION-TABLE OCCURS 1 TO 18 DEPENDING 

ON THE-CO-OCCURRENCES. 
03 ERROR-KEY PIC X. 
03 SYMBOLIC-DESTINATION PIC X (12) . 

(3) 77 THE-CD-OCCURRENCES COMP PIC 999. 
(4) 01 THE-MESSAGE 

03 THE-MESSAGE-SUB PIC X 
OCCURS 1 TO 9999 DEPENDING 

ON THE-MESSAGE-LENGTH~ 
(5) 77 THE-MESSAGE-LENGTH COMP PIC 999. 
(6) 77 IO-OR-END-INDICATOR COMP PIC 99. 
(7) 77 NO-DATA-OR-ADVANCING-TYPE COMP PIC 99. 
(8) 77 ADVANCING-VALUE COMP PIC 99. 

* 
PROCEDURE DIVISION 

USING DCI-FUNCTION, 
THE-CD, 
THE-CO-OCCURRENCES, 
THE-MESSAGE, 
THE-MESSAGE-LENGTH, 
IO-OR-END-INDICATOR, 
NO-DATA-OR-ADVANCING-TYPE, 
ADVANCING-VALUE. 

MAIN SECTION. 
PI. 

PERFORM FUNCTION-SPECIFIED-BY-DCI-FUNCTION. 
EXIT PROGRAM. 

Example 14-1. Example Program for DCI Library Entry Point 

86000296-000 14-5 



COMMUNICATION SECTION 

DATA DIVISION in the Communication Module 

14-6 

You must code a COMMUNICATION SECTION in the the DATA DMSION when you 
use the communication module. 

In a COBOL program, the communication-description (CD) entries represent the highest 
level of organization in the COMMUNICATION SECTION. The COMMUNICATION 
SECTION header is followed by a communication-description (CD) entry consisting of a 
level indicator, a data-name, and a series of independent clauses. These clauses indicate 
the queues and subqueues, the message date and time, the source, the text length, 
the status and end keys, and message count for input. These clauses also specify the 
destination count, the text length, the status and error keys, and destinations for output. 
The entry itself is terminated by a period. These record areas can be implicitly redefined 
by user-specified, rec<;>rd-description entries following the various communication
description clauses. 

8600 0296-000 



COMMUNICATION SECTION 

The general formats of this entry are described on the following pages. 

CD Format 1 

CD cd-name FOR [ INITIAL] INPUT 

[ ; SYMBOLIC QUEUE IS data-name-l ] 

[ ; SYMBOLIC SUB-QUEUE-l IS data-name-2 ] 

[ ; SYMBOLIC SUB-QUEUE-2 IS data-name-3 ] 

[ ; SYMBOLIC SUB-QUEUE-3 IS data-name-4 ] 

[ ; MESSAGE DATE IS data-name-5 ] 

[ ; MESSAGE TIME IS data-name-6 ] 

[ ; SYMBOLIC SOURCE IS data-name-7 ] 

[ ; TEXT LENGTH IS data-name-8 ] 

[ ; END KEY IS data-name-9 ] 

[ ; STATUS KEY data-name-lO] 

) 

[ ; MESSAGE COUNT IS data-name-ll ] 

[ ; CONVERSATION AREA IS data-name-l2 SIZE IS literal-l ] 

[data-name-l, data-name-2, ... , data-name-ll] . 

8600 0296-000 14-7 



COMMUNICATION SECTION 

14-8 

Explanation of CD Format 1 

A CD entry must appear only in the COMMUNICATION SECTION. 

Ifnone of the optional clauses are specified, a 01-level data-description entry must follow 
the CD entry. 

For each standard input CD, a record area of 87 characters is allocated. 

Use of the 01-level data-description entry or the optional clauses results in a record with 
an implicit description that is equivalent to the following description: 

I mplicit Description Comment 

01 data-name-0. SYMBOLIC QUEUE 
02 data-name-1 PICTURE X (12) . SYMBOLIC SUB-QUEUE-1 
02 data-name-2 PICTURE X (12) . SYMBOLIC SUB-QUEUE-2 
02 data-name-3 PICTURE X (12) . SYMBOLIC SUB-QUEUE-3 
02 data-name-4 PICTURE X (12) . MESSAGE DATE 
02 data-name-5 PICTURE 9(06). MESSAGE TIME 
02 data-name-6 PICTURE 9(08). SYMBOLIC SOURCE 
02 data-name-7 PICTURE X (12) . TEXT LENGTH 
02 data-name-8 PICTURE 9(04). END KEY 
02 data-name-9 PICTURE X. STATUS KEY 
02 data-name-10 PICTURE XX. MESSAGE COUNT 
02 data-name-11 PICTURE 9(06). 

Note: In the preceding listing, the information under "Comment" is for 
clarification and is not part of the description. 

Record-description entries following an input CD implicitly redefine this record. The 
entries must describe a record of exactly 87 characters for the standard CD. (Literal-l is 
a numeric literal representing the size of the conversation area in characters.) 

Data-names 1 through 11 must be unique. Within this series, any data-name can be 
replaced by the reserved word FILLER. 

The input CD information constitutes the communication between the MCS and the 
program about the message being handled. This information is not displayed on the 
terminal as part of the message. 

INITIAL 

In a single program, the INITIAL clause can be specified in only one CD. The 
INITIAL clause must not be used in a program that specifies the USING phrase in the 
PROCEDURE DIVISION header. 

If the MCS attempts to schedule a program lacking an INITIAL clause, the results are 
undefined. 

Except for the INITIAL clause, the optional clauses can be written in any order. 

8600 0296-000 



COMMUNICATION SECTION 

data-name-l through data-name-4 

The data items referenced by data-name-!, data-name-2, data-name-3, and data-name-4 
contain symbolic names designating queues, sub queues, and so on. All symbolic names 
must follow the rules for the formation of system-names and must have been previously 
defined to the MCS. 

The contents of the data items referenced by data-name-2, data-name-3, and 
data-name-4, when not being used, must contain spaces. 

A RECEIVE statement causes the serial return of the next message or a portion of a 
message from the queue as specified by the entries in the CD. 

If, during execution of a RECEIVE statement, a message from a more specific source 
is needed, the contents of the data item referenced by data-name-! can be made 
more specific by the use of the coritents of the data items referenced by data-name-2, 
data-name-3, and data-name-4. When a given level of the queue structure is specified, all 
higher levels must also be specified. 

If any levels of the queue hierarchy are not specified, the MCS determines the next 
message or the portion of a message to be accessed. 

Mter execution of a RECEIVE statement, the contents of the data items referenced by 
data-name-! through data-name-4 contain the symbolic names of all levels of the queue 
structure. 

Whenever a program is scheduled by the MCS to process a message, the symbolic 
names of the queue structure that demanded this activity are placed in the data items 
referenced by data-name-! through data-name-4 of the CD associated with the INITIAL 
clause, as applicable. In all other cases, the contents of the data items referenced by 
data-name-! through data-name-4 of the CD associated with the INITIAL clause contain 
spaces. 

The symbolic names are inserted, or the initialization to spaces is completed, prior to the 
execution of the first PROCEDURE DIVISION statement . 

. The execution of a subsequent RECEIVE statement naming the same contents of the 
data items referenced by data-name-! through data-name-4 returns the message that 
caused the program to. be scheduled. Only at that time is the remainder of the CD 
updated. . 

data-name-5 

Data-name-5 has the format YYMMDD (year, month, day). The contents represent the 
date on which the MCS recognizes that the message is complete. 

The contents of the data item referenced by data-name-5 are only updated by the MCS 
as part of the execution of a RECENE statement. 

86000296-000 14-9 



COMMUNICATION SECTION 

data-name-6 

The contents of data-name-6 have the format HHMMSSTT (hours, minutes, seconds, 
hundredths of a second). The contents represent the time at which the MCS recognizes 
that the message is complete. 

The contents of the data item referenced by data-name-6 are only updated by the MCS 
as part of the execution of a RECEIVE statement. 

data-name-7 

During execution of a RECEIVE statement, the MCS provides, in the data item 
referenced by data-name-7, the symbolic name of the communication terminal that 
is the source of the message being transferred. However, if the symbolic name of 
the communication terminal is not known to the MCS~ the contents of the data item 
referenced by data-name-7 contain spaces. 

data-name-8 

The contents of the data item referenced by data-name-8 indicate to the MCS that 
the number of character positions filled as a result of the execution of the RECEIVE 
statement. 

data-name-9 

The contents of the data item referenced by data-name-9 are set only by the MCS as 
part of the execution of a RECEIVE statement, according to the following rules: 

• When the RECEIVE MESSAGE phrase is specified, the following action is taken: 

If an end-of-group indicator has been detected, the contents of the data item 
referenced by data-name-9 are set to 3. 

If an end-of-message indicator has been detected, the contents of the data item 
referenced by data-name-9 are set to 2. 

If less than a whole message is transferred, the contents of the data item 
referenced by data-name-9 are set to O. 

• When the RECEIVE SEGMENT phrase is specified, the following action is taken: 

If an end-of-group indicator has been detected, the contents of the data item 
referenced by data-name-9 are set to 3. 

If an end-of-message indicator has been detected, the contents of the data item 
referenced by data-name-9 are set to 2. 

If an end-of-segment indicator has been detected, the contents of the data item . 
referenced by data-name-9 are set to 1. 

If less than a message segment is transferred, the contents of the data item 
referenced by data-name-9 are set to o. 

• When more than one of the preceding conditions is satisfied simultaneously, the rule 
first satisfied in the order listed determines the contents of the data 1tem referenced 
by data-name-9. 

14-10 8600 0296-000 



COMMUNICATION SECTION 

data-name-lO 

The contents of the data item referenced by data-name-l0 indicate the status condition 
of the previously executed RECENE, ACCEPT MESSAGE COUNT, ENABLE INPUT, 
or DISABLE INPUT statements. 

The actual association between the contents of the data item referenced by 
data-name-l0 and the status condition itself is defined in Figure '14-1. 

For the 01-level, Figure 14-1 indicates the possible contents of the data items referenced 
by data-name-l0 for Format 1 and by data-name-3 for Format 2 at the completion of each 
statement shown. An X on a line in a statement column indicates that the associated 
code shown for that lin~ is possible for that statement. 

';;; 
';0 
c: 

c: "e "e ~ 
~ Q) 
Q) +' 
+' 

+' 
+' :::I 

I- :::I 0 
z: 0 .s= 
:::> .s= +' 
0 +' 

~ U 

~ Q) 
lLI I- -0 
(.!) l- I-- :::> a 
~ I-- :::> :::> 0- u 
V) :::> 0- 0- I--
V) 0- I- z: :::> >. 
lLI z: :::> ..... 0 (]) 
::E ..... 0 ~ 

lLI lLI lLI 
:> I- lLI lLI -l -l VI ..... 0- -l -l c:o c:o :::I 
lLI Cl lLI c:o c:o ~ ~ +' 
U z: u ~ ~ V) V) .n 
lLI lLI U z: z: ..... .... +' 
0:: V) ~ UJ lLI Cl Cl V) 

x X X X X X X 00 No error detected. Action completed. 

X 10 Destination is disabled. Action 
completed. 

Destination unknown or access thereto 
X X X 20 denied by system. No action taken for 

unknown destination. Data-name-4 
(ERROR KEY) indicates unknown. 

One or more queues or subqueues 
X X X X 20 unknown or access to queue denied by 

system. No action taken. 

X X X 30 Content of DESTINATION COUNT clause invalid. 
No action taken. 

X X X X 40 Password invalid. No enabling/disabling 
action taken. 

X 50 Character count greater than length 
of sending field. No action taken. 

X X X X X X X 91 No MCS present. No action taken. 

Figure 14-1. Communication Status Condition in the 01-level 

8600 0296-000 14-11 



COMMUNICATION SECTION 

data-name-!! 

The contents of the data item referenced by data-name-!! indicate the number of 
messages that exist in a queue, sub-queue-!, and so forth. The MCS updates the 
contents of the data item referenced by data-name-!! only as part of the execution of an 
ACCEPT statement with the COUNT phrase. 

See Also 

Refer to "PROCEDURE DMSION Header" in Section 8, "PROCEDURE DMSION 
Concepts," for information about the restrictions for a program with a.USING clause in 
the header. 

CD Format 2 

CD cd-name FOR OUTPUT 

[ ; DESTINATION COUNT IS data-name-l ] 

[ ; TEXT LENGTH IS data~name-2 ] 

[ ; STATUS KEY IS data-name-3 ] 

[ 
; DESTINATION TABLE OCCURS integer-2 TIMES 1 

[ ; INDEXED BY index-name-! [ index-name-2 J ... J 

[ ; ERROR KEY IS data-name-4 ] 

[ ; SYMBOLIC DESTINATION IS data-name-5 ] 

[ ; CONVERSATION AREA IS data-name-6 SIZE IS literal-! ] 

Explanation of CD Format 2 

A CD entry must appear only in the COMMUNICATION SECTION. 

If none of the optional clauses of the CD are specified, a O!-level data-description entry 
must follow the CD entry. 

14-12 8600 0296-000 



COMMUNICATION SECTION 

For each standard-defined output CD, a record area of contiguous standard data-format 
characters is allocated according to the following formula: 

10 + 13 * integer-2 

The first three words of the record area define the DESTINATION COUNT clause, the 
TEXT LENGTH clause, and the STATUS KEY clause. Note that when the 01-level data 
description is used instead of the optional clauses, the destination table is assumed to 
occur only once and any remaining data greater than 5 words (30 characters) is assumed 
to define the conversation area. 

For the standard-defined CD, the record area is defined as follows: 

• The DESTINATION COUNT clause defines data-name-l as the name of a data item 
whose implicit description is an integer without an operational sign. The data item 
occupies positions 1 through 4 in the record. 

• The TEXT LENGTH clause defines data-name-2 as the name of an elementary data 
item whose implicit description is an integer of 4 digits without an operational sign. 
The data item occupies character positions 5 through 8 in the record. 

• The STATUS KEY clause defines data-name-3 as the name of an elementary, 
alphanumeric data item of 2 characters that occupies positions 9 and 10 in the 
record. 

• Character positions 11 through 23 and every set of 13 characters thereafter form 
table items of the following description: 

The ERROR KEY clause defines data-name-4 as the name of an elementary, 
alphanumeric data item of 1 character. 

The SYMBOLIC DESTINATION clause defines data-name-5 as the name of an 
elementary, alplianumeric data item of 12 characters. 

• The CONVERSATION AREA clause contains user-defined text and is valid only 
when the USAGE BINARY clause is used. Refer to Volume 2 for information. 

Use of the preceding clauses results in a record with an implicit description that is 
equivalent to the following standard CD definition: 

Implicit Description 

01 data-name-0. 
02 data-name-1· 
02 data-name-2 
02 data-name-3 

PICTURE 9(04). 
PICTURE 9 (04) • 
PICTURE XX. 

02 data-name OCCURS integer-2 TIMES. 
03 data-name-4 PICTURE X. 
03 data-name-5 PICTURE X(12). 

Comnent 

DESTINATION COUNT 
TEXT LENGTH 
STATUS KEY 
DESTINATION TABLE 
ERROR KEY 
SYMBOLIC DESTINATION 

Note: In the preceding listing, the information under "ComTTient" is for 
clarification and is not part of the description. 

8600 0296-000 14-13 



COMMUNICATION SECTION 

14-14 

Record descriptions following an output CD implicitly redefine this record. Multiple 
redefinitions of this record are permitted; however, only the first redefinition can contain 
VALUE clauses. 

Data-name-l through data-name-6 must be unique. 

If the DESTINATION TABLE OCCURS clause is not specified, one ERROR KEY and 
one SYMBOLIC DESTINATION clause are assumed. In this case, neither sUbscripting 
nor indexing is permitted when these data items are referenced. 

If the DESTINATION TABLE OCCURS clause is specified, data-name-4 and 
data-name-5 can be referenced only by subscripting or indexing. 

In the Ol-level, the value of the data item referenced by data-name-l and integer-2 must 
be 1. In the 02-level, no restriction exists on the value of the data item referenced by 
data-name-l and integer-2. 

The nature of the output CD information is such that it is not sent to the terminal but 
constitutes the communication between the program and the MCS about the message 
being handled. 

During execution of a SEND, an ENABLE OUTPUT, or a DISABLE OUTPUT 
statement, the contents of the data item referenced by data-name-l indicate indicate to 
the MCS the number of symbolic destinations to be used from the area referenced by 
data-name-5. 

The MCS finds the first symbolic destination in the first occurrence·ofthe area 
referenced by data-name-5, the second symbolic destination in the second occurrence of 
the area referenced by data-name-5, and so on, up to and including the occurrence of the 
area referenced by data-name-5 indicated by the contents of data-name-l. 

If, during execution of a SEND, an ENABLE OUTPUT, or a DISABLE OUTPUT 
statement, the value of the data item referenced by data-name-l is outside the range 1 
through integer-2, an error condition is indicated and the execution of the SEND, the 
ENABLE OUTPUT, or the DISABLE OUTPUT statement is terminated. 

You must ensure that the value of the data item referenced by data-name-l is valid 
at the time of the execution of the SEND, the ENABLE OUTPUT, or the DISABLE 
OUTPUT statement. 

As part of the execution of a SEND statement, the MCS interprets the contents of the 
data item referenced by data-name-2 to be your indication of the number of leftmost 
character positions of the data item referenced by the associated SEND identifier from 
which data is to be transferred. 

Each occurrence of the data item referenced by data-name-5 contains a symbolic 
destination previously known to the MCS. These symbolic destination names must follow 
the rules for the formation of system-names. 

The contents of the data item referenced by data-name-3 indicate the status condition of 
the previously executed SEND, ENABLE OUTPUT, or DISABLE OUTPUT statements. 

86000296-000 



COMMUNICATION SECTION 

The association between the contents of the data item referenced by data-name-3 and 
the status condition itself is defined in Figure 14-2. 

If, during execution of a SEND, an ENABLE OUTPUT, or a DISABLE OUTPUT 
statement, the MCS determines that any specified destination is unknown or chooses 
to deny the program access to any destination, then the contents of the data item 
referenced by data-name-3 and all occurrences of the data items referenced by 
data-name-4 are updated. 

When the contents of the data item referenced by data-name-4 are equal to 1, this value 
indicates that either the associated value in the area referenced by data-name-5 has not 
been defined previously to the MCS, or that the MCS has been denied access to this 
destination. Otherwise, the contents of the data item referenced by data-name-4 are set 
toO. 

For the 02-level, Figure 14-2 indicates the possible contents of the data items referenced 
by data-name-10 for Format 1 and by data-name-3 for Format 2 at the completion of each 
statement shown. An X on a line in a statement column indicates that the associated 
code shown for that line is possible for that statement. 

8600 0296-000 14-15 



COMMUNICATION SECTION 

14-16 

';;; 
';; 
r:: 

c °e ';;; °e ';;; ~ c 
~ s:: Q) °e QJ °e ..... ..... ~ 

~ ..... Q) 
..... Q) :::s ..... 

I-- :::s ..... 0 
:z 0 ..c:: .s::: 
:::l ..c:: .s::: ..... ..... 
0 ..... ..... I I u I I Q) 
I..LI I-- -0 
t!:l I-- I-- I-- :::> 0 
< I-- I-- :::> :::> :::> Q.. u 
V) :::l :::> Q.. Q.. Q.. I--
V) 0... Q.. I-- ::; :z :::> >. 
I..LI :z ::; :::> .... 0 Q) 

:::E ..... 0 ~ 
I..LI I..LI UJ UJ 
> I-- w UJ UJ ....J ....J ....J VI .... Q.. ....J ....J ....J CD CD CD :::s 
UJ Cl I..LI CD CD CD < < < ..... 
u :z u < < < V) V) V) It:! 
UJ I..LI U :z :z z: ...... .... .... ..... 
ex: V) < l.J.J UJ UJ Cl Cl Cl V) 

x x x x x x x x x 00 No error detected. Action completed. 

X 10 One or more destinations are disabled. 
Action completed. 

One or more destinations unknown, 
or access thereto denied by system. 

X X X 20 
Action completed for known destinations. 
No action taken for unknown destinations. 
Data-name-4 (tRROR KEY) indicates 
known or unknown (includes system 
denied access). 

One or more queues or subqueues 
X X X X 20 unknown, or access to queue denied by 

system. No action taken. 

The source is unknown. or access 
X X 20 thereto deni ed by .the system. 

No action taken. 

X X X 30 Content of DESTINATION COUNT clause invalid. 
No action taken. 

X X X X X X 40 Password invalid. No enabling/disabling 
action taken. 

X 50 Character count greater than length 
of sending field. No action taken. 

Partial segment with either zero 
X 60 character count or no sending area 

specified. No action taken. 

X X X X X X X X X 91 No MCS present. No action taken. 

Figure 14-2. Communication Status Key Condition in the 02-level 

Ex~mple 

Example 14-2 is a sample program that uses some or the communication module 
constructs. The associations of physical terminals with spec-me, named input and output 
queues and the appropriate passwords (keys) are maintained by the DCILIBRARY. 

The program enables output to the two terminals associated with OUT-QUEUE-1 
and OUT~QUEUE-2 by using the password SHvfON1. It then sends the message 

8600 0296-000 



COMMUNICATION SECTION 

TERMINALS ENABLED OUTPUT to both. The program enables input from the 
terminal associated with IN -QUEUE-l and TERMINAL # 1 by using the password 
SIMONl. It receives one message from that terminal. The program then enables input 
from the terminal associated with IN-QUEUE-2 and TERMINAL #2 by using the 
password SIMONl. It receives one message from that terminal. It sends the following 
messages to both terminals, using keywords ESI and EM! for end indicators: 

SEGMENT INITIATED-CONTINUED 
-MSG COMPLETE. 

The program sends the following messages to both terminals, using the identifier 
END-FLAG to contain the end indicator. 

SEGMENT INITIATED-CONTINUED 
-MSG COMPLETE. 
-GROUP COMPLETE. 

Then the program sends the message ONLY TERMINAL OUT-QUEUE-l SHOULD 
REC$NE THIS MESSAGE only to the terminal associated with OUT-QUEUE-l. It 
finally disables output and input to both terminals by using the password SIMONl. 

00100 IDENTIFICATION DIVISION. 
02200 ENVIRONMENT DIVISION. 
03200 DATA DIVISION. 
04000 WORKING-STORAGE SECTION. 
04100 77 END-FLAG PIC 9. 
06200 01 ENABLE-MSG PIC X(24) VALUE IITERMINALS ENABLED OUTPUT II • 
07900 01 ONE-TERMINAL-MSG PIC X(53) VALUE 
08000 "ONLY TERMINAL OUT-QUEUE-1 SHOULD RECEIVE THISMESSAGE II . 
08500 01 SEG-INIT PIC X (17) VALUE II SEGMENT INITIATEDII. 
09000 01 SEG-CONT PIC X (10) VALUE II-CONTINUEDII. 
09100 01 MSG-COMP PIC X(14) VALUE "-MSG COMPLETE.". 
09200 01 GROUP-COMP PIC X (16) VALUE II-GROUP COMPLETE. II • 
10000 01 MSG-1 PIC X(180). 
20700 COMMUNICATION SECTION. 
20800 CD CM-INQUE-1 INPUT. 
20900 01 INQUE-1-RECORD. 
21000 02 QUEUE-SET PIC X(12). 
21200 02 FILLER PIC X(36) VALUE SPACES. 
21300 02 FILLER PIC X(14). 
21400 02 SYM-SOURCE PIC X(12). 
21500 02 IN-LENGTH PIC 9999. 
21600 02 END-KEY PIC X. 
21700 02 IN-STATUS PIC XX. 
21800 02 MSG-COUNT PIC 9(6). 
21900 CD CM-OUTQUE-1 OUTPUT 
22000 DESTINATION COUNT DEST-COUNT 
22100 TEXT LENGTH OUT-LENGTH 
22200 STATUS KEY OUT-STATUS 
22300 DESTINATION TABLE OCCURS 2 TIMES INDEXED BY 11 
22400 ERROR KEY ERR-KEY 
22500 DESTINATION SYM-DEST. 

Example 14-2. Program Sample: Maintaining Associations of Physical Terminals with 
Queues 

8600 0296-000 14-17 



COMMUNICATION SECTION 

14-18 

22600 PROCEDURE DIVISION. 
22800 ENABLE-MSGS. 
23000 MOVE 2 TO DEST-COUNT. 
23500 MOVE "OUT -QUEUE-I" TO SYM-DEST (l). 
24000 MOVE IOUT-QUEUE-2" TO SYM-DEST (2). 
24100 ENABLE OUTPUT CM-OUTQUE-l WITH KEY ISIMONl". 
24460 WAIT (10). 
24500 SEND-MSG. 
24600 MOVE 24 TO OUT-LENGTH. 
24700 SEND CM-OUTQUE-l FROM ENABLE-MSG WITH EMI. 
28000 RECEIVE-MSGS. 
28200 MOVE "IN-QUEUE-l" TO QUEUE-SET. 
28400 MOVE "TERMINAL #1" TO SYM-SOURCE. 
28450 ENABLE INPUT TERMINAL CM-INQUE-l WITH KEY ISIMONl". 
28460 WAIT (15). 
28500 RECEIVE CM-INQUE-1 MESSAGE INTO MSG-1 NO DATA DISPLAY II ERR!" . 
29000 DISPLAY MSG-l. 
30000 MOVE IIN-QUEUE-2" 'TO QUEUE-SET. 
31000 MOVE "TERMINAL #2" TO SYM-SOURCE. 
31500 ENABLE INPUT TERMINAL CM-INQUE-l WITH KEY ISIMONl". 
31600 WAIT (15). 
31700 RECEIVE CM-INQUE-l SEGMENT INTO MSG-l NO DATA DISPLAY IERR2". 
31800 DISPLAY MSG-l. 
50700 SEGMENTED-MSGS-01. 
50900 MOVE 17 TO OUT-LENGTH. 
51000 SEND CM-OUTQUE-l FROM SEG-INIT. 
51100 MOVE 10 TO OUT-LENGTH. 
51200 SEND CM-OUTQUE-l FROM SEG-CONT WITH ESI. 
51300 MOVE 14 TO OUT-LENGTH. 
51400 SEND CM-OUTQUE-l FROM MSG-COMP WITH EMI. 
51500 SEGMENTED-MSGS-02. 
51700 MOVE 0 TO END-FLAG. 
51800 MOVE 17 TO OUT-LENGTH. 
51900 SEND CM-OUTQUE-1 FROM SEG-INIT WITH END-FLAG. 
52000 MOVE 1 TO END-FLAG. 
52100 MOVE 10 TO OUT-LENGTH. 
52200 SEND CM-OUTQUE-l FROM SEG-CONT WITH END-FLAG. 
52300 MOVE 2 TO END-FLAG. 
52400 MOVE 14 TO OUT-LENGTH. 
52500 SEND CM-OUTQUE-l FROM MSG-COMP WITH END-FLAG. 
52600 MOVE 3 TO END-FLAG. 
52700 MOVE 16 TO OUT-LENGTH. 
52800 SEND CM-OUTQUE-l FROM GROUP-COMP WITH END-FLAG. 
53700 SINGLE-TERMINAL-MSG. 
53800 MOVE 1 TO DEST-COUNT. 
53900 MOVE 53 TO OUT-LENGTH. 
54000 SEND CM-OUTQUE-l FROM ONE-TERMINAL-MSG WITH EMI. 
54300 DISABLE-MSGS. 
54350 WAIT (10). 
54400 MOVE 2 TO DEST-COUNT. 
54500 MOVE II OUT -QUEUE-I" TO SYM-DEST (l). 

Example 14-2. Program Sample: Maintaining Associations of Physical Terminals with 
Queues (cont.) 

8600 0296-000 



COMMUNICATION SECTION 

54600 MOVE IOUT-QUEUE-2" TO SYM-DEST (2). 
54700 DISABLE 'OUTPUT CM-OUTQUE-1 WITH KEY "SIMON1". 
55000 MOVE "TERMINAL #1" TO SYM-SOURCE. 
55100 DISABLE INPUT TERMINAL CM-INQUE-1 WITH KEY "SIMON1". 
55200 MOVE "TERMINAL #2" TO SYM-SOURCE. 
55300 DISABLE INPUT TERMINAL CM-INQUE-1 WITH KEY II SIMON!" • 
56300 STOP RUN. 

Example 14-2. Program Sample: Maintaining Associations of Physical Terminals with 
Queues (cont.) 

PROCEDURE DIVISION in the Communication Module 
The following constructs apply to the PROCEDURE DIVISION when the 
communication module is used. 

Note: Refer to Volume 2 for information about using PROCEDURE 
DNISION statements with COMS headers. 

ACCEPT MESSAGE COUNT Statement 

The ACCEPT MESSAGE COUNT statement makes available the number of messages 
in a queue. 

The general format of this statement is as follows: 

I. ACCEPT cd-name MESSAGE COUNT 

Explanation of Format 

Cd-name must reference an input CD. 

The ACCEPT MESSAGE COUNT statement causes the MESSAGE COUNT field 
specified for cd-name to be updated to indicate the number of messages present in a 
queue, sub-queue-l, and so on. 

When the ACCEPT MESSAGE COUNT statement is executed, the contents of the 
area specified by a communication-description (CD) entry must contain at least the 
name of the symbolic queue to be tested. When the condition is tested, the contents of 
the data items referenced by data-name-lO (STATUS KEY phrase) and data-name-ll 
(MESSAGE COUNT phrase) of the area associated with the communication description 
(CD) are updated as necessary. 

86000296-000 14-19' 



COMMUNICATION SECTION 

See Also 

. Refer to "DATA DIVISION in the Communication Module" earlier in this section for 
information about the STATUS KEY and MESSAGE COUNT phrases in Format I of 
the CD entries. 

DISABLE Statement 

The DISABLE statement notifies the MCS to inhibit data transfer between specified 
output queues and destinations for output or to inhibit data transfer between specified 
sources and input queues for input. 

The general format of this statement is as follows: 

DISABLE {INPUT } [TERMINAL] cd-name WITH KEY {identifier-I} 
OUTPUT . -- literal-I . 

14-20 

Explanation of Format 

The DISABLE statement provides a logical disconnection between the MCS and the 
specified sources or destinations. When this logical disconnection has already occurred 
or is handled by some means external to this program, the DISABLE statement is not 
required in this program. The logical path for the transfer of data between the COBOL 
programs and the MCS is not affected by the DISABLE statement. 

When the logical disconnection specified by the DISABLE statement has already 
occurred, is handled by some means external to this program, or is denied by the MCS, 
the status-key data item in the area referenced by cd-name is updated. 

INPUT 

When the INPUT phrase with the optional word TERMINAL is specified, the logical 
path between the source and all associated queues and subqueues is deactivated. Only 
the contents of the data item referenced by data-name-7 (SYMBOLIC SOURCE phrase) 
of the area referenced by cd-name are meaningful. 

When the INPUT phrase without the optional word TERMINAL is specified, the logical 
paths for all sources associated with the queues and subqueues specified by the contents 
of data-name-I (SYMBOLIC QUEUE phrase) through data-name-4 (SYMBOLIC 
SUB-QUEUE-3 phrase) of the area referenced by cd-name are deactivated. 

OUTPUT 

When the OUTPUT phrase is specified, the logical path for the destination or the 
logical paths for all destinations specified by the contents of the data item referenced by 
data-name-5 (SYMBOLIC DESTINATION phrase) of the data referenced by cd-name 
are deactivated. 

8600 0296-000 



COMMUNICATION SECTION 

cd-name 

The cd-name must refer to an input CD when the INPUT phrase is specified and must 
refer to an output CD when the OUTPUT phrase is specified. 

literal-lor identifier-l 

Literal-1 or the contents of the data item referenced by identifier-1 must be defined as 
alphanumeric. 

The MCS handles a password of between 1 and 10 characters, inclusive. Literal-1 or the 
content of the data item referenced by identifier-1 is transferred to the MCS according 
to the rules for the MOVE statement. The MCS receives the password in an area 
considered to be an elementary, alphanumeric data item that is 10 characters long. 

See Also 

For information about the location of the status-key data item, refer to "CD Format 1" 
and "CD Format 2" earlier in this section. 

ENABLE Statement 

The ENABLE statement notifies the MCS to allow data transfer between specified 
output queues and destinations for output or to allow data transfer between specified 
sources and input queues for input. 

The general format of this statement is as follows: 

ENABLE {INPUT } [TERMINAL] cd-name WITH KEY {identifier-1} 
OUTPUT -- literal-l 

Explanation of Format 

The ENABLE statement provides a logical connection between the MCS and the 
specified sources or destinations. When this logical connection is already present or 
is handled by some means external to this program, the ENABLE statement is not 
required in this program. The logical path for the transfer of data between the COBOL 
programs and the MCS is not affected by the ENABLE statement. 

When the logical connection specified by the ENABLE statement already exists, is 
to be handled by some means external to this program, or is denied by the MCS, the 
status-key data item in the area referenced by cd-name is updated. 

86000296-000 14-21 



COMMUNICATION SECTION 

INPUT 

When the INPUT phrase with the optional word TERMINAL is specified, the logical 
path between the source and all associated queues and subqueues that are already 
enabled is activated. Only the contents of the data item referenced by data-name-7 
(SYMBOLIC SOURCE phrase) of the area referenced by cd-name are meaningful to the 
MCS. 

When the INPUT phrase without the optional word TERMINAL is specified, the logical 
paths for all sources associated with the queue and sub queues specified by the contents 
of data-name-1 (SYMBOLIC QUEUE phrase) through data-name-4 (SYMBOLIC 
SUB-QUEUE phrase) of the area referenced by cd-name are activated. 

OUTPUT 

When the OUTPUT phrase is specified, the logical paths for all destinations specified by 
the contents of the data item referenced by data-name-5 (SYMBOLIC DESTINATION 
phrase) of the area referenced by cd-name are activated. 

cd-name 

Cd-name must refer to an input CD when the INPUT phrase is specified and must refer 
to an output CD when the OUTPUT phrase is specified. 

literal-lor identifier-l 

Literal-1 or the contents of the data item referenced by identifier-1 must be defined as 
alphanumeric. 

The MCS handles a password of between 1 and 10 characters, inclusive. Literal~ 1 or 
the contents of the data item referenced by identifier-! are transferred to the MCS 
according to the rules for the MOVE statement. The MCS receives the password ~ an 
area considered to be an elementary, alphanumeric data item that is 10 characters long. 

See Also 

For information about the location of the status-key data item, refer to "CD Format 1" 
and "CD Format 2" earlier in this section. 

RECEIVE Statement 

14-22 

The RECEIVE statement makes a message, a message segment (or a portion of a 
message or a segment), and pertinent information about the data available to the 
COBOL74 program from a queue maintained by the MCS. The RECEIVE statement 
enables a specific imperative-statement when no data is available. 

When execution of a RECEIVE statement returns a portion of a message, only th~ 
subsequent execution of RECEIVE statements in that run unit can cause the remaining 
portion of the message to be returned. 

8600 0296-000 



COMMUNICATION SECTION 

Mter execution of a STOP RUN statement, the disposition of a remaining portion of 
a message partially obtained in that run unit is defined by the data communications 
interface (DCI) library. 

The general format of this statement is as follows: 

RECEIVE cd-name {:~:: } INTO identifier-l 

[ ; NO DATA imperative-statement] 

Explanation of Format 

The data items identified by the input CD are updated appropriately by the MCS at each 
execution of a RECEIVE statement. 

cd-name 

Cd-name must reference an input CD. 

The contents of the data items specified by data-name-! (SYMBOLIC QUEUE phrase) 
through data-name-4 (SYMBOLIC SUB-QUEUE-3 phrase) ,of the area referenced by 
cd-name designate the queue structure containing the message. 

MESSAGE 

When the MESSAGE phrase is used, end-of-segment indicators are ignored and the 
following rilles apply to the data transfer: 

• If a message is the same size as the area referenced by identifier-I, the message is 
stored in the area referenced by identifier-!. 

• If a message size is smaller than the area referenced by identifier-I, the message is 
aligned to the leftmost character position of the area referenced by identifier-! with 
no zero fill. 

• If a message size is larger than the area referenced by identifier-I, the message 
fills the area referenced by identifier-! from left to right, starting with the leftmost 
character of the message. In the O!-level, the disposition of the remainder of the 
message is undefined. 

In the 02-level, the remainder of the message can be transferred to the area 
referenced by identifier-i. Subsequent RECEIVE statements refer to the same 
queue, subqueue, and so on. The remainder of the message,in applying the 
preceding bulleted rilles, is treated as a new message. 

86000296-000 14-23 



COMMUNICATION SECTION 

14-24 

A single execution of a RECEIVE statement never returns more than a single message 
to the data item referenced by identifier-l. However, the MCS does not pass any portion 
of a message to the object program until the entire message is available in the input 
queue, even if the SEGMENT phrase of the RECEIVE statement is specified. 

SEGMENT 

When the SEGMENT phrase is used, the following rules apply: 

• If a segment is the same size as the area referenced by identifier-I, the segment is 
stored in the area referenced by identifier-l. 

• If the segment size is smaller than the area referenced by identifier-I, the segment is 
aligned to the leftmost character position of the area referenced by identifier-! with 
no space fill. 

• If a segment size is greater than the area referenced by identifier-I, the segment 
fills the area referenced by identifier-! from left to right, starting with the leftmost 
character of the segment. The remainder of the segment can be transferred to the 
area referenced by identifier-l. Subsequent RECEIVE statements call out the same 
queue, subqueue, and so on. 

• If the text to be accessed by the RECEIVE statement has an end-of-message 
indicator (EM!) or end-of-group (EGI) indicator associated with it, the existence of 
an end-of-segment indicator (ESI) associated with the text is implied and the text is 
treated as a message segment. 

A single execution of a RECEIVE statement never returns more than a single segment 
to the data item referenced by identifier-I.. However, the MCS does not pass any portion 
of a message to the object program until the entire message is available in the input 
queue, even if the SEGMENT phrase of the RECEIVE statement is specified. 

identifier -1 

The message, the message segment, or the portion of a message or a segment is 
transferred to the receiving character positions of the area referenced by identifier-! and 
is aligned to the left without space-fill. 

During execution of a RECEIVE statement, the MCS makes data available in the 
data item referenced by identifier-I, and control is transferred to the next executable 
statement, whether or not the NO DATA phrase is specified. 

8600 0296-000 



COMMUNICATION SECTION 

NO DATA 

During execution of a RECEIVE statement, the MCS does not make data available in 
the data item referenced by identifier-1, and the following action takes place: 

• If the NO DATA phrase is specified, the receive operation is terminated with the 
indication that action is complete and the imperative-statement in the NO DATA 
phrase is executed. 

• If the NO DATA phrase is not specified, execution of the object program is 
suspended until data is made available in the data item referenced by identifier-l. 

• If one or more queues or subqueues is unknown to the MCS or if the MCS denies 
this program access to a queue or subqueue, control passes to the next executable 
statement whether or not the NO DATA phrase is specified. (See Figures 14-1 and 
14-2 earlier in this section.) 

The imperative-statement can be the NEXT SENTENCE phrase. 

See Also 

Refer to "DATA DIVISION in the Communication Module" earlier in this section for 
information about the data items identified by the input CD. 

SEt~D Statement 

The SEND statement releases a message, a message segment, or a portion of a message 
to one or more output queues maintained by the MCS. 

A single execution of a Format 1 SEND statement releases only a single portion of a 
message or a message segment to the MCS. A single execution of a Format 2 SEND 
statement never releases to the MeS more than a single message or a single message 
segment as indicated by the contents of the data item referenced by identifier-2 or 
by the specified end-of-segment indicator (ESI), end-of-message indicator (EM!), or 
end-of-group indicator (EGI). However, the MCS does not transmit any portion ofa 
message to a communications device until the entire message is placed in the output 
queue. 

The general formats of this statement are as follows: 

Format 1 

SEND cd-name FROM identifier-1 

8600 0296-000 14-25 



COMMUNICATION SECTION 

Format 2 

SEND cd-name [ FROM identifier-i] :g~ :~ . " (WITH identifier-2j 

" WITHEGI 

[ ( 

{ identifier-3 } [LINE lj] 

{
BEFORE}" ADVANCING integer LINES 
AFTER {mnemonic-name} 

PAGE 

14-26 

Explanation of Formats 

Cd-name must reference an output CD. 

Identifier-l must be the data-name of the area where the data is made available to the 
MCS so that the data can be sent. 

Identifier-2 must reference a l-character integer without an operational sign. 

Identifier-3, if used, must be the name of an elementary integer item. 

If a mnemonic-name phrase is used, the name is identified with a particular feature 
specified in the SPECIAL-NAMES paragraph in the ENVIRONMENT DMSION. 

Integer or the value of identifier-3 can be o. 

General Rules 

The contents of the data items specified by data-name-l (SYMBOLIC QUEUE phrase) 
I DATE-WRITTEN of the area referenced by cd-name designate the queue structure 
containing the message. (Refer to "DATA DMSION in the Communication Module" 
earlier in this section. 

The message, the message segment, or the portion of a message or a message segment is 
to be moved to the SEND character positions of the area referenced by identifier-l and 
aligned to the left with zero fill. 

8600 0296-000 



COMMUNICATION SECTION 

When a receiving communication device (such as a printer or a display screen) is oriented 
to a fixed line size, the following rules apply: 

• Each message or message segment begins at the leftmost character position of the 
physical line. 

• A message or a message segment smaller than the physical line size is released to 
appear to be zero-filled to the right. 

• Excess characters of a message or a message segment are not truncated. Characters 
are packed to a size equal to that of the physical line and then are sent to the device. 
This process continues on the next line with the excess characters. 

When a receiving communication device (such as a printer or another computer) is 
oriented to handling variable-length messages, each message or message segment begins 
with the next available character position of the communications device. 

As part of the execution of a SEND statement, the MCS interprets the contents of the 
data item referenced by data-name-8 (TEXT LENGTH phrase) of the area referenced by 
cd-naine to be your indication of the number of leftmost character positions of the data 
item referenced by identifier-l from which data is to be transferred . 

. If the value of data-name-8 (TEXT LENGTH phrase) is 0, no characters of the data item 
referenced by identifier-l are transferred. 

The value of data-name-8 (TEXT LENGTH phrase) cannot be outside the range 0 
through the size of the data item referenced by identifier-l, inclusive. If the value of 
data-name-8 is outside the range, an error is indicated by the value of the data item 
referenced by data-name-lO (STATUS KEY phrase) in the area referenced by cd-name, 
and no data is transferred. 

As part of the execution of a SEND statement, the contents of the data item referenced 
by data-name-lO (STATUS KEY phrase) of the area referenced by cd-name are updated 
by the MCS. 

The effect of special control characters in the contents of the data item referenced by 
identifier-l is undefined. 

During the execution of the run unit, the disposition of a portion of a message not ended 
by an EMI or an EGI is undefined. Thus, the message does not logically exist for the 
MCS and cannot be sent to a destination. 

After the execution of a STOP RUN statement, any portion of a message transferred 
from the run unit as a result of a SEND statement, but not terminated by an EMI or an 
EGI, is purged from the system. Thus, no portion of the message is sent. 

Once the execution of a SEND statement has released a portion of a message to the 
MCS, only the subsequent execution of SEND statements in the same run unit can cause 
the remaining portions of the message to be released. 

8600 0296-000 14-27 



COMMUNICATION SECTION 

14-28 

Format 2 

The contents of the data item referenced by identifier-2 indicate that the contents of the 
data item referenced by identifier-1 are·to have an associated end-.of-segment indicator 
(ESI), end-of-message indicator (EMI), or end-of-group indicator (EG!) according to the 
schedule in Table 14-1. 

Identifier-2 

o 
1 

2 

3 

Table 14-1. Transmission Indicator Schedule 

Identifier-! 

No indicator 

ESI 

EMI 

EGI 

Meaning 

No indicator 

An end-ot-segment indicator 

An end-ot-message indicator 

An end-ot-group indicator 

Any character other than 1, 2, or 3 is interpreted as O. If the content of the data item 
referenced by identifier-2 is other than 1, 2, or 3 and if identifier-1 is not specified, then 
an error is indicated by the value in the data item referenced by data-name-10 (STATUS 
KEY phrase) in the area referenced by cd-name, and no data is transferred. 

The ESI indicates to the MCS that the message segment is complete, the EMI indicates 
to the MCS that the message is complete, and the EGI indicates to the MCS that the 
group of messages is complete. The MCS recognizes these indicators and establishes the 
app~opriate linkage to maintain group, message, and segment control. 

The hierarchy of ending indicators (major to minor) is EGI, EMI, and ESI. An EGI need 
not be preceded by an ESI or an EMI, and an EMI need not be preceded by an ESI. 

The ADVANCING phrase enables you to control the vertical positioning of each message 
or message segment on a communications device where vertical positioning applies. If 
vertical positioning is not applicable on the device, the MCS ignores the specified or 
implied vertical positioning. 

Ifidentifier-2 is specified and the contents ofth~ data item referenced by identifier-2 are 
equal to 0, the ADVANCING phrase is ignored by the MCS. 

On a device where vertical positioning applies and the ADVANCING phrase is not 
specified, automatic advancing occurs as if you had specified the AFTER ADVANCING 1 
LINE phrase. 

8600 0296-000 



COMMUNICATION SECTION 

If the ADVANCING phrase is implicitly or explicitly specified and vertical positioning 
applies, the following rules apply: 

• If identifier-3 or integer is specified, characters transmitted to the communications 
device are repositioned vertically downward the number of lines equal to the value 
associated with the data item referenced by identifier-3 or integer. 

• If mnemonic-name is specified, characters transmitted to the communications device 
are positioned according to the rules specified for that communications device. 

• If the BEFORE phrase is used, the message or the message segment is represented 
on the communications device before the characters are repositioned vertically, 
according to the rules explained in the preceding list items. 

• If the AFTER phrase is used, the message or the message segment is represented on 
the communications device after the characters are repositioned vertically, according 
to the rilles explained in the preceding list items. 

• If the P AGE phrase is specified, characters transmitted to the communications 
device are represented on the device before or after the device is repositioned to the 
next page (depending on the phrase used). If the PAGE phrase is specified but has 
no meaning in conjunction with a specific device, then advancing occurs as if you had 
specified either the BEFORE ADVANCING 1 L~NE or AFTER ADVANCING 1 
LINE phrase. 

8600 0296-000 14-29 



14-30 8600 0296-000 



Section 15 
Libra.ries 

Libraries include the capabilities of the Inter-Program Communication (IPC) module 
described in Section 13, "ANSI Inter-Program Communication (IPC)." With the 
exception of the IPC capabilities described in Section 13, all features described in this 
section are U nisys extensions. 

A library program is a program that provides a procedure or a set of procedures that can 
be called by other programs. The procedure or set of procedures are in object code. 
Therefore, a library program can be thought of as a collection of library objects accessible 
through an entry point. Each library object is accessible to other programs, including 
other library programs. 

The program that calls the'library object is called the user program. Libraries cannot 
be called recursively; that is, a called program cannot call another program that, in turn, 
calls the original program. 

Libraries can be created with,or called from, COBOL programs. Libraries created by 
COBOL are limited to one entry point. 

See Also 

A detailed discussion of the use of libraries is found in the Task Management Guide; 
familiarity with this material is .assumed in the following discussion. 

Creating a Library 
The compiler automatically creates a COBOL74 library program, provided that the 
following constraints are true of the library program: . 

• Only parameters that are allowed for 'libraries appear in the USING phrase of the 
PROCEDURE DIVISION statement. 

• No constructs occur in the program that are incompatible with its use as a library. 

COBOL library programs have a single entry point. The name of that entry point is 
PROCEDUREDIVISION, unless the library program contains a program name in the 
PROGRAM-ID clause of the IDENTIFICATION DIVISION and is compiled with the 
FEDLEVEL compiler control option set·to 5. If such is the case, the name described in 
the PROGRAM-ID clause is used as the entry point name. 

8600 0296-000 15-1 



Libraries 

The following code makes a program ineligible for use as a library: 

• A VALUE statement or a RECEIVED BY CONTENT clause on a data item listed in 
the USING clause of the PROCEDURE DIVISION header 

• A USE AS EXTERNAL PROCEDURE directive in the DECLARATIVES SECTION 
of the PROCEDURE DIVISION 

See Also 

For information about specifying and evaluating levels of COBOL to measure compliance 
with U.S. Government COBOL standards, refer to "FEDLEVEL" in Section 17, 
"Control of the Compilation Process." 

PROCEDURE DIVISION Header in Library Program 

Parameters are optional in libraries; however, if parameters are used, the library 
program must identify them with a USING clause in the PROCEDURE DMSION. 

In a COBOL74 library, the USING clause of the PROCEDURE DIVISION header can 
specify the following three types of parameters: 

• Data items passed by reference 

• Data items passed by reference with type conversion 

• Files passed by reference 

The format of the header is as follows: 

PROCEDURE DIVISION [USING {data-name} ... J. 
file-name 

15-2 

Explanation of Format 

The data-name must be defined in the LINKAGE SECTION of the program in which the 
PROCEDURE DIVISION header occurs, must hav~a 01-level or a 77-level number, and 
must not be a redefined item. 

, The file-name must be defined in the FILE SECTION of the program. 

8600 0296-000 



Rules for Parameters 

Parameters to the library entry point can be any of the following types: 

COMp, 01,77 

BINARY, aI, 77 

DISPLAY, 01 

DOUBLE 

FILE 

INDEX 

INTEGER (COMP) 

REAL 

STRING (DISPLAY) 

Libraries 

Parameters of the form INTEGER (COMP) provide a method to receive parameters 
of type INTEGER. Parameters of the form STRING (DISPLAY) provide a method to 
receive parameters of type STRING. 

All data items that are used as parameters either in a COBOL74 library or in a program 
that calls a COBOL74 library are treated as by-reference parameters. 

Any program that declares parameters RECEIVED BY CONTENT are not library 
capable. The only way for a by-value parameter to be used either in the IPC module or 
in the library extension is with the type INTEGER conversion in the library mechanism. 

When a user program and a library program are both written in COBOL74, the data 
types of the parameters must be the same. 

When the user program and the library programs are written using different 
programming languages, the data types must correspond to one another. 

Because of the constraints imposed by the IPC module, parameter matching has special 
rules for some data items. These special rules for parameter matching are shown in 
Table 15-1 . 

. Table 15-1. Parameter Matching for Data Items Requiring Special Rules 

COBOL74 Data Type 

aI-level COMP or INDEX item 

77-level COMP or INDEX item 

aI-level BINARY item 

77-level BINARY item with less than 12 
digits 

77-level BINARY item with 12 or more digits 

77 -level REAL item 

8600 029&-000 

General Data Type 

EBCDIC array 

HEX array 

INTEGER array 

INTEGER variable 

DOUBLE variable 

REAL variable 

continued 

15-3 



Libraries 

Table 15-1. Parameter Matching for Data Items Requiring Special Rules (cant.) 

COBOL74 Data Type 

o I-level REAL item 

AI I other cases 

General Data Type 

REAL arrays 

Parameter-matching conventions follow the 
decla red usage of the item. 

There is an important distinction for BINARY, REAL, and DOUBLE items between 
those declared at the 01-level and those declared at the 77-level. The 01-level items 
are unconditionally treated as arrays, whereas the 77-level items are treated as words. 
Thus, a 01-level REAL item is described in the library interface as a REAL ARRAY BY 
REFERENCE, whereas a 77-level REAL item is described as a REAL BY REFERENCE. 

A COBOL74 program receiving a lower-bound parameter from another program must 
declare an extra parameter, a 77-level PIC 9(11) BINARY item. This item name must 
appear in the USING clause immediately following the lower-bound receiving item. In 
addition, the LOWER-BOUNDS clause must not be declared for the receiving item. 

Exiting a Library 
A COBOL library program must have an EXIT PROGRAM statement as a means 
of exiting and returning to the user program. A STOP RUN statement in a library 
program ends both the library and the calling program. A STOP literal statement in a 
library program has no effect on the program and is ignored at execution time. 

The EXIT PROGRAM statement causes program control to be returned to the user 
program at the statement following the statement that called the library. 

The general format of this statement is as follows: 

EXIT PROGRAM . 

15-4 

Explanation of Format 

An execution of an EXIT PROGRAM statement in a COBOL74 library causes control 
to be passed from the library to the user program. Execution of an EXIT PROGRAM 
statement in a program that is not called causes the program to act as if the statement 
were an EXIT statement. 

The EXIT PROGRAM statement must appear in a sentence by itseH: 

The EXIT PROGRAM sentence must be the only sentence in the paragraph. 

8600 0296-000 



Libraries 

See Also 

For general information about the EXIT statement, refer to "EXIT" in Section 9, 
"PROCEDURE DIVISION Statements." 

Securing a Library 
Compiler locking code is provided in the library to ensure data integrity. Because data 
is global to both the user program and the entry point, and because library parameters 
must remain global, the compiler restricts the use of a COBOL library to one user at a 
time. You must wait until the preceding user is finished before you can enter the library. 

If a library program is called by user programs written in other languages and the library 
is declared with the SHARING compiler control option equal to PRNATE, then the 
LIBRARYLOCK option should be set to TRUE to ensure data integrity. 

Compiler locking code does not allow recursive calls on a library that can result in 
deadlock situations (for example, waiting for the release of a lock that the user himself 
holds). If a recursive or a cyclical call is attempted on a COBOL library with the 
SHARING compiler control option set to SHAREDBYALL, the library terminates the 
attempt. 

See Also 

• For information on providing compiler locking code to maintain data integrity 
for private libraries, refer to "LIBRARYLOCK" in Section 17, "Control of the 
Compilation Process." 

• For information on the ways in whicp. a program can be shared when it is called as a 
library, refer to "SHARING" in Section 17, "Control of the Compilation Process." 

Referring to a Library 
A user program can refer to a library program by using the CALL statement or the 
CANCEL statement. The CALL statement causes program control to pass from the user 
program to the specified entry point of the library. The CANCEL statement requests 
that the operating system terminate the library. 

Library programs written in COBOL or COBOL74 have a single entry point, named 
PROCEDUREDIVISION by default. If a program being called has a PROGRAM-ID 
clause in the IDENTIFICATION DNISION and has the FED LEVEL compiler 
control option set to 5, the name appearing in the PROGRAM-ID clause is the entry 
point name. In all other cases, the entry point to COBOL and COBOL74 libraries is 
PROCEDUREDNISION. 

Other languages have specific syntax for the declaration of entry points. The 
appropriate entry-point-name must be used for calling such libraries. 

8600 0296-000 15-5 



Libraries 

CALL Statement for Libraries 

The library being called can be described in different ways depending on whether 
the library is called with a literal or with an identifier, and depending on whether 
the LmACCESS attribute is assigned the value BYTITLE (the default) or the value 
BYFUNCTION. Refer to "Library Attributes" later in this section for details about the 
LmACCESS attribute. 

The general format of a library CALL statement is as follows: 

USING file-name-l 
STRING ~ data-name-5 2 ( 

data-name-4 ) 

INTEGER ~ data-name-6 2 

[ ( 

data-name-7 ) 1 
CALL {literal-3 } 
-- identifier-3 

file-name-2 
, STRING ~ data-name-8 2 ... 

INTEGER ( data-name-9 2 

[ GIVING data-name-lO ] 

[ ON OVERFLOW imperative-statement] 

Explanation of Format 

literal-3 

The contents of literal-3 can be as follows: 

[ entry-point-name {~} ] library-name 

15-6 

The entry-point-name is the name of the entry point in the library or the function being 
called. In IPC calls, this entry-point-name is PROCEDUREDMSION by default. 

The library-name is a library-title if the LIBACCESS attribute is BYTITLE, and it is a 
function-name if the LIBACCESS attribute is BYFUNCTION. 

86000296--000 



Libraries 

A library-title is the object code file-name of the library that .contains the entry point. A 
library-title is meaningful only if the LIBACCESS attribute of the library program is 
BYTITLE (the default value). A library-title can contain a usercode as its first directory 
node, but it cannot contain a family name (for example, ON DISK). 

A function-name is the name by which an established system library is made available to 
users. A function-name is meaningful only if the LIBACCESS attribute of the library 
program is BYFUNCTION. A function-name is limited to a maximum of 17 numeric, 
uppercase, alphabetic characters and must not contain slashes (f) or other special 
characters. 

identifier -3 

Identifier-3 can only contain a library-name. The entry-point-name in a CALL 
identifier-3 statement is always PROCEDUREDIVISION for compatibility with the 
ANSI-74 COBOL Inter-Program Communication (IPC) module. 

Note: In addition to the restrictions for the contents of identifier-3, a 
CALL identifier-3 statement is always significantly less efficient 
in execution-time performance than the equivalent CALL literal-3 
statement. 

USING 

The USING clause identifies data items and files passed as parameters to the library 
procedure and also enables you to manipulate some parameter types with the STRING 
and INTEGER type conversion mechanisms. 

The usage of data items used as parameters to the library entry point can be BINARY, 
COMP, DISPLAY, DOUBLE, INDEX, or REAL. . 

The STRING (data-name-5) phrase converts the DISPLAY item specified by 
data-name-5 to a string representation so that the item can be passed to a string 
parameter of a library object. The string data type cannot be represented directly in 
COBOL or COBOL74, but appears in other languages such as ALGOL. 

TheJNTEGER (data-name-6) phrase converts the COMP item specified by data-name-6 
to an integer representation. The compiler generates the object code to pass the 
numeric value of the packed field in a temporary variable as an integer by reference, and 
to store the value of that temporary variable (in the event that the library has modified 
it) back into the original. parameter. Data-name-6 must be the name of an elementary 
01-levelor 77-level data item declared USAGE COMPUTATIONAL. 

A parameter in a USING clause cannot redefine another item either implicitly in the 
FILE SECTION or explicitly with a REDEFINES clause. Also, 77-level items that have 
been redefined can yield unexpected results. For example, referring to a 77-level item 
in a REDEFINES clause can cause the item to be treated as if it had been declared as a 
Ol-level item. 

8600 0296-000 15-7 



Libraries 

GIVI NG (Unisys Extension) 

The GMNG clause allows a typed procedure to be called as a library and stores the 
value of the procedure in data-name-10. 

A library written in languages other than COBOL and COBOL 74 can be a typed 
procedure, and thereby return a value. 

The GMNG clause specifies the type of procedure and the destination for the value 
that is returned from the procedure. The procedure type is needed for library linkage 
matching. 

Data-name-10 must specify an elementary numeric item. The rules regarding the 
relationship between the usage of data-name-10, the type of procedure, and the result 
returned by the procedure are described in the following table. 

Usage of data-name-l 0 

77-level USAGE REAL 

77 -level USAG E DOU BLE 

All other cases 

Type of Procedure and Result Returned 

The user program expects the library procedure to be a REAL 
PROCEDURE and th~ result to be of type REAL. 

The user program expects the library procedure to be a 
DOUBLE PROCEDURE and the result to be of type DOUBLE. 

The user program expects the library procedure to be an 
INTEGER PROCEDURE. The result returned is converted at 
execution time into the proper form for storing in 
data-name-IO according to the rules for the COMPUTE 
statement. 

A CALL identifier-3 statement with a GIVING clause-although a supported feature-is 
of marginal use for the following reasons: 

• A typed entry point cannot be declared in COBOL or COBOL74. 

• The only entry point accessible with such a call is PROCEDUREDIVISION, yet the 
program containing the library cannot be written in COBOL or COBOL74, which are 
the only languages in which such an entry-point-name is expected. 

Effect of Library State on a CALL Statement 

15-8 

User programs can be dependent on a library being in its initial or noninitial state on a 
given call to a library. A library is in its initial state the first time any user successfully 
links to it after the library begins executing. 

The state of a library depends on the environment in which the library is used and on 
the value of the SHARING compiler control option in the library itself. Neither of these 
factors is under the control of the individual user programs linking to the library. 

Table 15-2 shows how the value of the SHARING compiler control option affects the 
initial state of the library. 

8600 0296--000 



Libraries 

Table 15-2. Effect of SHARING Option Value and Library Initial State on CALL 
Statement 

SHARING Option Value 

SHAREDBYRUNUNIT 

PRIVATE 

SHAREDBYALL 

DONTCARE 

See Also 

Effect on Library Initial State 

The library is in its initial state at the following times: 

• The first time any program in the run unit calls the 
library 

• The first time any program in the run unit calls the 
library after a CANCEL statement has been successfully 
performed on the library from within the run unit 

The library is in its initial state at the following times: 

• Each and every time the program uses a CALL 
identifier-3 statement to call the library. This format 
causes the library to start and complete execution every 
time the format is used. 

• The first time the program uses a CALL literal-3 
statement to call the library. 

• The first time the program calls the library after it has 
successfully canceled the library. 

A temporary library is in its initial state at the following 
times: 

• The first time any program on the system calls the 
library 

• The first time any program on the system calls the 
library after the operating system has determined that 
no more users exist and has therefore terminated the 
library 

A permanent library is in its initial state the first time any 
program on the system calls the library. 

Since the state of a DONTCARE library depends on the 
mechanism chosen by the operating system for that 
particular execution of the library, Unisys recommends that 
programs should not be written to depend on the state of a 
DONTCARE library. 

• For more information on temporary and permanent libraries, see "TEMPORARY" 
later in this section. 

• Note that SHAREDBYRUNUNIT libraries are implemented to ensUre that 
the library state conforms to ANSI -74 Inter-Program Communication (IPC) 
requirements. See Section 13, "ANSI Inter-Program Communication (IPC)," for 
more information. 

8600 0296-000 15-9 



Libraries 

CANCEL Statement for Libraries 

The CANCEL statement, implemented to meet the requirements of the ANSI -74 
COBOL Inter-Program Communication (lPC) module, causes the operating system 
to disassociate the specified library from the calling program and attempt to allow the 
library to end. 

The general format of this statement is as follows: 

CANCEL {identifier-I} [, {identifier-2}] ... 
literal-I literal-2 

15-10 

Explanation of Format 

The CANCEL statement informs the operating system that the linkage between the 
calling program and the library is to be severed. 

The contents of the literal or the identifier used in a CANCEL statement must be a valid 
library-name (as was discussed earlier in this section). 

Identifier-I, identifier-2, and so on must be defined as alphanumeric data items. 

Literal-I, literal-2, and so on must be nonnumeric literals. 

8600 0296-000 



Libraries 

Effect of Library Initial State on a CANCEL Statement 

Because the CANCEL statement is implemented to meet the requirements of the 

ANSI -74 Inter-Program Communication (IPC) module, its operation and its effect on the 
initial state of the library depend on the value of the SHARING compiler control option 
for the library. These dependencies are described in Table 15-3. 

Table 15-3. Effect of SHARING Option Value and Library Initial State on CANCEL 
Statement 

SHARING Option 
Value 

SHAREDBYRUNUNIT 
or PRIVATE 

SHAREDBYALL 

DONTCARE 

8600 0296-000 

Effect on Library I nitial State 

The library is sent to end-ot-task (EOT). The next CALL statement 
executed reinitiates the library in its initial state. Repeated execution 
ot CALL and CANCEL statements to the same library is costly 
because ot the overhead involved in task termination and 
reinitiation. Carelessness in the use ot the CANCEL statement when 
the SHARING option is equal to SHAREDBYRUNUNIT or PRIVATE 
can lead to extremely inefficient application systems. 

The library is not sent to EOT. Instead, the operating system issues 
an execution-time warning message stating that the library was 
delinked and not terminated. When the next CALL statement tor the 
library is executed, the library is in- the state it was in when it last 
executed an EXIT PROGRAM statement. Unisys suggests that the 
CANCEL statement be avoided for libraries with the SHARING 
option equal to SHAREDBYALL because ot the overhead associated 
with the execution-time warning. 

The operating system determines the effect of the CANCEL 
statement. Because the result is unpredictable, Unisys recommends 
that the CANCEL statement be avoided tor libraries with the 
SHARING option equal to DONTCARE. 

15-11 



Libraries 

Library Attributes 
The following paragraphs describe the types of attributes that are valid for libraries and 
the way in which library attributes can be changed. 

Types of Library Attributes 

15-12 

Libraries, like files, have attributes that can be set programmatically. The following five 
attributes are associated with libraries: 

• FUNCTIONNAME 

• INTNAME 

• LIBACCESS 

• Lmp ARAMETER 

• TITLE 

All the attributes except the LmACCESS attribute are EBCDIC attributes of type 
STRING. 

The LmACCESS attribute is a mnemonic-type attribute that has two possible values: 
BYTITLE (the default) and BYFUNCTION. The effect the values of the LmACCESS 
attribute have on the TITLE and the FUNCTIONNAME attributes are shown in 
Table 15-4. 

Table 15-4. Effects of Setting the LlBACCESS Attribute 

LlBACCESS Attribute Value 

BYFUNCTION 

BYTITLE 

See Also 

Effect 

Setting the LlBACCESS attribute to the value BYFUNCTION 
has the following effects: 

• The TITLE attribute has no effect. 

• The FUNCTIONNAME attribute is used to locate the 
appropriate code file in the operating system library 
function table. 

• The code file associated with the FUNCTIONNAME 
attribute is used. 

The TITLE attribute is used to access the code file. 

For more information about library attributes, see the A Series System Software Utilities 
Operations Reference Manual. 

8600 0296-000 



Libraries 

CHANGE ATTRIBUTE Statement for Libraries 

Library attributes can be changed dynamically by the user program before the first 
attempt to link. to the library; they cannot be changed after linkage is established. 

The CHANGE ATTRffiUTE statement is used to change library attributes. The format 
of this statement is as follows: 

CHANGE ATTRIBUTE library-attn'bute {~} '1ibrary-id" 

{

identUfier } 
TO literal . 

mnemonic-attribute-value 

Explanation of Format 

The library-id specifies the library that has changed attributes and is the same format as 
the run-time library-id in Format 3 of the CALL statement. The identUfier must be an 
alphanumeric data item with USAGE IS DISPLAY. The literal must be a nonnumeric 
literal. The mnemonic-attribute-value, used only with the LffiACCESS attribute, must 
be either BYTITLE or BYFUNCTION. 

Library attributes cannot be changed after a CALL statement is issued for the library 
unless the library has been canceled. 

If no CHANGE ATTRIBUTE statement is present, the INTNAME and TITLE 
attributes are set to the name specified by library-name in the CALL statement, and the 
LmACCESS attribute is set to BYTITLE. The FUNCTIONNAME attribute has no 
effect on a library whose LmACCESS attribute is set to BYTITLE. 

If a user program sets the value of the LIBACCESS attribute to BYFUNCTION, but 
does not set the value of the FUNCTIONNAME attribute before it calls the library 
program, then the user program sets the value of the FUNCTIONNAME attribute to 
the code file-name in the CALL statement. Note that the TITLE attribute has no effect 
on a library whose LIBACCESS attribute is set to BYFUNCTION. 

See Also 

For information on passing program control to a library and on terminating a library, 
refer to "Referring to a Library" earlier in this section. 

8600 0296-000 15-13 



Libraries 

Library Compiler Control Options 
The LmRARYLOCK, SHARING, and TEMPORARY compiler control options control 
the way the library is used. 

LIBRARYLOCK 

If a library is called only by COBOL74 programs and the library is declared with the 
SHARING option equal to PRIVATE, then the LmRARYLOCK option can remain 
FALSE. Since the library services only one user at a time, the system preserves data 
integrity without incurring the additional cost of using compiler locking code. 

If a library is called by programs written in other languages and the library is declared 
with the SHARING option equal to PRIVATE, then the LmRARYLOCK option should 
be set to TRUE to ensure data integrity. 

If the SHARING option.is not PRIVATE, the setting of the LmRARYLOCK option has 
no effect on the generation of library locking code. 

See Also 

Refer to "LIBRARYLOCK" in Section 17, "Control of the Compilation Process," for 
more information about this option. 

SHARING 

15-14 

The creator of the library specifies the allowed simultaneous uses of a library by using 
the SHARING option. Table 15-5 shows the various option values and their meanings. 

Table 15-5. Meanings of SHARING Option Values 

Value 

P,RIVATE 

SHAREDBYALL 

SHAREDBYRUNUNIT 

DONTCARE 

Meaning 

A separate instance of the library is started for each user. 

All simUltaneous users share the same instance of the 
library. 

All programs in the process family use the same instance of 
the library. SHAREDBYRUNUNIT is the default value. 

The operating system optimizes the library sharing. 

Users of a library can be restricted not only through the different library-sharing 
specifications, but also through the normal file-access restrictions of the system. 

Only libraries with the SHARING option SHAREDBYRUNUNIT (the default value) or 
PRIVATE can be canceled. Attempts to cancel other types of libraries are completely 
ineffective and result only in a warning message. 

8600 0296-000 



Libraries 

See Also 

• Refer to "SHARING" in Section 17, "Control of the Compilation Process," for more 
information about this option. 

• For information on dissociating a library from a calling program, refer to "CANCEL 
Statement for Libraries" earlier in this section. 

TEMPORARY 

The TEMPORARY compiler control option, in conjunction with the SHARING option, 
determines whether a library created by the COBOL compiler functions as a temporary 
or a permanent library. The effectiveness of the TEMPORARY option depends on the 
value of the SHARING option. A library can be made permanent only if the SHARING 
option has been specified as SHAREDBYALL or DONTCARE. 

A temporary library is created if the value of the TEMPORARY option is TRUE and the 
SHARING option has the value SHAREDBYALL or DONTCARE. A temporary library 
terminates if no users are referencing it. If the library is called again at a later time, a 
new copy is initiated. 

A permanent library is created if the value of the TEMPORARY option is FALSE (the 
default) and the SHARING option has the value SHAREDBYALL or DONTCARE. A 
permanent library remains in the mix with no users, and its procedures are available for 
any later programs. A permanent library is terminated only by direct operator action. 

Table 15-6 summarizes the combinations of SHARING and TEMPORARY compiler 
control options values that create temporary or permanent libraries. 

Table 15-6. SHARING and TEMPORARY Compiler Control Option Combinations 

TEMPORARY Option 
SHARING Option Value TEMPORARY Option TRUE FALSE 

PRIVATE Temporary library Temporary library 

SHAREDBYRUNUNIT Temporary library Temporary library 

SHAREDBYALL Temporary library Permanent library 

DONTCARE Temporary library Permanent library 

8600 0296-000 15-15 



Libraries 

Program Samples of Referring to a Library 

15-16 

The following program samples show various ways of calling a library, canceling a library, 
and setting of library attributes. 

Example 1 

The first call in Example 15-1 references OBJECT/NCOBOL/LIB, the second and third 
calls reference OBJECT/ANOTHER/COBOL/LIB, and the fourth call references a 
library with the internal name LIB and the title OBJECT/SAMPLE/DYNAMICLIB. 

The fourth call enables multiple references to use Lm to reference the library. Also, 
the fourth call shows that the CHANGE ATTRIBUTE TITLE statement might prove 
useful in applications in which the library title is not known at compile time and when it 
is desirable to circumvent the performance issues and implementation constraints of the 
CALL identifier-3 statement. 

000100 IDENTIFICATION DIVISION. 
000200 ENVIRONMENT DIVISION. 
000300 DATA DIVISION. 
000400 WORKING-STORAGE SECTION. 
000500 01 PARAM PIC 9(21) COMPo 
000600 PROCEDURE DIVISION. 
000700 ONLY-HEADER. 
000800 CALL "PROCEDUREDIVISION OF OBJECT/A/COBOL/LIB" 
000900 USING PARAM. 
001000 CANCEL "OBJECT /A/COBOL/LIB". 
001100 CHANGE ATTRIBUTE TITLE OF "OBJECT /A/COBOL/LIB" TO 
001200 "OBJECT/ANOTHER/COBOL/LIB". 
001210* 
001220*THE FOLLOWING IS AN EXAMPLE OF AN IPC CALL. 
001230* 
001300 
001350* 

CALL "OBJECT/A/COBOL/LIB" USING PARAM. 

001360*THE FOLLOWING IS AN EXAMPLE OF A LIBRARY CALL. 
001370* 
001400 
881500 
001600 
'001700 
001800 
001900 

CALL "PROCEDUREDIVISION OF OBJECT/A/COBOL/LIB" 
USING PARAM. 

CHANGE ATTRIBUTE TITLE OF "LIB" TO 
"OBJECT/SAMPLE/DYNAMICLIB". 

CALL IIENTRYPOINTNAME IN LIBII USING PARAM. 
STOP RUN. 

Example 15~1. Calling a Library 

,8600 0296-000 



Libraries 

Example 2 

Example 15-2 illustrates calling a library by function. Note that only libraries that 
accept parameters by reference can be used with COBOL74 programs. The example 
also illustrates access to the arithmetic function RANDOM. The example assumes that 
SYSTEM/GENERALSUPPORT has been installed as GENERALSUPPORT in the 
library function table of the operating system. 

002000IDENTIFICATION DIVISION. 
004000ENVIRONMENT DIVISION . 

. 006000DATA DIVISION. 
008000WORKING-STORAGE SECTION. 
01000077 SEED PIC 9(11) USAGE BINARY. 
01200077 RANDOM-RESULT USAGE REAL. 
014000PROCEDURE DIVISION. 
0160000NLY-PARAGRAPH. 
018000 CHANGE ATTRIBUTE LIBACCESS OF "GENERALSUPPORT" 
020000 
022000 
024000 
026000 
026200 
026400 
026600 
026800 
027000 
027200 
027400 
028000 

TO BYFUNCTION. 
CALL "RANDOM OF GENERALSUPPORT" 

USING SEED 
GIVING RANDOM-RESULT. 

CHANGE ATTRIBUTE FUNCTIONNAME OF ISYNONYM1" 
TO "GENERALSUPPORT". 

CHANGE ATTRIBUTE LIBACCESS OF "SYNONYM1" 
TO BYFUNCTION. 

CALL "RANDOM OF SYNONYM1" 
USING SEED 
GIVING RANDOM-RESULT. 

STOP RUN. 

Example 15-2. Calling a Library by Function 

Example 3 

Family substitution can occur when the library is linked by title. In this situation, it is 
. desirable to link by function to an initialized library or to control the family substitution 
as shown in Example 15-3. 

001000*THE FOLLOWING SEQUENCE LINKS A LIBRARY TO A CODE FILE ON "DISK II 

001500*WHEN FAMILY SUBSTITUTION KEEPS THE LIBRARY FROM LINKING. 
001800* 
002000 MOVE ATTRIBUTE FAMILY OF MYSELF TO SAVEFAM. 
004000 CHANGE ATTRIBUTE FAMILY OF MYSELF TO ".". 
006000 CALL II INITIALIZE IN LIB1". 
008000 CHANGE ATTRIBUTE FAMILY OF MYSELF TO SAVEFAM. 

Example 15-3. Substituting a Family Specification 

See Also 

Refer to the FAMILY attribute in the A Series Task Attributes Programming Reference 
Manual for more information. 

8600 0296-000 15-17 



15-18 8600 0296-000 



Section 16 
Internationalization 

Internationalization refers to the U nisys software, firmware, and hardware features that 
enable you to develop and run application systems that can be customized to meet the 
needs of a specific language, culture, or business environment. The internationalization 
features provide support for several character sets, different international business and 
cultural conventions, extensions to data communications protocols, and the ability to use 
one or more natural languages concurrently. 

This section describes the internationalization features you can use to customize an 
application for the language and conventions of a particular locality. Using these features 
to write or modify an application is termed localization. The MultiLingual System 
(MLS) environment enables you to process information to localize your applications. 
Some of the localization methods included in the MLS environment include· translating 
messages to another language, choosing a particular character set to be used for data 
processing, and defining date, time, number, and currency formats for a particular 
business application. 

In addition to the information described in this section, refer to the A Series 
MultiLingual System (MLS) Administration, Operations, and Programming Guide for 
information. The MLS Guide provides definitions for and detailed information about· 
the ccsversions, character sets, languages, and conventions provided by U nisys. It also 
describes procedures for setting system values for the internationalization features. 

The system requires a Mark 3.9 or later operating system to use many of the features 
of the MLS environment. Programs that use the internationalization features might 
not compile or run on earlier operating systems. All programs that ran on the previous 
release will continue to run. Refer to the MLS Guide for additional information about 
MLS environment installation requirements. 

8600 0296-000 16-1 



I nternationa I ization 

Accessing the Internationalization Features 
You can use the following two methods separately or together to access the 
internationalization features. Both of these methods are fully described later in this 
section. 

• COBOL 74 provides language syntax that enables you to localize your program. For 
example, when you specify a particular ccsversion in your program, the compiler uses 
the collating sequence associated with the ccsversion for alph~umeric comparisons. 

• The system provides a system library,' CENTRALSUPPORT, that contains 
procedures for localizing your program. You can access the library procedures by 
using the CALL verb. When a call occurs, input parameters describe the type of 
information that is needed or the action that is to be performed. Output parameters 
are returned with the result of the procedure call. For example, you can call the 
procedure CNV _ FORMATTIME _COB to format the time according to the language 
and convention that you specify. 

In your program, you must designate that you want to use the internationalization 
features; otherwise, your program will not access them. In other words, a program is not 
affected by the features described in this section unless the program specifically invokes 
them. Any programs that already exist and do not invoke internationalization features 
are not affected by the features. 

Using the Ccsversion, Language, and Convention Default Settings 

16-2 

The program can choose the specific ccsversion, language, and convention settings that 
it needs by setting the input parameters to a procedure. The system also has default 
settings for the internationalization features at other levels. The default settings, 
can also be accessed by the program. See "Understanding the Hierarchy for Default 
Settings" later in this section for information on the available levels and on the features 
supported at each level. j 

The current system default settings can be determined by using one of the following two 
methods: 

• The program calls the CENTRALSTATUS procedure in the CENTRALSUPPORT 
library. 

• A system administrator, a privileged user, or a user who is allowed to use the system 
console can use MARC menus and screens or the SYSTEMOPTIONS system 
command. Refer to the MLS Guide or the A Series Menu-Assisted Resource Control 
(MARC) Operation's Guide for the instructions to display the default ccsversion, 
language, or convention with MARC. 

The system default settings provided by Unisys are as follows: 

Feature 

Ccsversion 

Language 

Convention 

Default 

ASeriesNative 

English 

ASeriesNative 

8600 0296-000 



I nternationa I ization 

Before you change the default settings for localization, you must consider consider the 
feature and the level at which the feature is defined. As an example, the ccsversion can 
be changed only at the system operations level. A program can avoid making specific 
settings by taking advantage of the default settings. For example, if the system-defined 
ccsversion is France, the language is Francais, and the convention is FranceListing, the 
program can use those default settings without coding the settings within the program. 
A program can use the default settings with the use of predefined values as input 
parameters. These parameters tell the procedure to use the current default setting. See 
"Input ·Parameters" later in this section for specific information on those parameters. 

To use the system default ccsversion, you must specify the CCSVERSION phrase in 
the SPECIAL-NAMES paragraph and not include the literal-l option. The clause 
alphabet-name IS CCSVERSION identifies the collating sequence associated with the 
alphabet-name as the system default collating sequence. 

You can specify five different date or time formats 1?y using the the TYPE clause in 
the DATA DMSION. You can use the system default language and convention by not 
including the USING phrase of the TYPE clause. 

See Also 

• Refer to "SPECIAL-NAMES Paragraph" in sectIon 5, "ENVIRONMENT 
DIVISION," for more information about the CCSVERSION phrase. 

• Refer to "TYPE" in Section 7, "DATA DIVISION," for more information about using 
this clause for date and time editing. 

Understanding the Hierarchy for Default Settings 

The default settings for the internationalization features can be established at the 
following levels: 

Task 

Program 

Session 

Usercode 

System 

Established at task initiation 

Established at compile time 

Handled by MARC or CANDE commands or by programs 
which support sessioning 

Established in the USERDATAFILE file 

Established with a system or MARC command 

There is a priority associated with these levels. A setting at the task level overrides a 
setting at the program level. A setting at the program level overrides a setting at the 
session level. A setting at the session level overrides a usercode or system level setting 
and so on. A language and convention can be established at any level, but the ccsversion 
can be established only at the system level. 

Two task attributes enable you to change the language, the convention, or both. These 
attributes are the LANGUAGE and CONVENTION task attributes. By using these 
attributes, you have the option to select from among multiple languages and conventions 
when running a program. Information on the use of task attributes is provided in the 
A Series Task Attributes Programming Reference Manual. 

86000296-000 16-3 



I nternationa I ization 

The LANGUAGE task attribute establishes the language used by a program at run time. 

The CONVENTION task attribute establishes the convention used by a program at 
run time. For example, an international bank might have a program to print bank 

. statements for customers in different countries. This program could have a general 
routine to format dates, times, currency, and numerics according to the selected 
conventions. To print a bank statement for a French customer, this program could 
set the CONVENTION task attribute to FranceBureautique and process the general 
routine. For a customer in Sweden, the program could set the CONVENTION task 
attribute to Sweden and process the general routine. 

As you code your program you can use the defaults in both the source code and the calls 
to the CENTRALSUPPORT library, or you can use the settings of your choice. The task 
level and system level are probably the most useful levels for your program. Because the 
language and convention features have task attributes defined, you can access or set 
these task attributes in your program. 

Understanding the Components of the MLS 
Environment 

The following four components of the MLS environment support different languages and 
cultures: 

• Coded character sets 

• Ccsversions 

• Languages 

• Conventions 

The following paragraphs describe the function of each of these components. 

Understanding Coded Character Sets and Ccsversions 

16-4 

A coded character set is a set of rules that establishes a character set and the one-to-one 
relationship between the characters of the set and their code values. The same 
character set can exist with different encodings. For example, the LATIN1-based 
character set can be encoded in an International Organization for Standardization (ISO) 
format or an EBCDIC format. Coded character sets are defined in the MLS Guide. 

A coded character set name and number is given to each unique coded character set 
definition. This name or number may also be used to set the INTMODE or EXTMODE 
file attribute value for a file. For more information on these attributes, see the File 
Attributes Reference Manual. 

A ccsversion is a collection of information necessary to apply a coded character set in a 
given country, language, or line of business. This information includes the processing 
requirements such as data c1asses~ lower-to-uppercase mapping, ordering of characters, 
and escapement rules necessary for output. A ccsversion name and number is given to 
each unique group of information. This name and number may also be used to set the 

8600 0296-000 



I nternationa I ization 

CCSVERSION file attribute for a file. For more information on these attributes, see the 
File Attributes Reference Manual. 

Each A Series system includes a data file, SYSTEM/CCSFILE, containing all coded 
character sets and ccsversions that are supported on the system. You cannot choose a 
coded character set directly, but by choosing a ccsversion, you implicitly designate the 
default coded character set for your system. 

Data can be entered and manipulated in only one coded character set and ccsversion at 
a time. Although there are many ccsversions that can be accessed, there is only one 
ccsversion active for the entire system at one time. This is called the system default 
ccsversion. All coded character set and ccsversion information can be accessed by calling 
CENTRALSUPPORT library procedures. 

You can use any of the following ways to find out which coded character sets and 
ccsversions are available on the system: 

• Look in the MLS Guide. Your system might have a subset of the ones defined in 
that guide. 

• Use the MARC·menus and screens or the system command SYSTEMOPTIONS. 
Refer to the MLS Guide or the System Commands Operations Reference Manual. 

• Call the CCSVSN _NAMES _ NUM procedure. 

You might want to refer to the MLS Guide for a complete understanding of ccsversions 
and the relationship of a coded character set and a ccsversion. 

. You must use language syntax to establish that a ccsversion is to be used in your 
program. To do this, specify a PROGRAM COLLATING SEQUENCE clause and an 
alphabet-name is CCSVERSION literal-l clause in the ENVIRONMENT DIVISION. 

You can enter and manipulate data in anyone particular coded character set and 
ccsversion. Although there are many ccsversions that can be accessed, there is only one 
ccsversion active for the entire system at one time. This is called the system default 
ccsversion. You can select a ccsversion to be used during the execution of your program. 
by including the literal-l option in the CCSVERSION clause. If you do not use the 
literal-I option, the program uses the system default ccsversion. 

Many of the procedures require the specification of a coded character set or ccsversion as 
an input parameter. A program can choose a specific coded character set or ccsversion 
by calling the procedure using the name or number of the coded character set or the 
ccsversion as an input parameter. A program can also use the system default setting 
by using predefined values as input parameters. See "Input Parameters" later in this 
section. 

It is possible to use a different ccsversion in your program by changing the value of 
the literal-I option. For example, by changing the value of literal-I, your program 
could process data in the ASeriesNative ccsversion and then process data in the· Swiss 
ccsversion. 

8600 0296-000 16-5 



I nternationa I ization 

See Also 

For more information about the CCSVERSION clause, see "SPECIAL-NAMES 
Paragraph," in Section 5, "ENVIRONMENT DIVISION." 

Understanding Mapping Tables 

A mapping table is used to map one group of characters to another group of characters 
or another representation of the original characters. Many CENTRALSUPPORT 
library procedures store coded character set and ccsversion information in ALGOL-type 
translate tables as a way of defining, processing, and mapping data. For example, a 
translate table can exist to translate lowercase characters to uppercase characters. It 
is not necessary to understand the layout of an ALGOL-type translate table because 
the table is usually not visible to your program. A description of translate tables is 
provided in the A Series ALGOL Programming Reference Manual, Volume 1: Basic 
Implementation. 

The internationalization procedures provide you with access to mapping tables that 
apply to data specified in coded character sets or to specified ccsversions. These mapping 
tables are as follows: 

• Mapping data from one coded character set to another coded character set 

• Mapping data from lowercase to uppercase characters' 

• Mapping data from uppercase to lowercase characters 

• Mapping data from alternative numeric digits defined in a ccsversion to nUIll,eric 
digits in U.S. EBCDIC 

• Mapping data from numeric digits in U.S. EBCDIC to alternative numeric digits 
defined in a ccsversion 

• Mapping characters to their escapement values 

You must use procedures from the CENTRALSUPPORT library to access these 
mapping tables or to process data using these tables. For example, you can use the 
CCSTOCCS _TRANS_TEXT procedure to translate data from one coded character set to 
another coded character set. You can use the VSNTRANS _TEXT procedure for the rest 
of the mapping tables. 

See the MLS Guide for definitions of mapping tables for each coded character set and 
ccsversion. 

Understanding Data Classes 

16-6 

A data class is a group of characters sharing common attributes such as alphabetic, upon 
which membership tests can be made. Some characters might not have a data class 
assigned to them. Many CENTRALSUPPORT library procedures store ccsversion 
information in ALGOL-type truthset tables as a way to define ccsversion data classes. A 
truthset is a method of storing the declared set of characters that defines a data class in 
ALGOL. It is not necessary to understand the layout of an ALGOL-type translate table 
because the table is usually not visible to your program. A description of translate tables 

86000296-000 



I nternationa I ization 

is provided in the A Series ALGOL Programming Reference Manual, Volume 1: Basic 
Implementation. 

The internationalization features provide you with access to additional truthsets that 
apply to a ccsversion. These truthsets are as follows: 

• Ccsversion alphabetic 

• Ccsversion numeric 

• Ccsversion graphics 

• Ccsversion spaces 

• Ccsversion lowercase 

• Ccsversion uppercase 

The alphabetic truthset contains those characters that are considered to be alphabetic 
for a specified ccsversion; the numeric truthset contains those characters that are 
considered to be numeric for a specified ccsversion, and so on. 

The compiler automatically accesses the alphabetic truthset if you have specified a 
PROGRAM COLLATING SEQUENCE clause and an alphabet-name IS CCSVERSION 
literal-l clause in the ENVIRONMENT DMSION. Then if you use the identifier IS 
ALPHABETIC clause, the compiler makes the class condition test sensitive to the 
ccsversion alphabetic data class. 

You can use procedures from the CENTRALSUPPORT library to access these truthsets 
or to process data using these truthsets .. For example, if a program manipulates 
an employee identification number such as 555962364, it might then need to verify 
that the text is or is not all numeric. The program can call the VSNINSPECT _TEXT 
CENTRALSUPPORT library procedure to compare the text to the numeric truthset. 
This procedure returns the information that the text is or is not all numeric. 

See Also 

Refer to the MLS Guide for definitions of ccsversions and data classes. 

Understanding Text Comparisons 

You might need to perform a text comparison to sort and merge text, to compare 
relationships between two pieces of text, or to index a file. 

The traditional method for handling text comparisons is based on a strict binary 
comparison of the character values. The binary method of comparison is not meaningful 
when used for sorting text if the binary ordering of the coded characters does not 
match the ordering sequence of the alphabet. This situation is the case for most coded 
character sets. 

Because the binary method is not sufficient for all usage requirements, U nisys supports 
the definitions of two other levels of ordering. 

8600 0296-000 16-7 



I nternationa I ization 

16-8 

The first level is called ORDERING. For this level, each character has an ordering 
sequence value (OSV). An OSV is an integer in the range 0 (zero) through 255 that is 
assigned to each code position in a character set. The OSV indicates a relative ordering 
value of a character. An OSV of 0 (zero) indicates that the character comes before a 
character with an OSV equal to 1. 'More than one character can be assigned the same 
OSv. 

The second level is called COLLATING. For this level, each character has an OSV and 
a priority sequence value (PSV). A PSV is an integer in the range 1 through 15 that is 
assigned to each code position in a character set. A PSV indicates a relative priority 
value within each OSv. Each character with a unique OSV has a PSV equal to 1, but two 
characters with the same OSV have different PSVs to separate them. 

When comparing two strings of data, we call a comparison that uses only 1 level, the 
Ordering level, an equivalent comparison. A comparison that uses both levels, Ordering 
and Collating, is called a logical comparison. 

You can specify the following three types of comparisons by calling procedures in the 
CENTRALSUPPORT library: 

Ordering Type 

Binary 

Equivalent 

Logical 

Explanation 

Compares two records based on the hexadecimal code 
values of the characters. 

Compare two records based on the OSVs of the characters. 
This type of comparison 'uses the ORDERING level. 

Compares two records based on the OSVs plus the PSVs of 
the characters. This type of comparison uses the 
COLLATING level. 

In addition to the three types of ordering, U nisys also supports the following two types of 
character substitution: 

Substitution 

Many to One 

One to Many 

Explanation 

A predetermined string of up to three characters can be 
ordered as if it were one character, assigning it a single OSV 
and PSV pair. Even if a character is part of a predetermined 
string of characters that are ordered as a single value, the 
character still has an OSV and a PSV pair assigned to it to 
allow for cases in which the character appears in other 
strings or individually. For example, in Spanish, the letter 
pair ch is ordered as if it were a single letter, different from 
either cor h, and ordering between c and d. 

A single character can generate a string of two or three OSV 
and PSV pairs. For example, the f3 (the German sharp S) 
character is ordered as though it were ss. 

You can specify a collating sequence to be used for text comparisons. When you 
designate an internationalized collating sequence at the program level and you are 
comparing two alphanumeric records, the compiler uses the logical ordering type when 
generating the text comparison routines. 

8600 0296-000 



I nternationa I ization 

Historically, text was sorted by using a standard system-provided method that is based 
on a strict binary comparison of the character values. Within a program, you might also 
specify a collating sequence to be used for text comparisons. 

Your program can call the CENTRALSUPPORT library procedures listed in Table 16-1 
under the category "Comparing and Sorting Text" to obtain ordering information of the 
ccsversion, and to sort or compare text based on this information. 

See Also 

Refer to Volume 2 for information about using an equivalent string comparison among 
entities of a SIM data base and ordering localized data retrieved from a SIM data base. 

Sorting and Merging 

Because of the complexity of the SORT and MERGE statements, and because the 
compiler generates the sort compare procedure to be used in the sort and merge 
operations, you can specify a localized collating sequence to be used at the program level, 
or at the SORT or MERGE statement level. To use this language syntax, specify an 
alphabet-name IS CCSVERSION option in the SPECIAL-NAMES paragraph. Then if 
you specify a localized collating sequence at the program level, the compiler generates 
the text comparison routines. . 

Creating Indexed Files 

If you are creating a localized indexed file, you must use the KEY-LENGTH and 
COMPARISON phrases of the SELECT clause to specify the key value and the type of 
comparison to be done. 

The KEY-LENGTH phrase specifies the number ofB-bit characters the system uses to 
store a translated key value. Translated display data can require a larger storage area 
when including ordering and collating information. The KEY-LENGTH phrase can be 
used with the prime record key or the alternate record key. 

The COMPARISON phrase specifies the type of comparison to be performed when 
searching for the key. A binary, logical, or equivalent comparison can be specified. 

You must use the same ccsversion when you create the file and when you use it. A 
run-time error occurs when you open an indexed file for output if the run-time ccsversion 
does not match the compile-time ccsversion. 

See Also 

Refer to "FILE-CONTROL Paragraph" in Section 5, "ENVIRONMENT DMSION," for 
the syntax of the COMPARISON and KEY-LENGTH phrases. 

8600 0296-000 16-9 



I nternationa I ization 

Providing Support for Natural Languages 

The natural language feature enables users of your application program to communicate 
with the computer system in their natural language. A natural language is a human 
language in contrast to a computer programming language. 

You must write your COBOL 74 program in the subset of the standard EBCDIC 
character set defined by the COBOL language. Only the contents of string literals, data 
items with variable character data, or comments can be in a character set other than 
that subset. 

If your program interacts with a user, has a user interface with screens or forms, displays 
messages or accepts user input, then those aspects of the program should be in the 
natural language of the user. For example, French would be the :naturallanguage of a 
person from France. 

Refer to the MLS Guide for a list of user interfaces that can be localized. The following 
text explains how to develop a COBOL application program which supports interaction 
in the natural language of the user. 

Creating Messages for an Application Program 

16-10 

In the MLS environment, the messages handled by your application program are 
grouped into the following categories: 

Message 
Category 

Output message 

Input message 

Explanation 

A message that an application program displays to the user. Some 
examples of output messages are error messages and prompts for input. 
An output message can be localized so that it can be displayed in the 
language of the user. 

A message received by an interactive program either from a user or from 
another program in response to a prompt for input. The input message 
might be in a language that the program cannot recognize. In this case, 
the message must be translated so that it can be understood by the 
program. 

If you develop input and output messages within an output message array, you make 
the localization process easier. When messages are in an output message array, the 
translator can use the MSGTRANS utility to localize the messages into one or more 
natural languages. The MSGTRANS utility finds all output message arrays ina program 
and presents them for translation. If messages are not in output message arrays, a 
translator must search the source file for each message and then translate the message. 

You can create an output message array by creating an ALGOL library that contains 
OUTPUTME8SAGE ARRAY declarations. 

An output message array contains output messages to be used by the MultiLingual 
System (MLS). ALGOL statements within the output message array declaration contain 
output messages or translate input messages. You can then call the library from your 

8600 0296-000 



Internationalization 

application program. The MLS Guide describes the procedures for creating and using 
output message arrays. 

There is a program on the release media that demonstrates how to create 
an ALGOL library containing output message arrays. The program is called 
EXAMPLE/MLS/ALGOL/LIBRARY. 

See Also 

For information on how to call an ALGOL library from a COBOL74 program, refer to 
Section 15, "Libraries." 

Creating Multilingual Messages for Translation 

The following are guidelines for creating messages that can be multilingual: 

• Put all output messages in output message arrays. 

• Allow more space for translated messages. Because the English langUage is more 
compact than many other natural languages, a message in English generally becomes 
about 33 percent longer after it is translated into another language. For example, if 
a program can display an 80-character message,· an English message should be only 
60 characters long so that the translated message can expand by one-third and not 
exceed the maximum display size. 

• Accept or display any messages through a library interface similar to that provided 
on the release media. 

• Use complete sentences for messages because phrases are difficult to translate 
accurately. 

• Do not use abbreviations because they are difficult to translate. 

Providing Support for Business and Cultural Conventions 

The business and cultural features enable users of an application program to display 
and receive data according to local conventions. A convention consists of formatting 
instructions for date, time, numeric, currency, and page size. 

Unisys provides standard convention definitions for many formatting styles. For 
example, some of the conventions are Denmark, Italy, Turkey, and UnitedKingdoml. 
These convention definitions contain information to create formats for time, date, 
numbers, currency, and page size required by a particular locality. 

8600 0296-000 16-11 



I nternationa I ization 

Each A Series system includes a data fil~ named SYSTEM/CONVENTIONS that 
contains all the convention definitions supported on the system. Although you can 
access many conventions, only one convention is active at a time for the entire system. 
This convention is called the system default convention. You can access conventions as 
follows: 

• Look in theMLS Guide. Your system might have a subset of the ones defined in 
that guide. 

• Use the MARC menus and screens or the system command SYSTEMOPTIONS. 
Refer to the MLS Guide or the System Commands Operations Reference Manual. 

• Call the CNV _NAMES procedure to display the names of conventions available on 
the host computer. 

If none of the conventions provided by Unisys meet your needs, you can define a new 
convention. You must use a template to define a convention. A template is a group of 
predefined control characters that describe the components for date, time, numeric, or 
currency. For example the data item 02251990 and the template !Oo!/!dd!/!yyyy! produce 
the formatted date, 02/25/1990. To use some of the CENTRALSUPPORT library 
procedures, you must understand how templates are defined. The MLS Guide describes 
how to define a template. 

Using the Date and Time Features 

COBOL74 provides several date and time features for standard use. You can access the 
conventions either by using language syntax or by calling a CENTRALSUPPORT library 
procedure. 

Formatting Date and Time with Syntax Elements 

16-12 

COBOL74 provides the following language syntax to handle formatting of date and time 
data items: 

• You can declare a data item to have one of several date or time types in the TYPE 
clause of the data-description entry. You can also designate a language or convention 
with the TYPE clause. 

• COBOL74 provides special registers, date and time editing, and PROCEDURE 
DMSION statements for standard formatting of date and time. These standard 
features include the following: 

The special registers TODAYS-DATE, DATE, and DAY provide the system date 
with MMDDYY, YYMMDD, and YYDDD formats respectively. 

The special register TIME provides the elapsed time after midnight on a 24-hour 
clock, in the format HHMMSSTT, where HH equals hours, MM equals minutes, 
SS equals seconds, and TT equals hundredths of a second. For example, 12:01 
p.m. is expressed as 12010000. 

The special register TIMER provides the number of 2.4-microsecond intervals 
since midnight. 

86000296-000 



I nternationa I ization 

The special register TODAYS-NAME provides the name of the current day of 
the week. 

You can specify the date punctuation (space, slash, or hyphen), the time 
punctuation (colon or space), and the thousand separator (comma or space) in 
the PICTURE clause. For example, 

05 DATE-YYMMDD 
05 DATE-MMDDYY 
05 DATE-YYDDD 
05 TIME-HHMMSS 
05 AMOUNT 

PIC 99/99/99 
PIC 99-99-99 
PIC 998999 
PIC 99:99:99 
PIC 998999.99 

The COBOL 7 4 compiler provides date and time editing with conventions, with 
the particular convention and language specified as a property of the receiving 
data item. The MOVE statement causes the editing to occur. 

The ACCEPT statement transfers the formatted system date or time into the 
data item specified by the identifier using the TYPE, CONVENTION, and 
LANGUAGE declared for the item. 

See Also 

• Refer to "Special Registers" in Section 2, "Language Elements," for details about 
the special registers. 

• Refer to "Editing" in Section 6, "Data Concepts," for information about editing with 
the PICTURE clause. 

Formatting Date and Time with Library Calls 

You can call the CENTRALSUPPORT library procedures to format your date and time 
items. The following types of procedures are available to format the date and tiIDe: 

Procedure Type 

Convention 

Template 

System 

8600 0296-000 

Description 

You supply the convention name and the value for the date 
or time. The procedure returns the date or time value in the 
format used by the convention. All the conventions are 
described in theMLS Guide. 

You supply the following: the format that you want for the 
date or time in a template parameter; the value for the date 
or time. You must use predefined control characters to 
create the template. These 'control characters are described 
in theMLS Guide. 

The system supplies the date and time. There is a procedure 
that formats the system date, the system time, or both 
according to a convention and a procedure that formats the 
system date, the system time, or both according to a 
template that you supply. 

16-13 



Internationalization 

Example 

You could use the CNV _ SYSTEMDATETIME _COB procedure to display the system 
date and time according to the language and convention you choose. If you designate the 
ASeriesNative convention and the ENGLISH language, the date and time are displayed 
as follows: 

9:25 AM Monday, July 4, 1988 

If you designate the FranceListing convention and the French language, the same date 
and time might be displayed as follows: 

9h25, lundi 4 ju;llet 1988 

Table 16-1 lists other procedures to inquire about the conventions that are available on . 
your system. 

Using the Numeric and Currency Features 

COBOL74 provides several numeric and currency features for standard use. 
You can access the conventions either by using language syntax or by calling 
a CENTRALSUPPORT library procedure. Table 16-1 provides a list of the 
CENTRALSUPPORT library features that concern numeric and currency features. 

Formatting Numerics and Currencies with Syntax Elements 

The standard COBOL74 compiler provides you with the following ways to edit currency 
and numeric displays: 

• You can specify a single character as the currency symbol. For example, in the 
SPECIAL-NAMES paragraph, the CURRENCY IS literal-9 option specifies the 
value of literal-9 as the currency symbol throughout the entire program. 

• You can to specify a comma as the decimal sign and a period as the thousand 
separator. In the SPECIAL-NAMES paragraph, the DECIMAL-POINT IS COMMA 
clause causes a comma to be used as the decimal sign and a period to be used as the 
thousand separator throughout the entire program. 

• By using output message arrays, your program can pass numeric values to messages 
as records of type USAGE IS DISPLAY. These records can contain numeric 
formatting, which uses a comma as the thousands separator and a period for the 
decimal sign. 

Formatting Numerics and Currencies with Library Calls 

16-14 

In addition to using the features in COBOL74, you can call the CENTRALSUPPORT 
library procedures to inquire about numeric symbols or format currency amounts .. All 
numeric or currency symbols can be retrieved with a CENTRALSUPPORT library 
call. Monetary amounts in real number form can be formatted according to different 
conventions. 

8600 0296-000 



I nternationa lization 

You can use the CNV _ CURRENCYEDIT _COB procedure to format a monetary value 
according to the convention you choose. For example, if you designate the Greece 
convention, the monetary amount 12345.67 is formatted as follows: 

DR.12 345,67 

Using the Page Size Formatting Features 

Page sizes are specific to a locality. COBOL74 provides several standard features 
for formatting page size. You can set the number of lines per page and the number 
of characters per line by using language syntax. Alternately, you can call the 
CNV _ FORMSIZE procedure to obtain predetermined page size values for the 
convention you specify. 

Formatting Page Size with Syntax Elements 

COBOL74 provides the following language syntax to handle formatting of the size of 
pages: 

• LINAGE clause in the DATA DMSION 

• Report Writer 

• ADVANCING phrase of the WRITE statement 

Formatting Page Size with Library Calls 

The CNV _ FORMSIZE procedure enables you to retrieve default lines-per-page and 
characters-per-line values for a specified convention. 

For example, the Netherlands convention definition specifies 70 lines as the default page 
length and 82 characters as the default page width, while the Zimbabwe convention 
definition specifies 66 lines as the default page length and 132 lines as the default page 
width. 

Summary of Language Syntax by Division 
The following paragraphs describe the changes you can make in the divisions of a ' 
COBOL74 program to use internationalization features. 

IDENTIFICATION DIVISION 

No changes are required in this division. 

8600 0296~OO 16-15 



I nternationa I ization 

ENVIRONMENT DIVISION 

The language syntax that you can use in the ENVIRONMENT DIVISION includes the 
following: 

• The PROGRAM COLLATING SEQUENCE IS alphabet-name clause in the 
OBJECT-COMPUTER paragraph declares that the collating sequence to be used is 
the one associated with the alphabet-name. The alphabet-name must be the same as 
the one named in the SPECIAL-NAMES paragraph. The collating sequence is used 
for alphabetic comparisons in conditional statements and for sorting and merging 
routines. 

• The alphabet-name IS CCSVERSION literal-l clause in the SPECIAL-NAMES 
paragraph designates the system collating sequence and the ccsversion. If you do 
not use the literal-! option, the system uses the system default ccsversion values for 
the collating sequence and the ccsversion. If you do specify literal-I, then the literal 
identifies the ccsversion. 

• The following two phrases are used by KEYEDIOII to create a localized indexed 
file: 

The KEY-LENGTH IS literal-2 phrase of the SELECT clause specifies the 
number of 8-bit characters the system uses to store a translated key value. 
Translated display data can require extra storage area for ordering and collating 
information and for the length of the key. A run-time error occurs when the 
indexed file is created if the compile-time and run-time ccsversions are not the 
same. 

The COMPARISON IS phrase of the SELECT clause specifies the type of 
comparison to be performed when searching for the key. 

• The DECIMAL-POINT IS COMMA option of the SPECIAL·NAMES paragraph 
causes the functions of the EBCDIC comma and decimal point to be switched. 

• The CURRENCY SIGN IS literal-9 clause of the SPECIAL-NAMES paragraph 
enables you to specify a single character to be used as the currency symbol in 
numeric data . 

. DATA DIVISION 

The language syntax that you can use in the DATA DMSION includes the following: . 

• The TYPE option of the data-description entry for record structures allows a data 
item to be declared to be one of the following date or time types: 

LONG-DATE 

SHORT-DATE 

NUMERIC-DATE 

LONG-TIME 

NUMERIC-TIME 

• The USING phrase of the TYPE option allows the data item to be formatted 
according to a designated language or convention. 

16-16 86000296-000 



Internationalization 

• The KANJI phrase of the USAGE clause enables you to display and write messages 
in Japanese and other natural languages that require the double-octet format. 

• Standard COBOL74 editing also can be used to format date and time. 

PROCEDURE DIVISION 

The language syntax that you can use in the PROCEDURE DIVISION includes the 
following: 

• The identifier IS ALPHABETIC clause tests whether an identifier is in the 
alphabetic truthset. If you have specified a ccsversion in the ENVIRONMENT 
DIVISION, the system determines the alphabetic truthset with respect to the 
alphabetic data class of the ccsversion. 

• The ACCEPT identifier statement transfers a formatted system date or time to the 
identifier. The format of the system date or time data item depends on the coding of 
the TYPE, LANGUAGE, and CONVENTION clauses for the item. 

• The MOVE statement causes a receiving item with an associated TYPE clause to 
be formatted according to the TYPE, LANGUAGE, and CONVENTION clauses 
declared for the item. If no LANGUAGE and CONVENTION clauses are specified, 
the compiler uses the hierarchy to determine the language and convention to be 
used. 

If the receiving item is of type SHORT-DATE, LONG-DATE, or NUMERIC-DATE, 
the sending item must of of format YYYYMMDD where YYYY represents the year, 
with a value in the range 0000 through 9999; MM represents the month, with a 
value in the range 01 through 12; and DD represents the day, with a value in the 
range 01 through 31. 

If the receiving item is of type LONG-TIME or NUMERIC-TIME, the sending item 
must be of format HHMMSSPPPP where HH represents the hour, with a value in 
the range 00 through 23; MM represents the minutes, with a value in the range 00 
through 59; SS represents the seconds, with a value in the range 00 through 59; and 
PPPP represents the partial seconds, with a value in the range 0000 through 9999. 

• The CALL statement can be used to call the procedures of the CENTRALSUPPORT 
library. 

• The SORT and. MERGE statements use the collating sequence ofa specified 
ccsversion if you establish a program collating sequence in the ENVIRONMENT 
DIVISION and do not override it in the COLLATING SEQUENCE IS 
alphabet-name option in the SORT or MERGE statement. 

• The CHANGE ATTRIBUTE LIBACCESS statement can be used to change a library 
call by function to a library call by title or vice-versa. 

8600 0296-000 16-17 



I nternationa I ization 

16-18 

Example 

Example 16-1 shows the five different types of date and time items and their expected 
values upon execution of the ACCEPT statement. The PICTURE size of the data,:,items 
depends on the definition of the type defined in the conventions file provided by U nisys. 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 LONG-DATE-ITEM PIC X(30} TYPE IS LONG-DATE. 
01 SHORT-DATE-ITEM PIC X(9} TYPE IS SHORT-DATE. 
01 NUM-DATE-ITEM PIC X (8) TYPE IS NUMERIC-DATE. 
01 LONG-TIME-ITEM PIC X(20} TYPE IS LONG-TIME. 
01 NUM-TIME-ITEM PIC X(20} TYPE IS NUMERIC-TIME. 

* 
PROCEDURE DIVISION. 

* 
* Get the system date and time in the various formats defined by the 
* CONVENTION and LANGUAGE task attributes for the task. Assume a 
* convention of ASERIESNATIVE and a language of ENGLISH, a current 
* date of 31 August 1990, and a current time of 2:37:20 PM. 
* 

ACCEPT LONG-DATE-ITEM FROM DATE. 
* 
* The LONG-DATE-ITEM now contains Friday, August 31, 1990. 
* 

ACCEPT SHORT-DATE-ITEM FROM DATE. 
* 
* The SHORT-DATE-ITEM now contains Fri, Aug 31,1990. 
* 

ACCEPT NUM-DATE-ITEM FROM DATE. 
* 
* The NUM-DATE-ITEM now contains 08/31/90. 
* 

ACCEPT LONG-TIME-ITEM FROM TIME. 
* 
* The LONG-TIME-ITEM now contains 14 hours 37 minutes 20 seconds. 
* 

ACCEPT NUM-TIME-ITEM FROM TIME. 
* 
* The NUM-TIME-ITEM now contains 14:37:20. 

STOP RUN. 

Example 16-1. Coding the Format 3 ACCEPT Statement 

8600 0296-000 



Internationalization 

Example 

Example 16-2 shows the five different types of date or time items and their expected 
values upon execution of the MOVE statement. The PICTURE size of the data-items 
depends on the definition of the type defined in the conventions file provided by U nisys. 

* 

* 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 LONG-DATE-ITEM 
01 SHORT-DATE-ITEM 
01 NUM-DATE-ITEM 
01 LONG-TIME-ITEM 
01 NUM-TIME-ITEM 

PROCEDURE DIVISION. 

PIC X(30) 
PIC X(9) 
PIC X(8) 
PIC X(20) 
PIC X(20) 

TYPE IS LONG-DATE. 
TYPE IS SHORT-DATE. 
TYPE IS NUMERIC-DATE. 
TYPE IS LONG-TIME. 
TYPE IS NUMERIC-TIME. 

* Convert the literal date and time into the various formats defined. 
* by the CONVENTION and LANGUAGE task attributes for the task. Assume 
* a convention of ASERIESNATIVE and a language of ENGLISH, a current 
* date of 31 August 1990, and a current· time of 2:37:20 PM. 
* 

MOVE "19900831" TO LONG-DATE-ITEM. 
* 
* The LONG-DATE-ITEM now contains Friday, August 31, 1990. 
* 

MOVE "19900831" TO SHORT-DATE-ITEM. 
* 
* The SHORT-DATE-ITEM now contains Fri, Aug 31, 1990. 
* 

MOVE "19900831" TO NUM-DATE-ITEM. 
* 
* The NUM-DATE-ITEM now contains 08/31/90. 
* 

MOVE "143720000000" TO LONG-TIME-ITEM. 
* 
* The LONG-TIME-ITEM now contains 14 hours 37 minutes 20 seconds. 
* 

MOVE "143720000000" TO NUM-TIME-ITEM. 
* 
* The NUM-TIME-ITEM now contains 14:37:20. 

STOP RUN. 

Example 16-2. Coding the MOVE Statement for Internationalization 

8600 0296-000 16-19 



I nternationa I ization 

See Also 

• For syntactical information about the statements used to localize an application, 
refer to the discussions of the ACCEPT, CALL, SORT, MERGE, and MOVE 
statements in Section 9 "PROCEDURE DIVISION Statements." 

• For information about the alphabetic test, refer to "Class Condition," in Section 8, 
"PROCEDURE DIVISION Concepts." 

Summary of CENTRALSUPPORT Library Procedures 

16-20 

The CENTRALSUPPORT library procedures are integer-valued procedures. The 
procedures return values in output parameters and as the procedure result. 

You can check the result returned by each procedure by using standard programming 
practices. The result is useful in deciding if an error has occurred. The possible values 
for each procedure result are listed in the description of each procedure. The meanings 
of the result values are described at the end of this section. 

The CENTRALSUPPORT library procedures are call,ed by application programs and 
system software. 

Following are some of the tasks your program can perform by calling 
CENTRALSUPPORT library procedures: 

• Identify available coded characters sets and ccsversions. 

• Map data from one coded character set to another. 

• Process data according to ccsversion. 

• Compare and sort text. 

• Position characters., 

• Determine available natural languages. 

• Access CENTRALSUPPORT library messages. 

• Identify available conventions definitions. 

• Obtain convention information. 

• Format dates according to convention. 

• Format times according to convention. 

• Format monetary data according to convention. 

• Determine default page size. 

'Table 16-llists the CENTRALSUPPORT library procedures according to the tasks the 
procedures perform. The table also describes the purpose of each procedure. 

86000296-000 



I nternationa I ization 

Table 16-1. Functional Grouping of CENTRALSUPPORT Library Procedures 

Category Procedure Name 

Identifying Available Coded Character 
Sets and Ccsversions 

CENTRALSTATUS 

VALIDATE_NAME_RETURN_NUM 

VALIDATE_NUM_RETURN_NAME 

Mapping Data from One Coded 
Character Set to Another 

Processing Data According to 
Ccsversion 

VSNINSPECT TEXT 

86000296-000 

Explanation 

Obtains the values of the default settings for 
internationalization features on the host computer. This 
procedure returns the names of the default ccsversion, 
language, and convention. It also returns the number of the 
default ccsversion. 

Returns the names and numbers of all coded character sets or 
all ccsversions available on the host computer. The names 
and numbers are listed in two arrays. These arrays are 
ordered so that the names in the names array correspond to 
the numbers in the numbers array. 

Verifies that a designated coded character set or ccsversion 
name is valid on the host computer. If the coded character set 
or ccsversion is valid, the procedure returns the corresponding 
number. 

Verifies that the designated coded character set or ccsversion 
number is valid on the host computer. If the coded character 
set or ccsversion is valid, the procedure returns the 
corresponding name. 

Maps data from one coded character set to another coded 
character set by using a translate table. Characters are 
translated using a one-to-one mapping between the two 
character sets. 

Compares the input text to a designated ccsversion truthset to 
determine whether the characters in the text are in the 
truthset. You can use this procedure to determine if 
characters are in one of the following truthsets: 

• Alphabetic 

• Numeric 

• Spaces 

• Presentation 

• Lowercase 

• Uppercase 

continued 

16-21 



I nternationa lization 

Table 16-1. Functional Grouping of CENTRALSUPPORT Library Procedures (cont.) 

C,ategory Procedure Name 

Comparing and Sorting Text 

VSNCOMPARE TXT 

VSNG ETORDERI NG FOR_ON E _TEXT 

16-22 

Explanation 

Translates data using a designated ccsversion. 

You can use this procedure to perform the following types of 
tra nslations: 

• Lowercase to uppercase characters 

• Uppercase to lowercase characters 

• The digits 0 through 9 to alternate digits 

• Alternate digits to the digits 0 through 9 

• Characters to their character escapement directions 

Compares two strings using one of the following comparison 
methods for a designated ccsversion: 

• Binary comparison, which is based on the binary values 
of the cha racters 

• Equivalent comparison, which is based on the ordering 
sequence values of characters 

• Logical comparison, which is based on the ordering 
sequence values and priority sequence values of 
characters 

Returns the ordering information for the input text. The 
ordering information determines how the input text is collated. 
It includes the ordering and priority sequence values of the 
characters and any substitution of characters to be made 
when the input text is sorted. You can choose one of the 
following types of ordering information: 

• Equivalent ordering information, which comprises only 
the order"ing sequence values 

• Logical ordering information, which comprises the 
ordering sequence values followed by the priority 
sequence values. 

continued 

8600 0296-000 



I nternationa I ization 

Table 16-1. Functional Grouping of CENTRALSUPPORT Library Procedures (cont.) 

Category Procedure Name 

Positioning Characters 

VSNESCAPEMENT 

Determining Available Natural 
languages 

MCPBOUND _LANGUAGES 

Accessing CENTRAlSUPPORT library 
Messages 

Identifying Available Convention 
Definitions 

CENTRAlSTATUS 

CNV NAMES 

CNV _ VAll DATENAM E 

8600 0296-000 

Explanation 

Takes the input text and rearranges it according to the· 
escapement rules of the ccsversion. Both the character 
advance direction and the character escapement direction are 
used. If the character advancedirection is positive, then the 
start position of the text is the leftmost position of the starting 
character. If the character advance direction is negative, then 
the starting position for the text is the rightmost position of the 
last character. From that point on, the character advance 
direction value and the character escapement direction 

. values, in combination, control where each character should 
be placed in relation to the previous character. 

Returns the names of the languages that are currently bound 
to the MCP. 

Returns text of the message associated with the designated 
CENTRALSUPPORT error number. Your program can specify 
the maximum message length desired. If the returned 
message is shorter, it is padded with blanks; 

An entire message consists of three parts: 

• The header, which always takes up the first 80 
characters of the return message 

• The general description, which takes the next 80 
characters 

• The specific description, which has no maximum length 

Obtains the values of the default settings for 
internationalization features on the host computer. This 
procedure returns the names of the default ccsversion, 
language, and convention. It also returns the number of the 
default ccsversion. 

Returns the names of the conventions available on the host 
system. 

Returns a value that indicates whether the specified 
convention name is currently defined on the host system. 

continued 

16-23 



I nternationa lization 

Table 16-1. Functional Grouping of CENTRALSUPPORT Library Procedures (cont.) 

Category Procedure Name 

Obtaining Convention Information 

CNV_SYMBOLS 

16-24 

Explanation 

Returns the numeric and monetary symbols defined for a 
designated convention. The symbols in the convention are 

• Numeric positive symbol 

• Numeric negative symbol 

• Numeric thousands separator symbol 

• Numeric decimal symbol 

• Numeric left enclosure symbol 

• Numeric right enclosure symbol 

• Numeric grouping 

• Monetary positive symbol 

• Monetary negative symbol 

• International currency notation 

• National currency symbol 

• Monetary grouping 

• Monetary thousands separator symbol 

• Monetary left enclosure symbol 

• Monetary right enclosure symbol 

• Monetary decimal symbol 

Returns the requested template for a designated convention. 
You can obtain the template for the following: 

• Long date format 

• Short date format 

• Numeric date format 

• Long time format 

• Numeric time format 

• Monetary format 

• Numeric format 

continued 

8600 0296-000 



I nternationa I ization 

Table 16-1. Functional Grouping of CENTRALSUPPORT Library Procedures (cont.) 

Category Procedure Name 

Formatting Dates According to 
Convention 

CNV _ DISPLAYMODEL _COB 

CNV_FORMATDATETIMETMP _COB 

CNV _ SYSTEMDATETIMETMP _COB 

FORMATDATETMP _COB 

86000296-000 

Explanation 

Returns either the date or time display model defined for the 
designated convention. The components of the model are 
translated to the designated language. 

Formats a numeric date that has the form YYYYMMDD. The 
numeric date is passed as a parameter to the procedure 
according to a designated convention and language. The date 
can be formatted using the long, short, or numeric date format 
defined in the convention. 

Returns the system date, the time, or both in the designated 
language, formatted according to a template passed to this 
procedure. 

Returns the system date, the time, or both, formatted 
according to the designated convention template and 
language. You can choose from the following types of formats: 

• Long date and long time 

• Long date and numeric time 

• Short date and long time 

• Short date and numeric time 

• Numeric date and long time 

• Numeric date and numeric time 

• Long date only 

• Short date only 

• Long time only 

• Numeric time only 

Formats a numeric date passed as a parameter to the 
procedure according to a template and language passed as 
parameters of the procedure. 

continued 

16-25 



Internationalization 

Table 16-1. Functional Grouping of CENTRALSUPPORT Library Procedures (cant.) 

Category Procedure Name 

Formatting Times According to 
Convention 

CNV _ DISPLAYMODEL _COB 

CNV _FORMATTIMETMP _COB 

16-26 

Explanation 

,Returns either the date or time display model defined for the 
designated convention. The components of the model are 
translated to the designated language. 

Formats a time with the form HHMMSSPPPP. The time is 
passed as a parameter to the procedure according to a 
designated convention and language. The time can be 
formatted using the long or numeric time format defined in the 
convention. 

Formats a time passed as a parameter to the procedure 
according to a template and language passed as parameters 
of the procedure. 

Returns the system date, the time, or both in the designated 
language, formatted according to a template passed to this 
procedure. 

Returns the system date, the time, or both, formatted 
according to the designated convention template and 
language. You can choose from the following types of formats: 

• Long date and long time 

• Long date and numeric time 

• Short date and long time 

• Short date and numeric time 

• Numeric date and long time 

• Numeric date and numeric time 

• Long date only 

• Short date only 

• Long time only 

• Numeric time only 

continued 

8600 0296-000 



I nternationa I ization 

Table 16-1. Functional Grouping of CENTRALSUPPORT Library Procedures (cont.) 

Category Procedure Name 

Formatting Monetary Data According to 
Convention 

Explanation 

CNV CURRENCYEDIT COB - - Formats a monetary value passed as a parameter to the 
procedure according to the monetary editing format template 
defined in the designated convention. 

Determining Default Page Size 

CNV _FORMSIZE 

Library Calls 

Formats a monetary value, passed as a parameter to the 
procedure, according to a template also passed as a 
parameter. The template is retrieved from the 
CNV _TEMPLATE procedure. 

Returns the default Iines-per-page and characters-per-Iine 
values defined in a designated convention for formatting 
printer output. 

You can access the procedures in the CENTRALSUPPORT library by following these 
steps: 

1. Declare the parameters of the library procedure in the WORKING-STORAGE 
SECTION of the program. 

2. Use the CHANGE statement syntax to specify the value of the LmACCESS library 
attribute as BYFUNCTION. 

3. Use the CALL statement syntax to call a library procedure where the library 
identity is procedure-name of CENTRALSUPPORT, the parameters are listed in 
the USING clause, and the procedure result is specified in the GIVING clause. 

An example of the declarations and the syntax necessary to call the 
CENTRALSUPPORT library is provided in the description of each procedure later in 
this section. 

See Also 

For general information about calling library procedures, refer to Section 15, "Libraries." 

Parameter Categories 

All integer parameters are passed by reference rather than by value. The 
CENTRALSUPPORT library procedures return output parameters and procedure 
result values. The parameter types are further described on the following pages. 

8600 0296-000 16-27 



I nternationa I ization 

Input Parameters-

In many cases, one of the input parameters requires that you supply the ccsversion name 
or number, the language name, or the convention name. You can obtain this information 
in the following ways: 

• The MLS Guide describes all the possible ccsversions, languages, and conventions 
that UniSys provides. However, your system might have only a subset of the ones 
provided. There may also be customized conventions that are not listed in the MLS 
Guide. These may be identified by the next two options. 

• If you are a system administrator, a privileged user, or are allowed to use the system 
console, you can use MARC menus and screens, or the SYSOPS command to list the 
options that exist on your system. The MLS Guide provides the instructions needed 
to obtain information about ccsversion, language, or convention defaults on your 
system. 

• You can call procedures in the CENTRALSUPPORT library that will return the 
default ccsversion, language, and convention on the system. If you are writing 
an application to be used on another system, you might want to use these library 
procedures to verify that the ccsversion, the language, or the convention specified by 
the user is valid on that system. 

The fields of parameters that you supply as OI-level records have fixed positions. This 
means that you must use blanks or zeros in any fields that you omit. 

For any procedure which accepts a ccsversion number as an input parameter, you can 
specify a -2 as input to indicate that the system default value should be used. For any 
procedure that accepts a ccsversionname as an input parameter, you can specify all 
blanks or all zeros as inputs to indicate that the system default value should be used. 
For any procedure that accepts a language or convention name as an input parameter, 
you can specify all blanks or all zeros as inputs to indicate that the task attribute should 
be used. If the task attribute is not available, the CENTRALSUPPORT library searches 
down the hierarchy until a usable value is found. 

Input Parameters with Type Values 

16-28 

Many of the CENTRALSUPPORT procedures have an input parameter that indicates 
the type of information to be applied or returned in the procedure. The values in these 
parameters are referred to as type values. The values used in the convention (CNV) 
procedures are common across all CNV procedures. The values used in the coded 
character set and ccsversion (VSN) procedures are common across all CCS and VSN 
procedures. 

For example, there is a parameter used in some procedures that specifies the formatting 
of the time. In the examples, the parameter is named CS-NTIMEV. You must choose a 
type value to indicate a format. For example, a value of 3 indicates the long time format 
is used. 

8600 0296-000 



I nternationa lization 

Because the parameters are passed by reference, you need to declare and assign the type 
values in the WORKING-STORAGE SECTION. You can then use a MOVE statement to 
move the value into the parameter as shown in the following example: 

MOVE LONG-TIME-V TO C5-NTIMEV. 

Example 
Example 1~3 shows a sample set of WORKING-STORAGE declarations for the 
parameters that have type values. The procedures are explained later in this section 
using the type value names declared in this example. Notice that numeric items must 
be declared PIC S9(11) USAGE BINARY. This declaration is required for parameter 
matching to type INTEGER. 

77 C5-BINARYV PIC 59(11) U5AGE BINARY VALUE 0. 
. 77 C5-EQUIVALENTV PIC 59(11) U5AGE BINARY VALUE l. 

77 CS-LOGICALV PIC S9 (11) USAGE BINARY VALUE 2. 
77 CS-CHARACTER-5ETV PIC S9(11) USAGE BINARY VALUE 0. 
77 CS-CCSVERSIONV PIC S9(11) USAGE BINARY VALUE l. 
77 CS-NUMTOALTDIGV PIC 59 (11) USAGE BINARY VALUE 5. 
77 CS-ALTDIGTONUMV PIC S9(11) USAGE BINARY VALUE 6. 
77 CS-LOWTOUPCASEV PIC S9(11) USAGE BINARY VALUE 7. 
77 CS-UPTOLOWCASEV PIC S9(11)· USAGE BINARY VALUE 8. 
77 CS-ESCMENTPERCHARV PIC S9(11) USAGE BINARY VALUE 9. 
77 CS-ALPHAV PIC 59(11) USAGE BINARY VALUE 12. 
77 CS-NUMERICV PIC S9(11) USAGE BINARY VALUE 13. 
77 CS-PRESENTATIONV PIC S9(11) USAGE BINARY VALUE 14. 
77 CS-SPACESV PIC S9(11) USAGE BINARY VALUE 15. 
77 CS-LOWERCA5EV PIC 59(11) USAGE BINARY VALUE 16. 
77 CS-UPPERCASEV PIC S9(11) USAGE BINARY VALUE 17. 
77 CS-NOTINTSETV PIC S9(11) USAGE BINARY VALUE 0. 
77 C5-INTSETV PIC 59 (11) USAGE BINARY VALUE 1-
77 CS-CMPLSSV PIC 59 (11) USAGE BINARY VALUE 0. 
77 CS-CMPLEQV PIC S9(11) USAGE BINARY VALUE 1-
77 CS-CMPEQLV PIC S9(11) USAGE BINARY VALUE 2. 
77 CS-CMPGTRV PIC S9(11) USAGE BINARY VALUE 3. 
77 CS-CMPGEQV PIC 59 (11) USAGE BINARY VALUE 4. 
77 C5-CMPNEQV PIC 59(11) USAGE BINARY VALUE 5. 
77 C5-LDATE-V PIC S9(11) USAGE BINARY VALUE 0. 
77 CS-SDATE-V PIC S9(11) USAGE BINARY VALUE l. 
77 C5-NDATEV PIC S9(11) USAGE BINARY VALUE 2. 
77 CS-LTIMEV PIC 59 (11) USAGE BINARY VALUE 3. 
77 C5-NTIMEV PIC 59(11) USAGE BINARY VALUE 4. 
77 CS-LDATELTIMEV PIC 59(11) USAGE BINARY VALUE 5. 
77 tS-LDATENTIMEV PIC S9(11) USAGE BINARY VALUE 6. 
77 CS-SDATELTIMEV PIC 59(11) USAGE BINARY VALUE 7. 
77 CS-SDATENTIMEV PIC 59 (11) USAGE BINARY VALUE 8. 
77 C5-NDATELTIMEV PIC S9(11) USAGE BINARY VALUE 9. 
77 C5-NDATENTIMEV PIC 59(11) USAGE BINARY VALUE 10. 
77 CS-LONGDATE-TEMPV PIC S9 (11) USAGE BINARY VALUE 0. 
77 CS-SHORTDATE-TEMPV PIC S9(11) USAGE BINARY VALUE .1. 

Example 16-3. Sample Data Declarations for Type Value Data Items 

8600 0296-000 16-29 



I nternationa I ization 

77 CS-NUMDATE-TEMPV PIC S9 (11) USAGE BINARY VALUE 2. 
77 CS-LONGTIME-TEMPV PIC S9 (11) USAGE BINARY VALUE 3. 
77 CS-NUMTIME-TEMPV PIC S9 (11) USAGE BINARY VALUE 4. 
77 CS-MONETARY-TEMPV PIC S9 (11) USAGE BINARY VALUE 5. 
77 CS-NUMERIC-TEMPV PIC S9(11) USAGE BINARY VALUE 6. 
77 CS-DATE-DISPLAYMODEL PIC S9(11) USAGE BINARY VALUE 0. 
77 CS-TIME-DISPLAYMODEL PIC S9 (11) USAGE BINARY VALUE 1. 

Example 16-3. Sample Data Declarations for Type Value Data Items (cont.) 

Output Parameters 

These parameters contain the output values produced by the procedure. For example, 
the translated text produced by the procedure CCSTOCCS _TRANS_TEXT is returned 
in an output parameter. 

Result Parameter 

All the library procedures return an integer value as the procedure result that indicates 
whether an error occurred during the execution of the procedure. In general, a 
returned value of 1 means that no error occurred and any other value means that an 
error occurred. However, the CNV _ V ALIDATENAME and VSNCOMP ARE _TEXT 
procedures are exceptions to this rule. For these procedures, the returned value can be 
o (zero), 1, or another value. A returned value of 0 (zero) means that no error occurred 
and the condition is FALSE. A returned value of 1 means that no error occurred and the 
condition is TRUE. Any other value means that an error occurred. 

Each procedure lists the values that can be returned by that procedure. The meanings 
of these values are explained at the end of this section. You can use these values to call 
the GET _ CS _ MSG procedure and display the error that occurred, or you can code error 
routines to handle the possible errors. 

See Also 

Refer to the explanation of the GET _ CS _ MSG procedure later in this section for more 
information about using that procedure. 

Procedure Descriptions 

16-30 

The following pages describe the internationalization procedures accessible from a 
COBOL74 program. The procedures reside in the CENTRALSUPPORT library. 

Each description includes a general overview of the procedure, an example showing how 
to call the procedure, and an explanation of the parameters used in the example. Not all 
parameters used to produce the output will be displayed in the output. 

You can define the name of a parameter to be whatever name you want. In the following 
discussions, the parameters are . given names in the example, and are identified in the 
explanation by that Iiame. 

8600 0296-000 



I nternationa I ization 

The following parameters are used in many of the procedures: 

• CS-DATAOKV is a constant with a value of 1 that is compared with the RESULT 
parameter. This value indicates that the CENTRALSUPPORT library did not find 
errors and was able to process the information. 

• CS-F ALSEV is a constant with a value of 0 that is compared with the RESULT 
parameter. This value indicates that although the CENTRALSUPPORT library did 
not find errors, it did not process the information. 

• SUB represents a subscript. 

CCSTOCCS TRANS TEXT 
This procedure translates data from the coded character set specified in the first 
parameter to the coded character set specified in the next parameter. Characters are 
translated using a one-to-one mapping between two coded character sets. For example, " 
you might want to translate data in the LATIN1EBCDIC coded character set to the 
LATINlISO coded character set. 

Although there are many coded character set numbers, there is not a mapping table 
between every combination of coded character sets. The procedure returns an error 
indicating the data was not found if you pass two valid coded character" set numbers for a 
table that does not exist. 

Refer to the MLS Guide for a list of the coded character set to coded character set 
translate tables that are defined. 

Example 

Example 16-4 shows the parameter declarations and the PROCEDURE DMSION 
syntax required to call the CCSTOCCS _TRANS_TEXT library procedure. The 
declarations identify the category of data-item required for parameter matching. For 
example, numeric items must be declared PIC S9(11) USAGE BINARY. 

In the explanation following the example, the parameters are explained using the names 
given to them in the example. In your program, choose parameter names that are 
appropriate for your use. 

This example takes the input string "paiiuelo," which is encoded in the "Latin1EBCDIC 
coded character set and translates it to the Latin1ISO coded character set. "The string 
"paiiuelo" is represented by the following hexadecimal codes in Latin1EBCDIC: 
978149A4859396. In LatinlISO, the hexadecimal codes are 83969586519985958385. 
You can use the MLS Guide to determine that the coded character set number for 
Latin1EBCDIC is 12 and Latin1ISO is 13. You can also retrieve these numbers by calling 
the procedure VALIDATE_NAME _RETURN _NUM with the coded character set names. 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FI LE-CONTROL. 

SELECT OUTPUT-FILE ASSIGN TO DISK. 

Example 16-4. Calling the CCSTOCCS~TRANS_TEXT Procedure 

86000296-000 16-31 



I nternationa I ization 

16-32 

DATA DIVISION. 
FILE SECTION. 
FD OUTPUT-FILE 

LABEL RECORD IS STANDARD 
VALUE OF TITLE IS IOUT/COBOL74/CCSTOCCSTRANSTEXT." 
PROTECTION SAVE 
RECORD CONTAINS 80 CHARACTERS 
DATA RECORD IS OUTPUT-RECORD. 

01 OUTPUT-RECORD 

WORKING-STORAGE SECTION. 

01 OF-I. 
05 FILLER 
05 OF-RESULT 
05 FILLER 

01 OF-2. 
05 FILLER 
05 OF-DEST-TEXT 
05 FILLER 

PIC X(80). 

PIC X(09) VALUE "RESULT = II 
PIC ZZZZZZZZZZZ9. 
PIC X(59) VALUE SPACE. 

PIC X(12) VALUE "DEST-TEXT = II 
PIC X (10) • 
PIC X(58) VALUE.SPACE. 

****************************************************************** 
*** The following global declarations are used as parameters *** 
*** to the CENTRALSUPPORT procedures. *** 
*********************************'********************************* 

01 DEST-TEXT PIC X (10) • 
01 SOURCE-TEXT PIC X (10) • 

77 CCS-NUM-FROM PIC S9(11) USAGE BINARY. 
77 CCS-NUM-TO PIC S9 (11) USAGE BINARY. 
77 CS-DATAOKV PIC S9(11) USAGE BINARY VALUE l. 
77 CS-FALSEV PIC S9(11) USAGE BINARY VALUE 0. 
77 DEST-START PIC S9(11) USAGE BINARY. 
77 RESULT PIC S9(11) USAGE BINARY. 
77 SOURCE-START PIC S9(11) USAGE BINARY. 
77 TRANS-LEN PIC S9(11) USAGE BINARY. 

PROCEDURE DIVISION~ 
INTLCOBOL74. 

OPEN OUTPUT OUTPUT-FILE. 
PERFORM CCSTOCCS-TRANS ... TEXT. 
CLOSE OUTPUT-FILE. 
STOP RUN. 

***** CCSTOCSS-TRANS-TEXT **************************************** 
CCSTOCCS-TRANS-TEXT. 

CHANGE ATTRIBUTE LIBACCESS OF "CENTRALSUPPORT II TO BYFUNCTION. 
MOVE 12 TO CCS-NUM-FROM. 

Example 16-4. Calling the CCSTOCCS_TRANS_TEXT Procedure (cont.) 

8600 0296-000 



I nternationa lization 

MOVE 13 TO CCS-NUM-TO. 
MOVE "pafiue,' 011 TO SOURCE-tEXT. 
MOVE Ie TO TRANS-LEN. 
CALL IICCSTOCCS_TRANS_TEXT OF CENTRALSUPPORT" 

USING CCS-NUM-FROM, 
CCS-NUM-TO, 
SOURCE-TEXT, 
SOURCE-START, 
DEST-TEXT, 
DEST-START, 
TRANS-LEN 

GIVING RESULT. 
MOVE RESULT TO OF-RESULT. 
WRITE OUTPUT-RECORD FROM OF-I. 
IF RESULT IS EQUAL TO CS-DATAOKV 

THEN MOVE DEST-TEXT TO OF-DEST-TEXT 
WRITE OUTPUT-RECORD FROM OF-2. 

Example 16-4. Calling the CCSTOCCS_TRANS_TEXT Procedure (cont.) 

Explanation 

CCS~NUM-FROM is an integer passed to the procedure. It contains the number of the 
coded character set that you are formatting from. 

CCS-NUM -TO is an integer passed to the procedure. It contains the number of the 
coded character set you are translating the text to. The destination text will be in this 
coded character set. 

SOURCE-TEXT is passed to the procedure. It contains the text to translate. You 
specify the size of thiS record. 

SOURCE-START is passed to the procedure. It contains the byte offset, relative to 0 
(zero), in SOURCE-TEXT where the translation starts. 

DEST-TEXTis returned by the procedure. It contains the translated text. The size of 
this record and the record in the SOURCE-TEXT parameter should be the same. 

DEST-START is passed to the procedure. It contains the byte offset (0 relative) in the 
DEST parameter where the translated text is to be placed. 

TRANS-LEN is passed to the procedure.' It specifies the number of characters in 
SOURCE-TEXT to be translated, beginning at SOURCE-START. 

RESULT is returned as the integer value of the procedure. It indicates whether an 
error occurred during the execution of the procedure. Values greater than or equal to 
1000 indicate an error. An explanation of the error result values can be found at the end 
of this section. You should check the procedure result whenever you use this procedure. 

8600 0296-000 16-33 



I nternationa I ization 

Possible values returned by CCSTOCCS _ TRANS _TEXT are as follows: 

1 

1000 

1001 

1002 

3000 

3001 

Sample output fr()m Example 16-4 follows: 

RESULT = 1 
DEST-TEXT = paftuelo 

See Also 

3003 

4002 

For more information on the error result values, see Table 16-2 later in this section. 

CCSVSN NAMES NUMS 

16-34 

This procedure returns a list of the coded character set names and numbers or a list 
of the ccsversion names and numbers that are available on your system. You specify 
which list you want with the first parameter to the procedure. The names and numbers 
are listed in two arrays. These arrays are coded so that the names in the names array 
correspond to the numbers in the numbers array. 

You might use this procedure to create a menu that lists the ccsversions from which a 
user can choose. You might also use this procedure to verify that the ccsversion to be 
used by your program is available on the host computer. 

Example 
Example 16-5 shows the parameter declarations and the PROCEDURE DIVISION 
syntax required to call the CCSVSN _NAMES _ NUMS library procedure. The 
declarations identify the category of data-item required for parameter matching. For 
example, numeric items m~t be declared PIC 89(11) USAGE BINARY. 

In the explanation following the example, the parameters are explained using the names 
given to them in the example. In your program, choose parameter names that are 
appropriate for your use. 

This example returns a list of available ccsversion names and numbers on a system. This 
is an arbitrary list of ccsversions and might not be the same on every system. 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FI LE-CONTROL. 

SELECT OUTPUT-FILE ASSIGN TO DISK. 

DATA DIVISION. 
FILE SECTION. 
FD OUTPUT-FILE 

LABEL RECORD IS STANDARD 

Example 16-5. Calling the CCSVSN_NAMES_NUMS Procedure 

8600 0296-000 



I nternationa I ization 

VALUE OF TITLE IS "OUT/COBOL74/CCSVSNNAMESNUMS." 
PROTECTION SAVE 
RECORD CONTAINS 80 CHARACTERS 
bAT A RECORD IS OUTPUT-RECORD. 

01 OUTPUT-RECORD PIC X(80). 

WORKING-STORAGE SECTION. 

01 OF-I. 
05 FILLER PIC X(09) VALUE "RESULT = " 
05 OF-RESULT PIC ZZZZZZZZZZZ9. 
05 FILLER PIC X(59) VALUE SPACE. 

01 OF-2. 
05 FILLER PIC X (15) , VALUE "CCSversion Name". 
05 FILLER PIC X(0S) VALUE SPACE. 
05 FILLER- PIC X(l7) VALUE "CCSvers i on Number". 
05 FILLER PIC X(43) VALUE SPACE. 

01 OF-3. 
05 FILLER PIC X (15) VALUE ALL "_". 
05 FILLER PIC X(0S) VALUE SPACE. 
05 FILLER PIC X(17) VALUE ALL "_". 
05 FILLER PIC X(43) VALUE SPACE. 

01 OF-4. 
05 OF-NAMES-ELEM PIC X(l7). 
05 FILLER PIC X(08) VALUE SPACE. 
05 OF-NUMS-ELEM PIC ZZZZZZZZZZZ9. 
05 FILLER PIC X(43) VALUE SPACE. 

****************************************************************** 
*** The following global declarations are used as parameters *** 
*** to the CENTRALSUPPORT procedures. *** 
****************************************************************** 

01 NAMES-ARY. 
05 NAMES-ELEM PIC X(l7) OCCURS 20 TIMES. 

01 NUMS-ARY USAGE BINARY. 
05 NUMS-ELEM PIC S9(11) OCCURS 20 TIMES. 

01 SUB PIC 9(02). 

77 CS-CCSVERSIONV PIC S9(11) USAGE BINARY VALUE 1-
77 CS-DATAOKV PIC S9(11) USAGE BINARY VALUE 1-
77 CS-FALSEV PIC S9 (11) USAGE BINARY VALUE 0. 
77 RESULT PIC S9(11) USAGE BINARY. 
77 TOTAL PIC S9(11) USAGE BINARY. 

PROCEDURE DIVISION. 
INTLCOBOL74. 

OPEN OUTPUT OUTPUT-FILE. 
PERFORM CCSVSNNAMESNUMS. 
CLOSE OUTPUT-FILE. 

Example 16-5. Calling the CCSVSN_NAMES_NUMS Procedure (cont.) 

8600 0296-000 16-35 



I nternationa I ization 

16-36 

STOP RUN. 

***** CCSVSNNAMESNUMS ******************************************** 
CCSVSNNAMESNUMS. 

CHANGE ATTRIBUTE LIBACCESS OF "CENTRALSUPPORT" TO BYFUNCTION. 
CALL "CCSVSN~NAMES_NUMS OF CENTRALSUPPORT" 

USING CS-CCSVERSIONV, 
TOTAL, 
NAMES-ARY, 
NUMS-ARY· 

GIVING RESULT. 
MOVE RESULT TO OF-RESULT. 
WRITE OUTPUT-RECORD FROM OF-I. 
IF RESULT IS EQUAL TO CS-DATAOKV 

THEN MOVE SpACE TO OUTPUT-RECORD 
WRITE OUTPUT-RECORD 
WRITE OUTPUT-RECORD FROM OF-2 
WRITE OUTPUT-RECORD FROM OF-3 
MOVE 1 TO SUB 
PERFORM DISPLAYARY UNTIL SUB IS GREATER THAN TOTAL. 

***** DISPLAYARY ************************************************* 
DISPLAYARY. 

MOVE NAMES-ELEM(SUB) TO OF-NAMES-ELEM. 
MOVE NUMS-ELEM(SUB) TO OF-NUMS-ELEM. 
WRITE OUTPUT-RECORD FROM OF-4. 
ADD 1 TO SUB. 

Example 16-5. Calling the CCSVSN_NAMES_NUMS Procedure (cant.) 

Explanation 

CS-CCSVERSIONV is passed to the procedure. It enables you to specify either of the 
following two types of information to be returned in the output parameters: 

Value Value Name 

o CS-CHARACTER-SET-V 

1 CS-CCSVERSION-V 

Meaning 

Return the names and numbers of the coded 
character sets 

Return the names and numbers of the ccsversions 

TOTAL is returned by the procedure. It contains the number of coded character set or 
ccsversion entries that exist. 

NAMES-ARY is returned by the procedure. Each entry contains the name of a coded 
character set or ccsversion defined in the file SYSTEM/CCSFILE provided by Unisys. 
Each name uses one element of NAMES-ARY and is 17 characters long. In this example, 
up to 20 names can be stored in the record. The MLS Guide also lists all the coded 
character sets and ccsversions. The recommended array size is 340 characters. 

NUMS-ARY is returned by the procedure. NUMS-ARY contains all the coded 
character set or ccsversion numbers defined on the host. Each number uses one 

8600 0296-000 



Internationalization 

element of NUMS-ARY. Each element in NUMS-ARY corresponds to a parallel entry in 
NAMES-ARY and corresponds to a 17-character name. The record can hold up to 20 
numbers. The MLS Guide also provides allthe numbers for the coded character sets 
and ccsversions. 

RESULT is returned as the value of the procedure. It indicates whether an error 
occurred in the CCSVSN_NAMES_NUMS procedure. Values greater than or equal to 
1000 indicate an error. An explanat~on of the error result values can be found at the end 
of this section. You should check the procedure result whenever you use this procedure. 
Possible values returned by CCSVSN_NAMES_NUMS are as follows: 

1 

1001 

1002 

3000 

Sample output from Example 16-5 follows: 

RESULT = 

CCSvers;on Name 

ASERIESNATIVE 
SWISS 
SWEDISH1 
SPANISH 
CANADAEBCDIC 
CANADAGP 
FRANCE 
NORWAY 

See Also 

1 

CCSvers;on Number 

13 
64 
99 
98 
74 
75 
35 
71 

3001 

3006 

For more information on the error result values, see Table 16-2 later in this section. 

CENTRALSTATUS 

This procedure returns the name and number of the system default ccsversion, the name 
of the system default language, and the name of the system default convention. 

You might use this procedure to provide a means for your application users to inquire 
about the default settings on the host computer. 

Example 

Example 16-6 shows the parameter declarations and the PROCEDURE DIVISION 
syntax required to call the CENTRALSTATUS library procedure. The declarations 

86000296-000 16-'-37 



International ization 

16-38 

identify the category of data-item required for parameter matching. For example, 
numeric items must be declared PIC S9(11) USAGE BINARY. 

In the explanation following the example, the parameters are explained using the names 
given to them in the example. In your program, choose parameter names that are 
appropriate for your use. 

Tilis example returns the current values for the system default ccsversion, language, and 
convention. These are arbitrary system values and might not be the same on every 
system. 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT OUTPUT-FILE ASSIGN TO DISK. 

DATA DIVISION. 
FILE SECTION. 
FD OUTPUT-FILE 

LABEL RECORD IS STANDARD 
VALUE OF TITLE IS IIOUT/COBOL74/CENTRALSTATUS. 1I 

PROTECTION SAVE 

01 

RECORD CONTAINS 80 CHARACTERS 
DATA RECORD IS OUTPUT-RECORD. 

OUTPUT-RECORD PIC X(80). 

WORKING-STORAGE SECTION. 

01 OF-I. 
05 FILLER PIC X(09) VALUE IIRESULT = II. 
05 OF-RESULT PIC ZZZZZZZZZZZ9. 
05 FILLER PIC X(59) VALUE SPACE. 

01 OF-2. 
05 FILLER PIC X (15) VALUE "System Defaults ll

• 

05 FILLER PIC X(65) VALUE SPACE. 
01 OF-3. 

05 FILLER PIC X(15) VALUE ALL II_". 
05 FILLER PIC X(65) VALUE SPACE. 

01 OF-4. 
05 FILLER PIC X(13) VALUE "Field Meaning". 
05 FILLER PIC X(29) VALUE SPACE. 
05 FILLER PIC X(08) VALUE "Location". 
05 FILLER PIC X(08) VALUE SPACE. 
05 FILLER PIC X(05) VALUE "Val ue". 
05 FILLER PIC X(14) VALUE SPACE. 

01 OF-5. 
05 FILLER PIC X (13) VALUE ALL "_". 
05 FILLER PIC X(29) VALUE SPACE. 
05 FILLER PIC X(08) VALUE ALL "_". 
05 FILLER PIC X(08) VALUE SPACE. 

Example 16-6. Calling the CENTRALSTATUS Procedure 

8600 0296-000 . 



I nternationa I ization 

IlJS FILLER PIC X(IlJS) VALUE ALL "_". 
IlJS FILLER PIC X(14) VALUE SPACE. 

1lJ1 OF-I. 
IlJS FILLER PIC X(l1) VALUE ICCSVersion:". 
IlJS FILLER PIC X(1lJ7) VALUE SPACE. 
IlJS D1-SYS-ELEM PIC X(17). 
IlJS FILLER PIC X(4S) VALUE SPACE. 

1lJ1 DF-2. 
IlJS FILLER PIC X (11) VALUE II Language: II 

IlJS FILLER PIC X (1lJ7) VALUE SPACE. 
IlJS D2-SYS-ELEM PIC X (17) • 
IlJS FILLER PIC X(4S) VALUE SPACE. 

1lJ1 DF-3. 
IlJS FILLER PIC X (11) VALUE II Convent ion: II • 

IlJS FILLER PIC X (1lJ7) VALUE SPACE. 
IlJS D3-SYS-ELEM PIC X(17). 
IlJS FILLER PIC X(4S) VALUE SPACE. 

1lJ1 DF-4. 
IlJS FILLER PIC X(39) 

VALUE IISystem Default CCSVersion Number: II 
IlJS FILLER PIC X(1lJ6) VALUE SPACE. 
IlJS FILLER PIC X(1lJ3) VALUE II (1) II • 

IlJS FILLER PIC X(1lJ3) VALUE SPACE. 
IlJS D4-CONTROL-ELEM PIC ZZZZZZZZZZZ9. 
IlJS FILLER PIC X (17) VALUE SPACE. 

****************************************************************** 
*** The following global declarations are used as parameters *** 
*** to the CENTRALSUPPORT procedures. *** 
****************************************************************** 

1lJ1 CONTROL-INFO USAGE BINARY. 
IlJS CONTROL-ELEM PIC S9 (11) OCCURS 8 TIMES. 

1lJ1 SUB PIC 9(1lJ2). 
1lJ1 SYS-INFO. 

IlJS SYS-ELEM PIC X(17) OCCURS 3 TIMES. 

77 CS-DATAOKV PIC S9(11) USAGE BINARY VALUE 1. 
77 CS-FALSEV PIC S9(11) USAGE BINARY VALUE 1lJ. 
77- RESULT PIC S9 (11) USAGE BINARY. 

PROCEDURE DIVISION. 
INTLCOBOL74. 

OPEN OUTPUT OUTPUT-FILE. 
PERFORM CENTRALSTATUS. 
CLOSE OUTPUT-FILE. 
STOP RUN. 

***** CENTRALSTATUS ********************************************** 
CENTRALSTATUS. 

CHANGE ATTRIBUTE LIBACCESS OF IICENTRALSUPPORT" TO BYFUNCTION. 

Example 16-6. Calling the CENTRALSTATUS Procedure (cont.) 

8600 0296-000 16-39 



I nternationa I ization 

16-40 

CALL "CENTRALSTATUS OF CENTRALSUPPORT II 

USING SYS-INFO, 
CONTROL-INFO 

GIVING RESULT. 
MOVE RESULT TO OF-RESULT. 
WRITE OUTPUT-RECORD FROM OF-I. 
IF RESULT IS EQUAL TO CS-DATAOKV 

THEN MOVE SPACE TO OUTPUT-RECORD 
WRITE OUTPUT-RECORD 
WRITE OUTPUT-RECORD FROM OF-2 
WRITE OUTPUT-RECORD FROM OF-3 
MOVE I TO SUB 
PERFORM DISPLAYSYSTEMINFO UNTIL SUB IS GREATER THAN 3 
MOVE SPACE TO OUTPUT-RECORD 
WRITE OUTPUT-RECORD 
WRITE OUTPUT-RECORD FROM OF-4 
WRITE OUTPUT-RECORD FROM OF-5 
MOVE I TO SUB 
PERFORM DISPLAYCONTROLINFO UNTIL SUB IS GREATER THAN 8. 

***** DISPLAYSYSTEMINFO ****************************************** 
DISPLAYSYSTEMINFO. 

IF SUB IS EQUAL TO I 
THEN MOVE SYS-ELEM(SUB) TO Dl-SYS-ELEM 

WRITE OUTPUT-RECORD FROM OF-I. 
IF SUB IS EQUAL T02 

THEN MOVE SYS-ELEM(SUB) TO D2-SYS-ELEM 
WRITE OUTPUT-RECORD FROM DF-2. 

IF SUB IS EQUAL TO 3 
THEN" MOVE SYS-ELEM(SUB) TO D3-SYS-ELEM 

WRITE OUTPUT-RECORD FROM DF-3. 
ADD I TO SUB. 

***** DISPLAYCONTROLINFO ***************************************** 
DISPLAYCONTROLINFO. 

IF SUB IS EQUAL TO I 
THEN MOVE CONTROL-ELEM(SUB) TO D4-CONTROL-ELEM 

WRITE OUTPUT-RECORD FROM DF-4. 
ADD I TO SUB. 

Example 16-6. Calling the CENTRALSTATUS Procedure (cont.) 

Explanation 

SYS-INFO is returned by the procedure. Unisys recommends that the size of the record 
be 51 characters. It contains three items, each 17 characters long, in the following order: 

1. System default ccsversion name 

2. System default language name 

3. System default convention name 

8600 0296-000 



I nternationa I ization 

Each name is 17 characters long. Names shorter than 17 characters are padded on the 
right with blanks. 

CONTROL-INFO is returned by the procedure. It is eight words long and contains the 
following information. 

Location Information 

Word [0] System default ccsversion number 

Word [1] th rough [7] Reserved 

RESULT is returned as the value of the procedure. It indicates whether an error 
occurred during the execution of the procedure. Values greater than or equal to 1000 
indicate an error. An explanation of the error result values can be found at the end of 
this section. You should check the procedure result whenever you use this procedure. 
Possible values returned by CENTRALSTATUS are as follows: 

1 

1001 

1002 

3000 

Sample output from Example 16-6 follows: 

RESULT = 

System Defaults 

CCSVersion: 
Language: 
Convention: 

Field Meaning 

1 

ASERIESNATIVE 
ENGLISH 
ASERIESNATIVE 

System Default CCSVersion Number: 

See Also 

3001 

Location Value 

(1) 

For more information on the error result values, see Table 16-2 later in this section. 

CNV CURRENCYEDITTMP COB 

This procedure receives a real number and formats it to represent a currency value 
according to the template specified. The template may be retrieved for any convention 
from the CNV _TEMPLATE_COB procedure or may be created by the user. CE-ARY 
contains the formatted currency value. 

The MLS Guide describes the symbols used to create a template. 

Example 

Example 16-7 shows the parameter declarations and the PROCEDURE DMSION 
syntax required to call the CNV _ CURRENCYEDITTMP _COB library procedure. The 

8600 0296-000 16-41 



International ization 

16-42 

declarations identify the category of data-item required for parameter matching. For 
example, numeric items must be declared PIC S9(11) USAGE BINARY. 

In the explanation following the example, the parameters are explained using the names 
. given to them in the example. In your program, choose parameter names that are 
appropriate for your use. 

This example converts a real number and edits in numeric symbols that are passed in as 
a monetary template. The currency symbol is retrieved from the monetary template in 
the ASeriesN ative convention and edited into the EBCDIC string. 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FI LE-CONTROL. 

SELECT OUTPUT-FILE ASSIGN TO DISK. 

DATA DIVISION. 
FILE SECTION. 
FD OUTPUT-FILE 

LABEL RECORD IS STANDARD 
VALUE OF TITLE IS IOUT/COBOL74/CNVCUREDITTMPCOB." 
PROTECTION SAVE 
RECORD CONTAINS 80 CHARACTERS 
DATA RECORD IS OUTPUT-RECORD. 

01 OUTPUT-RECORD PIC X(80). 

WORKING-STORAGE SECTION. 

01 OF-I. 
05 FILLER PIC X(09) VALUE IIRESULT = II 
05 OF-RESULT PIC ZZZZZZZZZZZ9. 
05 FILLER PIC X(59) VALUE SPACE. 

01 OF-2. 
05 FILLER PIC X(09) VALUE IICE-ARY = II 

05 OF-CE-ARY PIC X(30). 
05 FILLER PIC X(41) VALUE SPACE. 

****************************************************************** 
*** The following global declarations are used as parameters *** 
*** to the CENTRALSUPPORT procedures. *** 
****************************************************************** 

01 CE-ARY PIC X(30). 
01 CNV-NAME PIC X (17) • 
01 TMP-ARY PIC X(48). 

77 AMT r REAL. 
77 CS-DATAOKV PIC S9(11) USAGE BINARY VALUE 1. 
77 CS-FALSEV PIC S9(11) USAGE BINARY VALUE 0. 
77 RESULT PIC S9(11) USAGE BINARY. 

Example 16-7. Calling the CNV_CURRENCYEDITIMP _COB Procedure 

8600 0296-000 



I nternationa I ization 

PRO.CEDURE DIVISIO.N. 
INTLCo'Bo'L74. 

O.PEN O.UTPUT O.UTPUT-FILE. 
PERFO.RM CNV-CURRENCYEDITTMP-CO.B. 
CLO.SE O.UTPUT-FILE~ 
STO.P RUN. 

***** CNV-CURRENCYEDITTMP-CO.B **********************************~* 
CNV-CURRENCYEDITTMP-CO.B. 

CHANGE ATTRIBUTE LIBACCESS o'F "CENTRALSUPPO.RT" TO. BYFUNCTIO.N. 
MO.VE 12345.67 TO. AMT. 
MO.VE "ASERIESNATIVE" TO. CNV-NAME. 
MO.VE "1CN[-]T[,:0,3]D[.]#I" TO. TMP-ARY. 
CALL "CNV_CURRENCYEDITTMP_CO.B o'F CENTRALSUPPORT" 

USING AMT, 
TMP-ARY, 
CNV-NAME, 
CE-ARY 

GIVING RESULT. 
MO.VE RESULT TO. o'F-RESULT. 
WRITE O.UTPUT-RECO.RD FRo'M o'F-l. 
IF RESULT IS EQUAL TO. CS-DATAo'KV 

THEN MO.VE CE-ARY TO. o'F-CE-ARY 
WRITE O.UTPUT-RECO.RD FRo'M o'F-2. 

Example 16-7. Calling the CNV_CURRENCYEDITTMP _COB Procedure (cont.) 

Explanation 

AMT is a real number passed to the procedure. It contains the monetary value to be 
formatted. 

TMP-ARY is passed to the procedure. It contains the formatting template used to 
format the monetary value. The recommended size of a template is 48 characters. 

CNV-NAME is an EBCDIC array passed to the procedure. It contains the name of 
the convention to be used. When a caller-supplied monetary template (in TMP-ARY) 
contains one or more control characters in simple form (that is, one or more c~acters 
without a symbol definition enclosed in square brackets ([]) following the character or 
characters), symbols associated with those control characters are retrieved from the 
monetary template in the convention specified by CNV-NAME. 

CE-ARY is returned by the procedure. It contains the formatted monetary value. 

8600 0296-000 16-43 



Internationalization. 

RESULT is returned as the value of the procedure. It indicates whether an error 
occurred during the execution of the procedure. Values greater than or equal to 1000 
indicate an error. An explanation of the error result values can be found at the end of 
this section. You should check the procedure result whenever you use this procedure. 
Possible values returned by CNV _ CURRENCYEDITTMP _COB are as follows: 

1 

1001 

1002 

3000 

3002 

Sample output from Example 16-7 follows: 

RESULT = 1 
CE-ARY ='$12,345.67 

See Also 

For more information on the error result values, see Table 16-2 later in this section. 

CNV CURRENCYEDIT COB 

16-44 

This procedure receives a monetary value and converts it to a formatted monetary value. 
The procedure uses the monetary template of the convention you specify to accomplish 
the formatting. 

The MLS Guide describes all the conventions and the type of currency formatting 
associated with each convention. 

You might want to print a report with the numeric and currency formats for the 
CostaRica conventions (for example, CRe 89.99), or for the Norway conventions (for 
example, NKR 89.99). 

Example 

Example 16-8 shows the parameter declarations and the PROCEDURE DIVISION 
syntax required to call the CNV _ CURRENCYEDIT _COB library procedure. The 
declarations identify the category of data-item required for parameter matching. For 
example, numeric items must be declared PIC 89(11) USAGE BINARY. 

In the explanation following the example, the parameters are explained using the names 
given to them in the example. In your program, choose parameter names that are 
appropriate for your use. 

This example converts a real number and edits monetary symbols from the Denmark 
convention into an EBCDIC string. 

8600 0296-000 



I nternationa I ization 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FI LE-CONTROL. 

SELECT OUTPUT-FILE ASSIGN TO DISK. 

DATA DIVISION. 
FILE SECTION. 
FD OUTPUT-FILE 

LABEL RECORD IS STANDARD 
VALUE OF TITLE IS "OUT/COBOL74/CNVCUREDITCOB." 
PROTECTION SAVE 
RECORD CONTAINS 80 CHARACTERS 
DATA RECORD IS OUTPUT-RECORD. 

01 OUTPUT-RECORD PIC X(80). 

WORKING-STORAGE SECTION. 

01 OF-l. 
05 FILLER 
05 OF-RESULT 
05 FILLER 

PIC X(09) VALUE "RESULT = " 
PIC ZZZZZZZZZZZ9. 
PIC X(59) VALUE SPACE. 

01 OF-2. 
05 FILLER 
05 OF-CE-ARY 
05 FILLER 

PIC X(09) VALUE "CE-ARY= " 
PIC X(30). 
PIC X(41) VALUE SPACE. 

***************************.*************************************** 
*** The following global declarations are used as parameters *** 
*** to the CENTRALSUPPORT procedures. *** 
****************************************************************** 

01 CE-ARY PIC X(30). 
01 CNV-NAME PIC X(l7}. 

77 AMT REAL. 
77 CS-DATAOKV PIC S9(11) 
77 CS-FALSEV PIC S9 (11) 
77 RESULT PIC S9(11) 

PROCEDURE DIVISION. 
INTLCOBOL74. 

OPEN OUTPUT OUTPUT-FILE. 
PERFORM CNV-CURRENCYEDIT-COB. 
CLOSE OUTPUT-FILE. 
STOP RUN. 

USAGE BINARY VALUE l. 
USAGE BINARY VALUE 0. 
USAGE BINARY. 

***** CNV-CURRENCYEDIT-COB *************************************** 
CNV-CURRENCYEDIT-COB. 

CHANGE ATTRIBUTE LIBACCESS OF "CENTRALSUPPORT" TO BYFUNCTION. 

Example 16-8. Calling the CNV_CUR~ENCYEDIT_COB Procedure 

8600 0296-000 16-45 



I nternationa lization 

16-46 

MOVE 12345.67 TO AMT. 
MOVE "Denmark" TO CNV-NAME. 
CALL "CNV_CURRENCYEDIT_COB OF CENTRALSUPPORT II 

, 

USING AMT, 
CNV-NAME, 
CE-ARY' 

GIVING RESULT. 
MOVE RESULT TO OF-RESULT. 
WRITE OUTPUT-RECORD FROM OF-I. 
IF RESULT IS EQUAL TO CS-DATAOKV 

THEN MOVE CE-ARY TO OF-CE-ARY 
WRITE OUTPUT-RECORD FROM OF-2. 

Example 16-8. Calling the CNV_CURRENCYEDIT_COB Procedure (cont.) 

Explanation 

AMT is a real number passed to the procedure. It contains the monetary value to be 
formatted. 

CNV-NAME is passed to the procedure. It contains the name of the convention to be 
used to format the monetary value. If this parameter contains all blanks or zeros, the 
procedure will use the hierarchy to determine the convention to be used. Refer to the 
MLS Guide for the list of convention names and the explanation of the hierarchy. 

CE-ARY is returned by the procedure. It contains the formatted monetary value. The 
recommended size of the formatted amount is 20 characters. 

RESULT is returned as the value of the procedure. It indicates whether an error 
occurred during the execution of the procedure. Values greater than or equal to 1000 
indicate an error. An explanation of the error result values can be found at the end of 
this section. You should check the procedure result whenever you use this procedure. 
Possible values returned by CNV _ CURRENCYEDIT _COB are as follows: 

1 

1001 

1002 

2002 

3000 

3002 

Sample output from Example 16-8 follows: 

RESULT = 1 
CE-ARY = Kr.12 345,67 

See Also 

For more information on the error result values, see Table 16-2 later in this section. 

8600 0296-000 



Internationalization 

CNV DISPLAYMODEL COB - -
This procedure returns either a numeric date or numeric time display model. A display 
model is a format that you can display to the user to show the form of the requested 
input. For example, YYDDMM is a display model that shows a user that the date must 
be entered in that form. The procedure creates the display model according to the 
convention and language that you specify. 

Example 

Example 16-9 shows the parameter declarations and the PROCEDURE DMSION 
syntax required to call the CNV _ DISPLAYMODEL _COB library procedure. The 
declarations identify the category of data-item required for parameter matching. For 
example, numeric items must be declared PIC S9(11) USAGE BINARY. 

In the explanation following the example, the parameters are explained using the names 
given to them in the example. In your program, choose parameter names that are 
appropriate for your use. 

This example obtains a date display model from the ASeriesNative convention. The 
display model is translated to English and returned in DM -ARY. 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FI LE-CONTROL. 

SELECT OUTPUT-FILE ASSIGN TO DISK. 

DATA DIVISION. 
FILE SECTION. 
FD OUTPUT-FILE 

LABEL RECORD IS STANDARD 
VALUE OF TITLE IS "OUT/COBOL74/CNVDSPMODELCOB. 1I 

PROTECTION SAVE 

01 

RECORD CONTAINS 80 CHARACTERS 
DATA RECORD IS OUTPUT-RECORD. 

OUTPUT-RECORD PIC X(80). 

WORKING-STORAGE SECTION. 

01 OF-I. 
05 FILLER PIC X(09) VALUE IIRESULT = II 
05 OF-RESULT PIC ZZZZZZZZZZZ9. 
05 FILLER PIC X (59) VALUE SPACE. 

01 OF-2. 
05 FILLER PIC X(09) VALUE IIDM-ARY = II 
05 OF-DM-ARY PIC X(10). 
05 FILLER PIC X(61) VALUE SPACE. 

. 

Example 16-9. Calling the CNV_DISPLAYMODEL_COB Procedure 

8600 0296-000 16-47 



I nternationa I ization 

16-48 

****************************************************************** 
*** The following global declarations are used as parameters *** 
*** to the CENTRALSUPPORT procedures. *** 
****************************************************************** 

01 CNV-NAME 
01 DM-ARY 
01 LANG-NAME 

PIC X(17). 
PIC X(10). 
PIC X(17). 

77 CS-DATAOKV PIC S9(11) 
77 CS-DATE-DISPLAYMODEL PIC S9(11) 
77 CS-FALSEV PIC S9(11) 
77 RESULT PIC S9(11) 

PROCEDURE DIVISION. 
INTLCOBOL74. 

OPEN OUTPUT OUTPUT-FILE. 
PERFORM CNV-DISPLAYMODEL-COB. 
CLOSE OUTPUT-FILE. 
STOP RUN. 

USAGE BINARY 
USAGE BINARY 
USAGE BINARY 
USAGE BINARY. 

VALUE 1. 
VALUE 0. 
VALUE 0. 

***** CNV-DISPLAYMODEL-COB *************************************** 
CNV-DISPLAYMODEL-COB. 

CHANGE ATTRIBUTE LIBACCESS OF "CENTRALSUPPORT" TO BYFUNCTION. 
MOVE "ASERIESNATIVE" TO CNV-NAME. 
MOVE "ENGLISH" TO LANG-NAME. 
CALL "CNV_DISPLAYMODEL_COB OF CENTRALSUPPORT" 

USING CS-DATE-DISPLAYMODEL, 
CNV-NAME, 
LANG-NAME, 
DM-ARY 

GIVING RESULT. 
MOVE RESULT TO OF-RESULT. 
WRITE OUTPUT-RECORD FROM OF-I. 
IF RESULT IS EQUAL TO CS-DATAOKV 

THEN MOVE DM-ARY TO OF-DM-ARY 
WRITE OUTPUT-RECORD FROM OF-2. 

Example 16-9. Calling the CNV _DISPLAYMODEL_COB Procedure (cont.) 

8600 0296-000 



I nternationa lization 

Explanation 

CS-DATE-DISPLAYMODEL is an integer passed to the procedure. It indicates whether 
you want the display model to be a numeric date or a numeric time. 

Value 

o 

1 

Sample Data Item 

CS-DATE
DISPLAYMODEL 

CS-TIME
DISPLAYMODEL 

Meaning 

The display model will be a numeric date. 

The display model will be a numeric time. 

CNV-NAME is passed to the procedure. It contains the name of the convention from 
which the date or time model is retrieved If this parameter contains all blanks or zeros, 
the procedure will use the hierarchy to determine the convention to be used. Refer to 
the MLS Guide for the list of convention names and the explanation of the hierarchy. 

LANG-NAME is passed to the procedure. It contains the name of the language in which 
the date or time components are to be displayed. If this parameter contains all blanks 
or zeros, the procedure uses the hierarchy to determine the language to be used. Refer 
to the MLS Guide for information about determining the valid language names on your 
system and the explanation of the hierarchy. 

DM-ARY is returned by the procedure. It contains the display model. The 
recommended size of the display model is 10 characters. . 

RESULT is returned as the value of the procedure. It indicates whether an error 
occurred during the execution of the procedure. Values greater than or equal to 1000 
indicate an error. An explanation of the error result values can be found at the end of 
this section. You should check the procedure result whenever you use this procedure. 
Possible values returned by CNV _ DISPLAYMODEL _COB are as follows: 

1 

1001 

1002 

2001 

2002 

3000 

Sample output from Example 16-9 follows: 

RESULT = 1 
DM-ARY = mm/dd/yyyy 

See Also 

3001 

3002 

3006 

For more information on the error result values, see Table 16-2 later in this section. 

8600 0296-000 16-49 



I nternationa lization 

CNV FORMATDATETMP COB 

16-50 

This procedure formats a date according to a template. You specify the template, date 
value, and language in which the date is to be displayed. The procedure then returns 
the formatted date. The template may be retrieved for any convention from the 
CNV _ TEMPLATE ~ COB procedure or may be created by the user. . 

Example 

Example 16-10 shows the parameter declarations and the PROCEDURE DIVISION 
syntax required to call the CNV _ FORMATDATETMP _COB library procedure. The 
declarations identify the category of data-item required for parameter matching .. For 
example, numeric items must be declared PIC S9(11) USAGE BINARY. 

In the explanation following the example, the parameters are explained using the names 
given to them in the example. In your program, choose parameter names that are 
appropriate for your use. 

This example formats a date using a template provided by the calling program. The 
formatted date is translated to English and returned in FD-ARY. The date consists of an 
unabridged day of week name, abbreviated month name, numeric day of month, day of 
month suffix "rd," and numeric year. 

8600 0296-000 



IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT OUTPUT-FILE ASSIGN TO DISK. 

DATA DIVISION. 
FILE SECTION. 
FD OUTPUT-FILE 

LABEL RECORD IS STANDARD 
VALUE OF TITLE IS "OUT/COBOL74/CNVFMTDATETMPCOB." 
PROTECTION SAVE 
RECORD CONTAINS 80 CHARACTERS 
DATA RECORD IS OUTPUT-RECORD. 

01 OUTPUT-RECORD 

WORKING-STORAGE SECTION. 

01 OF-I. 
05 FILLER 
05 OF-RESULT 
05 FILLER 

01 OF-2. 
05 FILLER 
05 OF-FD-ARY 
05 FILLER 

PIC X(80). 

PIC X(09) VALUE "RESULT = " 
PIC ZZZZZZZZZZZ9. 
PIC X(59) VALUE SPACE. 

PIC X(09) VALUE "FD-ARY = " 
PIC X(45). 
PIC X(26) VALUE SPACE. 

I nternationa lization 

****************************************************************** 
*** The following global declarations are used as parameters *** 
*** to the CENTRALSUPPORT procedures. *** 
****************************************************************** 

01 DATE-ARY PIC X(08). 
01 FD-ARY PIC X(45). 
01 LANG-NAME PIC X (17) • 
01 TMP-ARY PIC X(48). 

77 CS-DATAOKV PIC S9(11) 
77 CS-FALSEV PIC S9(11) 
77 RESULT PIC S9(11) 

PROCEDURE DIVISION. 
INTLCOBOL74. 

OPEN OUTPUT OUTPUT-FILE. 
PERFORM CNV-FORMATDATETMP-COB. 
CLOSE OUTPUT-FILE. 
STOP RUN. 

USAGE BINARY VALUE 1. 
USAGE BINARY VALUE 0. 
USAGE BINARY. 

***** CNV-FORMATDATETMP-COB ************************************** 
CNV-FORMATDATETMP-COB. 

Example 16-10. Calling the CNV _FORMATDATETMP _COB Procedure 

8600 0296-000 



I nternationa I ization 

16-52 

CHANGE ATTRIBUTE LIBACCESS OF "CENTRALSUPPORT" TO BYFUNCTION. 
MOVE 1119901003" TO DATE-ARY. 
MOVE II! W!, !1N 1. ! DE!, ! Y ! II TO TMP-ARY. 
MOVE II ENGLISH" TO LANG-NAME. 
CALL "CNV_FORMATDATETMP_COB OF CENTRALSUPPORT" 

USING DATE-ARY, 
TMP-ARY, 
LANG-NAME, 
FD-ARY 

GIVING RESULT. 
MOVE RESULT TO OF-RESULT. 
WRITE 'OUTPUT -RECORD FROM OF-1. 
IF RESULT IS EQUAL TO CS-DATAOKV 

THEN MOVE FD-ARY TO OF-FD-ARY 
WRITE OUTPUT-RECORD FROM OF-2. 

Example 16-10. Calling the CNV_FORMATDATETMP _COB Procedure (cont.) 

Explanation 

DATE-ARY is passed into the procedure. It contains the date to be formatted. The date 
must be in the form YYYYMMDD. The fields of the record have fixed positions. You 
must use blanks or zeros in any fields that you omit. 

TMP-ARYis passed into the procedure. It contains the template used to format the 
date. The recommended size of a template is 48 characters. The template must use the 
control characters described in the MLS Guide. 

LANG-NAME is passed into the procedure. It contains the name of the language to be 
used in formatting the date. If this parameter contains all blanks or zeros, the procedure 
uses the hierarchy to determine the language to be used. Refer to the MLS Guide for 
information about determining the valid language names on your system. 

FD-ARY is returned by the procedure. It contains the formatted date. The 
recommended size of the formatted date is 45 characters. 

RESULT is returned as the value of the procedure. It indicates whether an error 
occurred during the execution of the procedure. Values greater than or equal to 1000 
indicate an error. An explanation of the error result values can be found at the end of 
this section. You should check the procedure result whenever you use this procedure. 
Possible values returned by CNV FORMATDATETMP COB are as follows: - -

1 

1001 

1002 

2001 

2003 

3000 

3001 

3002 

3011 

3012 

3030 

8600 0296-000 



I nternationa Iization 

Sample output from Example 16-10 follows: 

RESULT = 1 
FD-ARY = Wednesday, Oct. 3rd, 1990 

See Also 

For more information on the error result values, see Table 16-2 later in this section. 

CNV FORMATDATE COB 

This procedure receives a date and formats it in the form you select according to the 
convention and language you specify. 

You might use this procedure to output a date according to the Greek long-date format 
and Greek language, for example. 

Example 

Example 16-11 shows the parameter declarations and the PROCEDURE DMSION 
syntax required to call the CNV _ FORMATDATE _ COB'library procedure .. The 
declarations identify the category of data-item required for parameter matching. For 
example, numeric items must be declared PIC S9(11) USAGE BINARY. 

In the explanation following the example, the parameters are explained using the names 
given to them in'the example. In your program, choose parameter names that are 
appropriate for your use. 

This example formats the date in numeric form using the Netherlands convention. The 
English language is specified. 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FI LE-CONTROL. 

SELECT OUTPUT-FILE ASSIGN TO DISK. 

DATA DIVISION. 
FILE SECTION. 
FD OUTPUT-FILE 

LABEL RECORD IS STANDARD 
VALUE OF TITLE IS 1I0UT/COBOL74/CNVFMTDATECOB. 1I 

PROTECTION SAVE 
RECORD CONTAINS 80 CHARACTERS 
DATA RECORD IS OUTPUT-RECORD. 

01 OUTPUT-RECORD PIC X(80). 

WORKING-STORAGE SECTION. 

Example 16-11. Calling the CNV_FORMATDATE_COB Procedure 

8600 0296-000 16-53 



I nternationa I ization 

16-54 

01 OF-1. 
05 FILLER 
05 OF-RESULT 
05 <FILLER 

PIC X(09) VALUE "RESULT = " 
PIC ZZZZZZZZZZZ9. 
PIC X(59) VALUE SPACE. 

01 OF-2. 
05 FILLER 
05 OF-FD-ARY 
05 FILLER 

PIC X(09) VALUE "FD-ARY = " 
PIC X (10) • 
PIC X(61) VALUE SPACE. 

****************************************************************** 
*** The following global declarations are used as parameters *** 
*** to the CENTRALSUPPORT procedures. *** 
****************************************************************** 

. 01 CNV-NAME PIC X (17) • 
01 DATE-ARY PIC X(0S). 
01 FD-ARY PIC X(10). 
01 LANG-NAME PIC X (17) • 

77 CS-DATAOKV PIC S9 (11) USAGE BINARY VALUE 1. 
77 CS-FALSEV PIC S9 (11) USAGE BINARY VALUE 0. 
77 CS-NDATEV PIC S9 (11) USAGE BINARY VALUE 2. 
77 RESULT PIC S9 (11) USAGE BINARY. 

PROCEDURE DIVISION. 
INTLCOBOL74. 

OPEN OUTPUT OUTPUT-FILE. 
PERFORM CNV-FORMATDATE-COB. 
CLOSE OUTPUT-FILE. 
STOP RUN. 

***** CNV-FORMATDATE-COB ***************************************** 
CNV-FORMATDATE-COB. 

CHANGE ATTRIBUTE LIBACCESS OF "CENTRALSUPPORT" TO BYFUNCTION. 
MOVE 111776070411 TO DATE-ARY. 
MOVE IINetherlands ll TO CNV-NAME. 
MOVE II ENGLISH II TO LANG-NAME. 
CALL IICNV_FORMATDATE_COB OF CENTRALSUPPORT II 

USING CS-NDATEV, 
DATE-ARY, 
CNV-NAME, 
LANG-NAME, 
FD-ARY 

GIVING RESULT. 
MOVE RESULT TO OF-RESULT. 
WRITE OUTPUT-RECORD FROM OF-1. 
IF RESULT IS EQUAL TO CS-DATAOKV 

THEN MOVE FD-ARY TO OF-FD-ARY 
WRITE OUTPUT-RECORD FROM OF~2. 

Example 16-11. Calling the CNV_FORMATDATE_COB Procedure (cont.) 

8600 0296-000 



I nternationa lization 

Explanation 

CS-NDATEV is an integer passed by reference to the procedure. It indicates which of 
the following three formats will be used to format the date: 

Value 

o 

1 

2 

Sample Data Item 

LONG-OATE-V 

SHORT-DATE-V 

NUMERIC-DATE-V 

Meaning 

Use the long date format. 

Use the short date format. 

Use the numeric date format. 

DATE~ARY is passed to the procedure. It contains the date to be formatted. The date 
must be in the form YYYYMMDD, left justified. The fields of the array have fixed 
positions. You must use blanks or zeros in any fields that you omit. 

CNV-NAME is passed to the procedure. It contains the name of the convention to be 
used to format the date value. If this parameter contains all blanks or 17 character 
zeros, the procedure uses the hierarchy to determine the convention to be used. Refer 
to the MLS Guide for the list of convention names and the explanation of the hierarchy. 

LANG-NAME is passed to the procedure. It contains the language to be used in 
formatting the date. If this parameter contains all blanks or 17 character zeros, the 
procedure uses the hierarchy to determine the language to be used. Refer to the MLS 
Guide for information about determining the valid language names on your system and 
the explanation of the hierarchy. 

FD-ARY is returned by the procedure. It contains the formatted date. The 
recommended length of a formatted date is 45 characters. 

RESULT is returned as the value of the procedure. It indicates whether an error 
occurred during the execution of the procedure. Values greater than or equal to 1000 
indicate an error. An explanation of the error result values can be found at the end of 
this section. You should check the procedure result whenever you use this procedure. 
Possible values returned by CNV _ FORMATDATE _ COB are as follows: 

1 2002 3002 

2 2003 3006 

1001 

2001 

3000 

3001 

Sample output from Example 16-11 follows: 

RESULT = 1 . 
FD-ARY = 4.7.76 

See Also 

3012 

For more information on the error result values, see Table 16-2 later in this section. 

8600 0296-000 16-55 



I nternationa I ization 

CNV FORMATTIMETMP COB 

16-56 

This procedure formats a time according to a template. You specify the template, 
time value, and language in which the time is to be displayed. The procedure then 
returns the formatted time. The template may be retrieved for any convention from the 
CNV _ TEMPLATE_COB procedure or may be created by the user. 

With this procedure, if the time template is !Ot!:!Om!:Os!, the language is English, and the 
input time is 1255016256, the numeric time is formatted as 12:55:01. 

Example 

Example 16-12 shows the parameter declarations and the PROCEDURE DIVISION 
syntax required to. call the CNV _ FORMATTIMETMP _COB library procedure. The 
declarations identify the category of data-item required for parameter matching. For 
example, numeric items must be declared PIC S9(11) USAGE BINARY. 

In the explanation following the example, the parameters are explained using the names 
given to them in the example. In your program, choose parameter names that are 
appropriate for your use. 

This example formats a caller-supplied time using a template also passed in by the 
calling program. Alphabetic time components are translated to English and returned in 
FT-ARY. 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FI LE-CONTROL. 

SELECT OUTPUT-FILE ASSIGN TO DISK. 

DATA DIVISION. 
FILE SECTION. 
FD OUTPUT-FILE 

LABEL RECORD IS STANDARD 
VALUE OF TITLE IS IOUT/COBOL74/CNVFMTTIMETMPCOB." 
PROTECTION SAVE 
RECORD CONTAINS 80 CHARACTERS 
DATA RECORD IS OUTPUT-RECORD. 

01 OUTPUT-RECORD 

WORKING-STORAGE SECTION. 

01 OF-I. 
05 FILLER 
05 OF-RESULT 
05 FILLER 

01 OF-2. 
05 FILLER 
05 OF-FT -ARY 

PIC X(80). 

PIC X(09) VALUE "RESULT = ". 
PIC ZZZZZZZZZZZ9. 
PIC X(59) VALUE SPACE. 

PIC X(13) VALUE "FT:'ARY = ". 

PIC X(30). 

Example 16-12. Calling the CNV_FORMATTIMETMP _COB Procedure 

8600 0296-000 



I nternationa I ization 

05 FILLER PIC X(37) VALUE SPACE. 

****************************************************************** 
*** . The following global declarations are used as parameters *** 
*** to the CENTRALSUPPORT procedures. *** 
****************************************************************** 

01 FT-ARY PIC X(30). 
01 LANG-NAME PIC X(17). 
01 TIME-ARY PIC X(10). 
01 TMP-ARY PIC X(48). 

77 CS-DATA.oKV PIC S9(11) 
77 CS-FALSEV PIC S9 (11) 
77 RESULT PIC S9 (11) 

PR.oCEDURE DIVISI.oN. 
INTLC.oB.oL74 • 

.oPEN .oUTPUT .oUTPUT-FILE. 
PERF.oRM CNV-F.oRMATTIMETMP-C.oB. 
CL.oSE .oUTPUT-FILE. 
ST.oP RUN. 

USAGE BINARY VALUE 1. 
USAGE BINARY VALUE 0. 
USAGE BINARY. 

***** CNV-F.oRMATTIMETMP-C.oB ************************************** 
CNV-F.oRMATTIMETMP-C.oB. 

CHANGE ATTRIBUTE LIBACCESS .oF ICENTRALSUPP.oRT" T.o BYFUNCTI.oN. 
M.oVE "114958" T.o TIME-ARY. 
M.oVE "!T! !I! !M! !K! IS! !R!" T.o TMP-ARY. 
M.oVE "ENGLISH" T.o LANG-NAME. 
CALL "CNV_F.oRMATTIMETMP_C.oB .oF CENTRALSUPP.oRT" 

USING TIME-ARY, 
TMP-ARY, 
LANG-NAME, 
FT -ARY 

GIVING RESULT. 
M.oVE RESULT T.o .oF-RESULT. 
WRITE .oUTPUT-REC.oRD FR.oM .oF-I. 
IF RESULT IS EQUAL T.o CS-DATA.oKV 

THEN M.oVE FT-ARY T.o .oF-FT-ARY 
WRITE .oUTPUT-REC.oRD FR.oM .oF-2. 

Example 16-12. Calling the CNV_FORMATTIMETMP _COB Procedure (cont.) 

Explanation 

TIME-ARY is passed to the procedure. You specify the time to be formatted in the form 
HHMMSSPPPP. The partial seconds field, PPPp, is optional. The fields of the array have 
fixed positions. You must use b~ or zeros in any 'fields that you omit. 

86000296-000 16-57 



Internationa Iization 

TMP-ARY is passed to the procedure. You specify the template to be used to format the 
time in this parameter. The recommended length of a template is 48 characters. Refer 
to the MLS Guide for information about creating a template. 

LANG-NAME is passed to the procedure. You specify the language to be used in 
formatting the time in·this parameter. If this parameter contains all blanks or zeros, the 
procedure uses the hierarchy to determine the language to be used. Refer to the MLS 
Guide for information about determining the valid language names on your system and 
the explanation of the hierarchy. 

FT-ARY is returned by the procedure. It contains the time value formatted according 
to the template and language you designated. The recommended length of a formatted 
time is 45 characters. 

RESULT is returned as the value of the procedure. It indicates whether an error 
occurred during the execution of the procedure. Values greater than or equal to 1000 
indicate an error. An explanation of the error result values can be found at the end of 
this section. You should check the procedure result whenever you use this procedure. 
Possible values returned by CNV _ FORMATTIMETMP _COB are as follows: 

1 2003 3011 

1001 3000 3013 

1002 

2001 

3001 

3002 

Sample output from Example 16-12 follows: 

RESULT = 
FT-ARY = 

See Also 

1 
11 hours 49 minutes 58 seconds 

3030 

For more information on the error result values, see Table 16-2 later in this section. 

CNV FORMATTIME COB 

16-58 

This procedure formats a user-supplied time according to the convention, language, and 
type of time that you specify. 

Example 

Example 16-13 shows the parameter declarations and the PROCEDURE DIVISION 
syntax required to call the CNV _ FORMATTIME _COB library procedure. The 
declarations identify the category of data-item required for parameter matching. For 
example, numeric items must be declared PIC S9(11) USAGE BINARY. 

In the explanation following the example, the parameters are explained using the names 
given to them in the example. In your program, choose parameter names·that are 
appropriate for your use. 

8600 0296-000 



I nternationa lization 

This example formats the time in numeric form using the Belgium convention. The 
formatted time is returned in FT -ARY. 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FI LE-CONTROL. 

SELECT OUTPUT-FILE ASSIGN TO DISK. 

DATA DIVISION. 
FILE SECTION. 
FD OUTPUT-FILE 

LABEL RECORD IS STANDARD 
VALUE OF TITLE IS "0UT/COBOL74/CNVFMTTIMECOB. 1I 

PROTECTION SAVE 
RECORD CONTAINS 80 CHARACTERS 
DATA RECORD IS OUTPUT-RECORD. 

01 OUTPUT-RECORD PIC X(80). 

WORKING-STORAGE SECTION. 

01 OF-l. 
05 FILLER PIC X (09) VALUE IIRESULT = II 
05 OF-RESULT PIC ZZZZZZZZZZZ9. 
05 FILLER PIC X(59) VALUE SPACE. 

01 OF-2. 
05 FILLER PIC X(09) VALUE IIFT-ARY = II 
05 OF-FT -ARY PIC X(30). 
05 FILLER PIC X(41) VALUE SPACE. 

****************************************************************** 
*** The following global declarations are used as parameters *** 
*** to the CENTRALSUPPORT procedures. *** 
****************************************************************** 

01 CNV-NAME PIC X (17) • 
01 FT -ARY PIC X(30). 
01 LANG-NAME PIC X (17) • 
01 TIME-ARY PIC X (10) • 

77 CS-DATAOKV PIC S9(11) 
77 CS-FALSEV PICS9(11) 
77 CS-NTIMEV PIC S9(11) 
77 RESULT PIC S9(11) 

PROCEDURE DIVISION. 
INTLCOBOL74. 

OPEN OUTPUT OUTPUT-FILE. 
PERFORM CNV-FORMATTIME-COB. 
CLOSE OUTPUT-FILE. 

USAGE BINARY VALUE 1. 
USAGE BINARY VALUE 0. 
USAGE BINARY VALUE 4. 
USAGE BINARY. 

Example 16-13. Calling the CNV_FORMATTIME_COB Procedure 

8600 0296-000 16-59 



I nternationa lization 

16-60 

STOP RUN. 

***** CNV-FORMATTIME-COB ***************************************** 
CNV-FORMATTIME-COB. 

CHANGE ATTRIBUTE LIBACCESS OF "CENTRALSUPPORT" TO BYFUNCTION. 
MOVE "114958" TO TIME-ARY. 
MOVE "Belgium" TO CNV-NAME. 
MOVE "ENGLISH" TO LANG-NAME. 
CALL "CNV_FORMATTIME_COB OF CENTRALSUPPORT" 

USING CS-NTIMEV, 
TIME-ARY, 
CNV-NAME, 
LANG-NAME, 
FT -ARY 

GIVING RESULT. 
MOVE RESULT TO OF-RESULT. 
WRITE OUTPUT-RECORD FROM OF-I. 
IF RESULT IS EQUAL TO CS-DATAOKV 

THEN MOVE FT-ARY TO OF-FT-ARY 
WRITE OUTPUT-RECORD FROM OF-2. 

Example 16-13. Calling the CNV_FORMATTIME_COB Procedure (cont.) 

Explanation 

CS-NTIMEV is passed by reference to the procedure. It indicates which of the following 
two formats will be used to edit the time: 

Value 

3 

4 

Sample Data Item 

LONG-TIME-V 

NUMERIC-TIME-V 

Meaning 

Use the long time format. 

Use the numeric time format. 

TIME-ARY'is passed to the procedure. It contains the time to be formatted in the form 
HHMMSSPPPp, left justified. The partial seconds field, PPPp, is optional. The fields of 
the record have fixed positions. You must use blanks or zeros in any fields that you omit. 

CNV-NAME is passed to the procedure. It contains the name of the convention to be 
used to edit the time value. If this parameter contains all blanks or zeros, the procedure 
will use the hierarchy to determine the convention to be used. IJ,efer to the MLS Guide 
for the list of convention names and the explanation of the hierarchy. 

LANG-NAME is passed into the procedure. It contains the language to be used in 
formatting the time. If this parameter contains all blanks or zeros, the procedure 
uses the hierarchy to determine the language to be used. Refer to the MLS Guide 
'for information about determining the valid language names on your system and the 
explanation of the hierarchy. 

FT-ARY is returned by the procedure. It contains the formatted time value. The 
recommended length of the formatted time is 45 characters. 

86000296-000 



Internationalization 

RESULT is returned as the value of the procedure. It indicates whether an error 
occurred during the execution of the procedure. Values greater than or equal to 1000 
indicate an error. An explanation of the error result values can be found at the end of 
this section. You should check the procedure result whenever you use this procedure. 
Possible values returned by CNV _ FORMATTIME _COB are as follows: 

1 

1001 

1002 

2001 

2002 

2003 

3000 

3001 

Sample output from Example 16-13 follows: 

RESULT = 1 
FT-ARY = 11:49:58 

See Also 

3002 

3006 

3011 

3013 

For more information on the error result values, see Table 16-2 later in this section. 

CNV FORMSIZE 

This procedure returns the default lines-per-page and default characters-per-line values 
from the specified convention. Each convention provides these values to be used with 
printed output. 

Example 

Example 16-14 shows the parameter declarations and the PROCEDURE DIVISION 
syntax required to call the CNV _ FORMSIZE library procedure. The declarations 
identify the category of data-item required for parameter matching. For example, 
numeric items must be declared PIC S9(11) USAGE BINARY. 

In the explanation following the example, the parameters are explained using the names 
given to them in the example. In your program, choose parameter names that are 
appropriate for your use. 

This example obtains paper dimensions (lines per page and characters per line) from the 
Denmark convention. 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT OUTPUT-FILE ASSIGN TO DISK. 

DATA DIVISION. 
FILE SECTION. 
FD OUTPUT-FILE 

Example 16-14. Calling the CNV_FORMSIZE Procedure 

8600 0296-000 16-61 



I nternationa I ization 

16-62 

LABEL RECORD IS STANDARD 
VALUE OF TITLE IS IOUT/COBOL74/CNVFORMSIZE." 
PROTECTION SAVE 
RECORD CONTAINS 80 CHARACTERS 
DATA RECORD IS OUTPUT-RECORD. 

01 OUTPUT-RECORD PIC X(80). 

WORKING-STORAGE SECTION. 

01 OF-1~ 

05 FILLER PIC X (22) 
= II VALUE II RESULT 

05 OF-RESULT PIC ZZZZZZZZZZZ9. 
05 FILLER PIC X(46) VALUE SPACE. 

01 OF-2. 
05 FILLER PIC X(22) 

VALUE "Lines per Page = ". 
05 OF-LPP PIC ZZZZZZZZZZZ9. 
05 FILLER PIC X(46) VALUE SPACE. 

01 OF-3. 
05 FILLER PIC X (22) 

VALUE "Characters per Line = II 
05 OF-CPL PIC ZZZZZZZZZZZ9. 
05 FILLER PIC X(46) VALUE SPACE. 

****************************************************************** 
*** The following global declarations are used as parameters *** 
*** to the CENTRALSUPPORT procedures. *** 
****************************************************************** 

01 CNV-NAME PIC X (17) • 

77 CPL PIC S9 (11) 
77 CS-DATAOKV PIC S9(11) 
77 CS-FALSEV PIC S9(11) 
77 LPP PIC S9(11) 
77 RESULT PIC S9(11) 

PROCEDURE DIVISION. 
INTLCOBOL74. 

OPEN OUTPUT OUTPUT-FILE. 
PERFORM CNV-FORMSIZE. 
CLOSE OUTPUT-FILE. 
STOP RUN. 

USAGE BINARY. 
USAGE BINARY VALUE 1. 
USAGE BINARY VALUE 0. 
USAGE BINARY. 
USAGE BINARY. 

***** CNV-FORMSIZE *********************************************** 
CNV-FORMSIZE. 

CHANGE ATTRIBUTE LIBACCESS OF "CENTRALSUPPORT" TO BYFUNCTION. 
MOVE "Denmark" TO CNV-NAME. 
CALL "CNV_FORMSIZE OF CENTRALSUPPORT" 

Example 16-14~ Calling the CNV _FORMSIZE Procedure (cant.) 

8600 0296-000 



USING CNV-NAME, 
LPP, 
CPL 

GIVING RESULT. 
MOVE RESULT TO OF-RESULT. 
WRITE OUTPUT-RECORD FROM OF-I. 
IF RESULT IS EQUAL TO CS-DATAOKV 

THEN MOVE SPACE TO OUTPUT-RECORD 
MOVE LPP TO OF-LPP 
WRITE OUTPUT-RECORD FROM OF-2 
MOVE CPL TO OF-CPL 
WRITE OUTPUT-RECORD FROM OF-3. 

International ization 

Example 16-14 •. Calling the CNV_FORMSIZE Procedure (cont.) 

Explanation 

CNV-NAME is passed to the procedure. It contains the name of the convention to be 
used to specify the default printer form sizes. If this parameter contains all blanks or 
zeros, the procedure will use the hierarchy to determine the convention to be used. 
Refer to the MLS Guide for the list of convention names and the explanation of the 
hierarchy. 

CPL is returned by the procedure. It contains the default number of characters per line 
specified by the convention you referenced. 

LPP is returned by the procedure. It contains the default numbet of lines per page 
specified by the convention you referenced. 

RESULT is returned as the value of the procedure. It indicates whether an error 
occurred during the execution of the procedure. Values greater than or equal to 1000 
indicate an error. An explanation of the error result values can be found at the end of 
this se~tion. You should check the procedure result whenever you use this procedure. 
Possible values returned by CNV _ FORMSIZE are as follows: 

1 

1001 

1002 

2002 

Sample output from Example 16-14 follows: 

RESULT = 
Lines per Page = 
Characters per Line = 

See Also 

1 
70 
82 

3000 

For more information on the error result values, see Table 16-2 later in this section. 

8600 0296-000 16-63 



I nternationa lization 

CNV NAMES 

16-64 

This procedure returns a list of convention names and the total number of convention 
that are available on the system. The first name is the system default name. 

You might use this procedure to obtain the name of a convention to be used as input to 
another procedure. 

Example 

Example 16-15 shows the parameter declarations and the PROCEDURE DMSION 
syntax required to call the CNV _NAMES library procedure. The declarations identify 
the category of data-item required for parameter matching. For example, numeric items 
must be declared PIC S9(11) USAGE BINARY. 

In the explanation following the example, the parameters are explained using the names 
given to them in the example. In your program, choose parameter names that are 
appropriate for your use. 

This example obtains the names of conventions currently available on the system. Note 
that this is an arbitrary list that may differ from system to system. 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT OUTPUT-FILE ASSIGN TO DISK. 

DATA DIVISION. 
FILE SECTION. 
FD OUTPUT-FILE 

LABEL RECORD IS STANDARD 
VALUE OF TITLE IS "OUT/COBOL74/CNVNAMES." 
PROTECTION SAVE 
RECORD CONTAINS S0 CHARACTERS 
DATA RECORD IS OUTPUT-RECORD. 

01 OUTPUT-RECORD 

WORKING-STORAGE SECTION. 

01 OF-I. 
05 FILLER 
05 OF-RESULT 
05 FILLER 

01 OF-2. 

PIC X(SS). 

PIC X(09) VALUE "RESULT = II. 
PIC ZZZZZZZZZZZ9. 
PIC X(59) VALUE SPACE. 

05 FILLER 
05 FILLER 

01 OF-3. 

PIC X(16) VALUE IIConvention Names ll
• 

PIC X(64) VALUE SPACE. 

05 FILLER 
05 FILLER 

PIC X(16) VALUE ALL II_II. 
PIC X(64) VALUE SPACE. 

Example 16-15. Calling the CNV _NAMES Procedure 

8600 0296-000 



I nternationa lization 

01 OF-4. 
05 OF-NAMES-ELEM 
05 FILLER 

PIC X (17) • 
PIC X(63) VALUE SPACE. 

****************************************************************** 
*** The following global declarations are used as parameters *** 
*** to the CENTRALSUPPORT procedures. *** 
****************************************************************** 

01 NAMES-ARY. 
05 NAMES-ELEM 

77 CS-DATAOKV 
77 CS-FALSEV 
77 RESULT 
77 SUB 
77 TOTAL 

PROCEDURE DIVISION. 
INTLCOBOL74. 

PIC X (17) 

PIC S9(11) 
PIC S9(11) 
PIC S9(11) 
PIC S9(11) 
PIC S9(11) 

OPEN OUTPUT OUTPUT-FILE. 
PERFORM CNV-NAMES. 
CLOSE OUTPUT-FILE. 
STOP RUN. 

OCCURS 45 TIMES. 

USAGE BINARY VALUE 1-
USAGE BINARY VALUE 0. 
USAGE BINARY. 
USAGE BINARY. 
USAGE BINARY. 

***** CNV-NAMES ************************************************** 
CNV-NAMES. 

CHANGE ATTRIBUTE LIBACCESS OF "CENTRAlSUPPORT" TO BYFUNCTION. 
CALL "CNV NAMES OF CENTRALSUPPORT" 

USING TOTAL, 
NAMES-ARY 

GIVING RESULT. 
MOVE RESULT TO OF-RESULT. 
WRITE OUTPUT-RECORD FROM OF-1. 
IF RESULT IS EQUAL TO CS-DATAOKV 

THEN MOVE SPACE TO OUTPUT-RECORD 
WRITE OUTPUT-RECORD 
WRITE OUTPUT-RECORD FROM OF-2 
WRITE OUTPUT-RECORD FROM OF-3 
MOVE.1 TO SUB 
PERFORM DISPLAYNAMESARY UNTIL SUB IS GREATER THAN TOTAL. 

***** DISPLAYNAMESARY *****************************************~** 
DISPLAYNAMESARY. 

MOVE NAMES-ELEM(SUB) TO OF-NAMES-ELEM. 
WRITE OUTPUT-RECORD FROM OF-4. 
ADD 1 TO SUB. 

Example 16-15. Calling the CNV _NAMES Procedure (cont.) 

8600 0296-000 16-65 



I nternationa I ization 

16-66 

Explanation 

TOTAL is returned by the procedure. It contains the total number of conventions that 
reside on the system. 

NAMES-ARYis returned by the procedure. Each element of the record contains the 
name of a convention defined in the SYSTEM/CONVENTIONS file. Each name uses 
one element of NAMES-ARY. The record can hold up to 20 names. Each name can be up 
to 17 characters long and is left justified in the field. If there are less than 17 characters 
in the name, the field is filled on the right with blanks. 

RESULT is returned as the value of the procedure. It indicates whether an error 
occurred during the execution of the procedure. Values greater than or equal to 1000 
indicate an error. An explanation of the error result values can be found at the end of 
this section. You should check the procedure result whenever you use this procedure. 
Possible values returned by CNV _NAMES are as follows: 

1 1001 

Sample output from Example 16-15 follows: 

RESULT = 

Convention Names 

ASERIESNATIVE 
Netherlands 
Denmark 
UnitedKingdoml 
Turkey 
Norway 
Sweden 
Greece 
FranceLi sti ng 
FranceBureautique 
EuropeanStandard 
Belgium 
Spain 
Switzerland 
Zimbabwe 
Italy 
UnitedKingdom2 
KENYA 
NIGERIA 
SOUTHAFRICA 
CYRILLIC 
BRAZIL 
NEWZEALAND 
STNDYUGOSLAVIAN 
FRENCH CANADA 
ARGENTINA 
CHILE 

1 

3001 

8600 0296-000 



COLOMBIA 
COSTARICA 
MEXICO 
PERU 
VENEZUELA 
AUSTRALIA 
EGYPT 
ENG LI SHCANADA 
Japan1 
Japan2 

See Also 

I nternationa I ization 

For more information on the error result-values, see Table 16-2 later in this section. 

CNV SYMBOLS 

This procedure returns a list of numeric and monetary symbols defined for a specified 
convention. 

Example 

Example 16-16 shows the parameter declarations and the PROCEDURE DMSION 
syntax required to call the CNV _SYMBOLS library procedure. The declarations identify 
the category of data-item required for parameter matching. For example, numeric items 
must be declared PIC S9(11) USAGE BINARY. 

In the explanation following the example, the parameters are explained using the names 
given to them in the example. In your program, choose parameter names that are 
appropriate for your use. 

This example obtains monetary and numeric symbols, monetary and numeric grouping 
specifications, and international currency notation defined for the Norway convention. 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FI LE-CONTROL. 

SELECT OUTPUT-FILE ASSIGN TO DISK. 

DATA DIVISION. 
FILE SECTION. 
FD OUTPUT-FILE 

LABEL RECORD IS STANDARD 
VALUE OF TITLE IS IOUT/COBOL74/CNVSYMBOLS." 
PROTECTION SAVE 
RECORD CONTAINS 80 CHARACTERS 
DATA RECORD IS OUTPUT-RECORD. 

01 OUTPUT-RECORD PIC X(a0). 

Example 16-16. Calling the CNV_SYMBOLS Procedure 

8600 0296-000 16-67 



I nternationa I ization 

WORKING-STORAGE SECTION. 

01 OF-I. 
05 FILLER PIC X(09) VALUE "RESULT = ". 
05 OF-RESULT PIC ZZZZZZZZZZZ9. 
05 FILLER PIC X(59) VALUE SPACE. 

01 OF-2. 
05 FILLER PIC X(13) VALUE IIField Meaning". 
05 FILLER PIC X(22) VALUE SPACE. 
05 FILLER PIC X(14) VALUE IISymbols Length ll

• 

05 FILLER PIC X(03) VALUE SPACE. 
05 FILLER PIC X(18) VALUE IIConvention Symbols ll

• 

05 FILLER PIC X (10) VALUE SPACE. 
01 OF-3. 

05 FILLER PIC X(13) VALUE ALL II_II. 
05 FILLER PIC X(22) VALUE SPACE. 
05 FILLER PIC X(14) VALUE ALL II_II. 
05 FILLER PIC X(03) VALUE SPACE. 
05 FILLER PIC X (18) VALUE ALL II_II. 
05 FILLER PIC X(10) VALUE SPACE. 

01 DF-1. 
05 FILLER PIC X(32) 

VALUE IIInternational Currency Notation: lI
• 

05 FILLER PIC X(05) VALUE SPACE. 
05 DI-SYMLEN-ELEM PIC ZZZZZZZZZZZ9. 
05 FILLER PIC X(03) VALUE SPACE. 
05 D1-SYM-ELEM PIC X (12) • 
05 FILLER PIC X (16) VALUE SPACE. 

01 DF-2. 
05 FILLER PIC X(32) 

VALUE IINational Currency Notation: II 

05 FILLER PIC X(0S) VALUE SPACE. 
05 D2-SYMLEN-ELEM PIC ZZZZZZZZZZZ9. 
05 FILLER PIC X(03) VALUE SPACE. 
05 D2-SYM-ELEM PIC X (12) • 
05 FILLER PIC X (16) VALUE SPACE. 

01 DF-3. 
0S FILLER PIC X(32) 

VALUE "Monetary Thousands Separator: II 
05 FILLER PIC X(0S) . VALUE SPACE. 
05 D3-SYMLEN-ELEM PIC ZZZZZZZZZZZ9. 
05 FILLER PIC X(03) VALUE SPACE. 
0S D3-SYM-ELEM PIC X(12). 
05 FILLER PIC X (16) VALUE SPACE. 

01 DF-4. 
05 FILLER PIC X(32) 

VALUE "Monetary Decimal Symbol: II 
0S FILLER PIC X(0S) VALUE SPACE. 
05 D4-SYMLEN-ELEM PIC ZZZZZZZZZZZ9. 
05 FILLER PIC X(03) VALUE SPACE. 
05 D4-SYM-ELEM PIC X(12). 

Example 16-16. Calling the CNV SYMBOLS Procedure (cont.) 

16-68 8600 0296-000 



I nternationa I ization 

05 FILLER PIC X(16) VALUE SPACE. 
01 OF-5. 

05 FILLER PIC X(32) 
VALUE "Monetary Positive' Symbol: " 

05 FILLER PIC X(05) VALUE SPACE. 
05 05-SYMLEN-ELEM PIC ZZZZZZZZZZZ9. 
05 FILLER PIC X(03) VALUE SPACE. 
05 05-SYM-ELEM PIC X(12). 
05 FILLER PIC X(16) VALUE SPACE. 

01 OF-6. 
05 FILLER PIC X(32) 

VALUE "Monetary Negative Symbol: 
05 FILLER PIC X(05) VALUE SPACE. 
05 06-SYMLEN-ELEM PIC ZZZZZZZZZZZ9. 
05 FILLER PIC X(03) VALUE SPACE. 
05 06-SYM-ELEM PIC X(12). 
05 FILLER PIC X (16) VALUE SPACE. 

01 OF-7. 
05 FILLER PIC X(32) 

VALUE "Monetary Left Enclosure Symbol: II 
05 FILLER PIC X(05) VALUE SPACE. 
05 07-SYMLEN-ELEM PIC ZZZZZZZZZZZ9. 
05 FILLER PIC X(03) VALUE SPACE. 
05 07-SYM-ELEM PIC X(12). 
05 FILLER PIC X(16) VALUE SPACE. 

01 OF-8. 
05 FILLER PIC X(32) 

VALUE IIMonetary Right Enclosure Symbol: lI
• 

05 FILLER PIC X(05) VALUE SPACE. 
05 08-SYMLEN-ELEM PIC ZZZZZZZZZZZ9. 
05 FILLER PIC X(03) VALUE SPACE. 
05 08-SYM-ELEM PIC X(12). 
05 FILLER PIC X(16) VALUE SPACE. 

01 OF-9. 
05 FILLER. PIC X(32) 

VALUE IINumeric Thousands Separator: II 

05 FILLER PIC X(05) VALUE SPACE. 
05 09-SYMLEN-ELEM PIC ZZZZZZZZZZZ9. 
05 FILLER PIC X(03) VALUE SPACE. 
05 09-SYM-ELEM PIC X(12). 
05 FILLER PIC X(16) VALUE SPACE. 

01 OF-10. 
05 FILLER PIC X(32) 

VALUE "Numeric Decimal Symbol: " 
05 FILLER PIC X(05) VALUE SPACE. 
05 010-SYMLEN-ELEM PIC ZZZZZZZZZZZ9. 
05 FILLER PIC X(03) VALUE SPACE. 
05 010-SYM-ELEM PIC X(12). 
05 FILLER PIC X(16) VALUE SPACE. 

01 OF-II. 
05 FILLER PIC X(32) 

Example. 16-16. Calling the CNV_SYMBOLS Procedure (cont.) 

86000296-000 16-69 



I nternationa lization 

16-70 

VALUE "Numeric Positive Symbol: 
135 FILLER PIC X(05) VALUE SPACE. 
135 D11-SYMLEN-ELEM PIC ZZZZZZZZZZZ9. 
135 FILLER PIC X(03) VALUE SPACE. 
135 D11-SYM-ELEM PIC X(12). 
135 FILLER PIC X(16) VALUE SPACE. 

131 DF-12. 
135 FILLER PIC X(32) 

VALUE "Numeric Negative Symbol: 
135 FILLER PIC X(05) VALUE SPACE. 
135 D12-SYMLEN-ELEM PIC ZZZZZZZZZZZ9. 
135 FILLER PIC X(03) VALUE SPACE. 
135 D12-SYM-ELEM PIC X(12). 
135 FILLER PIC X(16) VALUE SPACE. 

131 DF-13. 
135 FILLER PIC X(32) 

VALUE "Numeric Left Enclosure Symbol: II 

135 FILLER 
135 D13-SYMLEN-ELEM 
135 FILLER 
135 DI3-SYM-ELEM 
135 FILLER 

PIC X(0S) VALUE SPACE. 
PIC ZZZZZZZZZZZ9. 
PIC X(03) VALUE SPACE. 
PIC X(12). 
PIC X(16) VALUE SPACE. 

131 DF-14. 
135 FILLER PIC X(32) 

VALUE "Numeric Right Enclosure Symbol: II 

135 FILLER PIC X(05) VALUE SPACE. 
135 DI4-SYMLEN-ELEM PIC ZZZZZZZZZZZ9. 
135 FILLER PIC X(03) VALUE SPACE. 
135 DI4-SYM-ELEM PIC X(12). 
135 FILLER PIC X(16) VALUE SPACE. 

01 OF-IS. 
135 FILLER PIC X(32) 

VALUE "Monetary Grouping Specification:lI. 
135 FILLER PIC X(0S) VALUE SPACE. 
135 DI5-SYMLEN-ELEM PIC ZZZZZZZZZZZ9. 
135 FILLER PIC X(03) VALUE SPACE. 
135 DI5-SYM-ELEM. 

113 DI5-SYM-l PIC X (12) • 
10 DI5-SYM-2 PIC X(12). 

135 FILLER PIC X(16) VALUE SPACE. 
131 DF-16. 

135 FILLER PIC X (32) 
VALUE "Numeric Grouping Specification: II 

135 FILLER PIC X(135) VALUE SPACE. 
135 016-SYMLEN-ELEM PIC ZZZZZZZZZZZ9. 
135 FILLER PIC X(03) VALUE SPACE. 
135 DI6-SYM-ELEM. 

113 DI6-SYM-l PIC X (12) . 
113 DI6-SYM-2 PIC X(12). 

135 FILLER PIC X(16) VALUE SPACE. 

Example 16-16. Calling the CNV_SYMBOLS Procedure (cont.) 

8600 0296-000 



Internationalization 

****************************************************************** 
*** The following global declarations are used as parameters *** 
*** to the CENTRALSUPPORT procedures. *** 
****************************************************************** 

01 CNV-NAME 
01 SYM-ARY. 

05 SYM-ELEM 
01 SYMLEN:"ARY 

05 SYMLEN-ELEM 

77 CS-DATAOKV 
77 CS-FALSEV 
77 MAX 
77 RESULT 
77 SUB 
77 TOTAL 

PROCEDURE DIVISION. 
INTLCOBOL74. 

PIC X(17}. 

PIC X(12) OCCURS 18 TIMES. 
USAGE BINARY. 

PIC S9 (11) OCCURS 17 TIMES. 

PIC S9(11) USAGE BINARY 
PIC S9 (11) USAGE BINARY 
PIC S9(11) USAGE BINARY 
PIC S9 (11) USAGE BINARY. 
PIC S9(11) USAGE BINARY. 
PIC S9 (11) USAGE BINARY. 

DISPLAY "*** INTL_COBOL74: CNV_SYMBOLS". 
OPEN OUTPUT OUTPUT-FILE. 
PERFORM CNV-SYMBOLS. 
CLOSE OUTPUT-FILE. 
STOP RUN. 

VALUE 1-
VALUE 0. 
VALUE 18. 

***** CNV-SYMBOLS ************************************************ 
CNV-SYMBOLS. 

CHANGE ATTRIBUTE LIBACCESS OF "CENTRALSUPPORT" TO BYFUNCTION. 
MOVE "Norway" TO CNV-NAME. 
CALL "CNV_SYMBOLS OF CENTRALSUPPORT" 

USING CNV-NAME, 
TOTAL, 
SYMLEN-ARY, 
SYM-ARY 

GIVING RESULT. 
MOVE RESULT TO OF-RESULT. 
WRITE OUTPUT-RECORD FROM OF-1. 
IF RESULT IS EQUAL TO CS-DATAOKV 

THEN MOVE SPACE TO OUTPUT-RECORD 
WRITE OUTPUT-RECORD 
WRITE OUTPUT-RECORD FROM OF-2 
WRITE OUTPUT-RECORD FROM OF-3 
MOVE 1· TO SUB 
PERFORM DISPLAYARY UNTIL SUB IS GREATER THAN MAX. 

***** DISPLAYARY ************************************************* 
DISPLAYARY. 

IF SUB IS EQUAL TO 1 
THEN MOVE SYMLEN-ELEM(SUB) TO D1-SYMLEN-ELEM 

MOVE SYM-ELEM(SUB) TO D1-SYM-ELEM 

Example 16-16. Calling the CNV_SYMBOLS Procedure (cont.) 

8600 0296-000 16-71 



International ization 

WRITE OUTPUT-RECORD FROM DF-1. 
IF SUB IS EQUAL TO 2 

THEN MOVE SYMLEN-ELEM(SUB) TO D2-SYMLEN-ELEM 
MOVE SYM-ELEM(SUB) TO D2-SYM-ELEM 
WRITE OUTPUT-RECORD FROM DF-2. 

IF SUB IS EQUAL TO 3 
THEN MOVE SYMLEN-ELEM(SUB) TO D3-SYMLEN-ELEM 

MOVE SYM-ELEM(SUE) TO D3-SYM-ELEM 
WRITE OUTPUT-RECORD FROM DF-3. 

IF SUB IS EQUAL TO 4 
~ THEN MOVE SYMLEN-ELEM(SUB) TO D4-SYMLEN-ELEM 

MOVE SYM-ELEM(SUB) TO D4-SYM-ELEM 
WRITE OUTPUT-RECORD FROM DF-4. 

IF SUB IS EQUAL TO S 
THEN MOVE SYMLEN-ELEM(SUB) TO DS-SYMLEN-ELEM 

MOVE SYM-ELEM(SUB) TO DS-SYM-ELEM 
WRITE OUTPUT-RECORD FROM DF-S. 

IF SUB IS EQUAL TO 6 
THEN MOVE SYMLEN-ELEM(SUB) TO D6-SYMLEN-ELEM 

MOVE SYM-ELEM(SUB) TO D6-SYM-ELEM 
WRITE OUTPUT-RECORD FROM DF-6. 

IF SUB IS EQUAL TO 7 
THEN MOVE SYMLEN-ELEM(SUB) TO D7-SYMLEN-ELEM 

MOVE SYM-ELEM(SUB) TO D7-SYM-ELEM 
WRITE OUTPUT-RECORD FROM DF-7. 

IF SUB IS EQUAL TO 8 
THEN MOVE SYMLEN-ELEM(SUB) TO D8-SYMLEN-ELEM 

MOVE SYM-ELEM(SUB) TO D8-SYM-ELEM 
WRITE OUTPUT-RECORD FROM DF-S. 

IF SUB IS EQUAL TO 9 
THEN MOVE SYMLEN-ELEM(SUB) TO D9-SYMLEN-ELEM 

MOVE SYM-ELEM(SUB) TO D9-SYM-ELEM 
WRITE OUTPUT-RECORD FROM DF-9. 

IF SUB IS EQUAL TO 10 
THEN MOVE SYMLEN-ELEM(SUB) TO D10-SYMLEN-ELEM 

MOVE SYM-ELEM(SUB) TO D10-SYM-ELEM 
WRITE OUTPUT-RECORD FROM DF-10. 

IF SUB IS EQUAL TO 11 
THEN MOVE SYMLEN-ELEM(SUB) TO Dll-SY~LEN-ELEM 

MOVE SYM-ELEM(SUB) TO Dll-SYM-ELEM 
WRITE OUTPUT-RECORD FROM OF-l1. 

IF SUB IS EQUAL TO 12 
THEN MOVE SYMLEN-ELEM(SUB) TO 012-SYMLEN-ELEM 

MOVE SYM-ELEM(SUB) TO 012-SYM-ELEM 
WRITE OUTPUT-RECORD FROM OF-12. 

IF SUB IS EQUAL TO 13 
THEN MOVE SYMLEN-ELEM(SUB) TO 013-SYMLEN-ELEM 

MOVE SYM-ELEM(SUB) TO DI3-SYM-ELEM 
WRITE OUTPUT-RECORD FROM DF-13. 

IF SUB IS EQUAL TO 14 
THEN MOVE SYMLEN-ELEM(SUB) TO DI4-SYMLEN-ELEM 

Example 16-16. Calling the CNV_SYMBOLS Procedure (cont.) 

16-72 8600 0296-000 



I nternationa I ization 

MOVE SYM-ELEM(SUB) TO D14-SYM-ELEM 
WRITE OUTPUT-RECORD FROM DF-14. 

IF SUB IS EQUAL TO 15 
THEN MOVE SYMLEN-ELEM(SUB) TO D1S-SYMLEN-ELEM 

MOVE SYM-ELEM(SUB) TO D1S-SYM-1. 
IF SUB IS EQUAL TO 16 

THEN MOVE SYMLEN-ELEM(SUB) TO D16-SYMLEN-ELEM 
MOVE SYM-ELEM(SUB) TO D1S-SYM-2 
WRITE OUTPUT-RECORD FROM DF-1S. 

IF SUB IS EQUAL TO 17 
THEN MOVE SYM-ELEM(SUB) TO D16-SYM-1. 

IF SUB IS EQUAL TO 18 
THEN MOVE SYM-ELEM(SUB) TO D16-SYM-2 

WRITE OUTPUT-RECORD FROM DF-16. 
ADD 1 TO SUB. 

Example 16-16. Calling the CNV _SYMBOLS Procedure (cont.) 

Explanation 

CNV-NAME is passed to the procedure. It contains the name of the convention to be 
used to retrieve the monetary and numeric symbols. If this parameter contains all 
blanks or zeros, the procedure will use the hierarchy to determine the convention to be 
used. Refer to the MLS Guide for the list of convention names and the explanation of 
the hierarchy. 

TOTAL is returned by the procedure. It contains the total number of symbols returned. 

SYMLEN -ARY is returned by the procedure. It contains the lengths of all symbols being 
returned in SYM-ARY. The recommended length ofSYM-ARY is 16 words. 

SYM-ARY is returned by the procedure. Each element of the record contains a 
symbol defined in the monetary and numeric template for the specified convention. 
The corresponding entry in SYMLEN -ARY contains the length of each symbol. The 
maximum length of SYM-ARY is 216 bytes. . ' 

SYMLEN-ARYand SYM-ARY are parallel records. Each entry in SYMLEN-ARY 
specifies the number of characters the corresponding entry in SYM -ARY has. If an 
entry in SYMLEN-ARY is 0 (zero), it indicates that the symbol is not defined and the 
corresponding entry in SYM-ARY is filled with blanks. If an entry in SYMLEN-ARY is 
not 0 (zero), but the corresponding entry in SYM-ARY is all blanks, then the number of 
blanks specified by the SYMLEN -ARY entry forms the symbol. 

The procedure returns the monetary and numeric templates defined by the convention 
in fixed-length fields. Each field is 12 bytes long except where noted. 

8600 0296-000 16-73 



I nternationa I ization 

16-74 

The following table shows the monetary and numeric symbols that are returned in the 
record SYM-ARYand the offset in bytes of the field in which the symbol is returned: 

Monetary Symbol Offset Numeric Symbol Offset 

International currency 0 Thousands separator 96 
notation 

National currency symbol 12 . Decimal symbol 108 

Thousands separator 24 Positive sign 120 

Decimal symbol 36 Negative sign 132 

Positive sign 48 Left enclosu re 144 

Negative sign 60 Right enclosure 156 

Left enclosure 72 Monetary grouping 168 

Right enclosure 84 Numeric grouping 192 

The monetary and numeric grouping each occupy two adjacent fields (24 bytes) in 
SYM _ ARY The monetary and numeric groupings, when present, are character strings 
consisting of unsigned integers separated by commas. The integers specify the number 
of digits in each group and appear exactly as declared in the monetary and numeric 
templates including embedded commas. 

The following table shows the offset in bytes of the fields in the record SYMLEN -ARY, 
which contain the symbol lengths for the monetary and numeric symbols: 

Offset Contains Length of Offset Contains Length of 

0 International currency 8 Numeric thousands 
notation separator symbol 

1 National currency symbol 9 Numeric decimal symbol 

2 Monetary thousands 10 Numeric positive symbol 
separator 

3 Monetary decimal symbol 11 Numeric negative symbol 

4 Monetary positive symbol 12 Numeric left enclosure 
symbol 

5 Monetary negative symbol 13 Numeric right enclosure 
symbol 

6 Monetary left enclosure 14 Monetary grouping 
symbol 

7 Monetary right enclosure 15 Numeric grouping 
symbol 

MAX. is not a parameter but a constant with the value of 18. This constant ensures that 
SUB, a subscript of the SYM-ELEM and SYMLEN-ELEM arrays, does not exceed 18. 

8600 0296-000 



I nternationa I ization 

RESULT is returned as the value of the procedure. It indicates whether an error 
occurred during the execution of the procedure. Values greater than or equal to 1000 
indicate an error. An explanation of the error result values can be found at the end of 
this section. You should check the procedure result whenever you use this procedure. 
Possible values returned by CNV-SYMBOLS are as follows: 

1 

2 

1001 

1002 

2002 

2004 

3000 

3001 

3002 

3011 

Sample output from Example 16-16 follows: 

RESULT = 1 

Field Meaning 

International Currency Notation: 
National Currency Notation: 
Monetary Thousands Separator: 
Monetary Decimal Symbol: 
Monetary Positive Symbol: 
Monetary Negative Symbol: 
Monetary Left Enclosure Symbol: 
Monetary Right Enclosure Symbol: 
Numeric Thousands Separator: 
Numeric Decimal Symbol: 
Numeric Positive Symbol: 
Numeric Negative Symbol: 
Numeric Left Enclosure Symbol: 
Numeric Right Enclosure Symbol: 
Monetary Grouping Specification: 
Numeric Grouping Specification: 

See Also 

Symbols Length Convention Symbols 

3 NKR 
3 KR. 
1 
1 
o 
1 
o 
o 
1 
1 
o 
1 
o 
o 
1 3 
1 3 

For more information on the error result values, see Table 16-2 later in this section. 

CNV SYSTEMDATETIMETMP COB 

This procedure formats the system date, the system time, or both according to 
a template and language that you supply. The system obtains the date and time 
from a single function call to avoid the possibility of splitting the date and time 
across a day boundary. The template may be retrieved for any convention from the 
CNV _TEMPLATE_COB procedure or may be created by the user. 

Example 

Example 16-17 shows the parameter declarations and the PROCEDURE DMSION 
syntax required to call the CNV _ SYSTEMDATETIMETMP _COB library procedure. 

8600 0296-000 16-75 



Internationalization 

16-76 

The declarations identify the category of data-item required for parameter matching. 
For example, numeric items must be declared PIC S9(11) USAGE BINARY. 

In the explanation following the example, the parameters are explained using the names 
given to them in the example. In your program, choose parameter names that are 
appropriate for your use. 

This example formats system date apd time according to a template provided by the 
calling program in TMP-ARY. The formatted date and time are translated to English 
and returned in SDT-ARY. DTEMP-LEN is set to the length of the date template in 
TMP-ARY. 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FI LE-CONTROL. 

SELECT OUTPUT-FILE ASSIGN TO DISK. 

DATA DIVISION. 
FILE SECTION. 
FD OUTPUT-FILE 

LABEL RECORD IS STANDARD 
VALUE OF TITLE IS IIOUT/COBOL74/CNVSYSDATETIMETMP. 1I 

PROTECTION SAVE 
RECORD CONTAINS S0 CHARACTERS 
DATA RECORD IS OUTPUT-RECORD. 

01 OUTPUT-RECORD 

WORKING-STORAGE SECTION. 

01 OF-I. 
05 FILLER 
05 OF-RESULT 
05 FILLER 

01 OF-2. 
05 FILLER 
05 OF .;.SDT -ARY 
05 FILLER 

PIC X(S0). 

PIC X(09) VALUE "RESULT = " 
PIC ZZZZZZZZZZZ9. 
PIC X(59) VALUE SPACE. 

PIC X(10) VALUE "SDT-ARY = " 
PIC X (40) • 
PIC X(30) VALUE SPACE. 

****************************************************************** 
*** 'The following global declarations are used as parameters *** 
*** to the CENTRALSUPPORT procedures. *** 
****************************************************************** 

01 LANG-NAME 
01 SOT -ARY 
01 TMP-ARY 

77 CS-DATAOKV 
77 CS-FALSEV 

PIC X (17) • 
PIC X (40) • 
PIC X (4S) • 

PIC S9(11) USAGE BINARY 
PIC S9(11) USAGE BINARY 

VALUE 1. 
VALUE 0. 

Example 16-17. Calling the CNV_SYSTEMDATETIMETMP _COB Procedure 

86000296-000 



I nternationa I ization 

77 DTEMP-LEN 
77 RESULT 

PROCEDURE DIVISION. 
·INTLCOBOL74. 

PIC S9(11) USAGE BINARY. 
PIC S9(11) USAGE BINARY. 

DISPLAY "*** INTL_COBOL74: CNV_SYSTEMDATETIMETMP_COB". 
OPEN OUTPUT OUTPUT-FILE. 
PERFORM CNV-SYSTEMDATETIMETMP-COB. 
CLOSE OUTPUT-FILE. 
STOP RUN. 

***** CNV-SYSTEMDATETIMETMP-COB ********************************** 
CNV-SYSTEMDATETIMETMP-COB. 

CHANGE ATTRIBUTE LIBACCESS OF "CENTRALSUPPORT" TO BYFUNCTION. 
MOVE "!W!, !N! !D!, !YYYY! !0T!:!0M!:!0S!" TO TMP-ARY. 
MOVE 21 TO DTEMP-LEN. 
MOVE II ENGLISH" TO LANG-NAME. 
CALL "CNV_SYSTEMDATETIMETMP_COB OF CENTRALSUPPORT" 

USING TMP-ARY, 
LANG-NAME, 
DTEMP-LEN, 
SDT -ARY 

GIVING RESULT. 
MOVE RESULT TO OF-RESULT. 
WRITE OUTPUT-RECORD FROM OF-I. 
IF RESULT IS EQUAL TO CS-DATAOKV 

THEN MOVE SDT-ARY TO OF-SDT-ARY 
WRIT~ OUTPUT-RECORD FROM OF-2. 

Example 16-17. Calling the CNV_SYSTEMDATETIMETMP _COB Procedure (cont.) 

Explanation 

TMP-ARYis passed to the procedure. It contains the template you specify, left-justified 
in the field. The recommended length of a template is 48 characters. If both date and 
time templates are present, the date template must appear first. Refer to the MLS 
Guide for information about creating a template. 

LANG-NAME is passed to the procedure. It contains the name of the language to be 
used in formatting the date, the time value or both. If this parameter contains all blanks 
or zeros, the procedure uses the hierarchy to determine the language to be used. Refer 
to the MLS Guide for information about determining the valid language names on your 
system and the explanation of the hierarchy. 

DTEMP-LEN is an integer passed by reference to the procedure. It specifies the length 
of the date template in TMP-ARY. IfDTEMP-LEN is 0 (zero), it indicates there is no 
date template in TMP-ARY. If you specify both a date and time template, then the date 
template must appear first in TMP-ARY. The date and time are formatted if both date 
and time templates are present, the date is formatted if only date template is present, 
and the time is formatted if only time template is present. 

8600 0296-000 16-77 



I nternationa I ization 

SDT-ARYis returned by the procedure. It contains the formatted date, formatted time, 
or both. The recommended length of the formatted value is 45 characters. 

RESULT is returned as the value of the procedure. It indicates whether an error 
occurred during the execution of the procedure. Values greater than or equal to 1000 
indicate an error. An explanation of the error result values can be found at the end of 
this section. You should check the procedure result whenever you use this procedure. 
Possible values returned by CNV _ SYSTEMDATETIMETMP _COB are as follows: 

1 

2 

1001 

1002 

2001 

2003 

3000 

3001 

Sample output from Example 16-17 follows: 

RESULT = 1 
SDT-ARY = Thursday, March 7, 1991 18:31:23 

See Also 

3002 

3011 

For more information on the error result values, see Table 16-2 later in this section. 

CNV SYSTEMDATETIME COB 

16-78 

/' This procedure formats the system date, the system time, or both according to the 
specified convention. It translates the date and time components to the natural language 
you specify. The system computes both the date arid time from the result of a single 
function call. Thus, the possibility that the date and time are split across midnight does 
not exist. 

You might use this procedure to output the system date and time in the Spain 
convention and the Spanish language, for example. 

Example 

Example 16-18 shows the parameter declarations and the PROCEDURE DMSION 
syntax required to call the CNV _SYSTEMDATETIME_ COB library procedure. The 
declarations identifY the category of data-item required for parameter matching. For 
example, numeric items must be declared PIC S9(11) USAGE BINARY. 

In the explanation following the example, the parameters are explained using the names 
given to them in the example. In your program, choose parameter name~ that are 
appropriate for your use. 

This example formats the system date and time according to formatting definitions 
in the ASeriesNative convention. The form of date and time is specified by 
CS-LDATENTIMEV (long date and numeric time). Formatted date and time are 
translated to English and returned in SDT-ARY. 

8600 0296-000 



International ization 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FI LE-CONTROL. 

SELECT OUTPUT-FILE ASSIGN TO DISK. 

DATA DIVISION. 
FILE SECTION. 
FD OUTPUT-FILE 

LABEL RECORD IS STANDARD 
VALUE OF TITLE IS "OUT/COBOL74/CNVSYSDATETIME." 
PROTECTION SAVE 
RECORD CONTAINS 80 CHARACTERS 
DATA RECORD IS OUTPUT-RECORD. 

01 OUTPUT-RECORD PIC X(80). 

WORKING-STORAGE SECTION. 

01 OF-I. 
05 FILLER PIC X(09) VALUE lIRESULT = .. 
05 OF.;.RESULT PIC ZZZZZZZZZZZ9. 
05 FILLER PIC X(59) VALUE SPACE. 

01 OF-2. 
05 FILLER PIC X(10) VALUE "SDT-ARY = " 
05 OF-SDT-ARY PIC X(40). 
05 FILLER PIC X(30) VALUE SPACE. 

****************************************************************** 
*** The following global declarations are used as parameters *** 
*** to the CENTRALSUPPORT procedures. *** 
****************************************************************** 

01 CNV-NAME PIC X(I7). 
01 LANG-NAME PIC X(17). 
01 SDT -ARY . PIC X(40). 

77 CS-DATAOKV PIC S9(11) 
77 CS-FALSEV PIC S9(11) 
77 CS-LDATENTIMEV PIC S9(11) 
77 RESULT PIC S9(11) 

PROCEDURE DIVISION. 
INTLCOBOL74. 

OPEN OUTPUT OUTPUT-FILE. 
PERFORM CNV-SYSTEMDATETIME-COB. 
CLOSE OUTPUT-FILE. 
STOP RUN. 

USAGE BINARY VALUE 1. 
USAGE BINARY VALUE 0. 
USAGE BINARY VALUE 6. 
USAGE BINARY. 

***** CNV-SYSTEMDATETIME-COB ************************************* 
CNV-SYSTEMDATETIME-COB. 

Example 16-18. Calling the CNV~SYSTEMDATETIME_COB Procedure 

8600 0296-000 16-79 



I nternationa lization 

16-80 

CHANGE ATTRIBUTE LIBACCESS OF "CENTRALSUPPORT" TO BYFUNCTION. 
MOVE "ASERIESNATIVE" TO CNV-NAME. 
MOVE "ENGLISH" TO LANG-NAME. 
CALL "CNV_SYSTEMDATETIME_COB OF CENTRALSUPPORT II 

USINGCS-LDATENTIMEV, 
CNV-NAME, 
LANG-NAME, 
SDT-ARY 

GIVING RESULT. 
MOVE RESULT TO OF-RESULT. 
WRITE OUTPUT-RECORD FROM OF-I. 
IF RESULT IS EQUAL TO CS-DATAOKV 

THEN MOVE SDT-ARY TO OF-SDT-ARY 
WRITE OUTPUT-RECORD FROM OF-2. 

Example 16-18. Calling the CNV_SYSTEMDATETIME_COB Procedure (cont.) 

Explanation 

CS-LDATENTIMEV is passed to the procedure. It indicates one of the following formats 
is used when the date and time are returned: . 

Value Sample Data Item Meaning 

0 CS-LDATEV Long date format 

1 CS-SDATEV Short date format 

2 CS-NDATEV Numeric date format 

3 CS-LTIMEV Long time format 

4 CS-NTIMEV Numeric time format 

5 CS-LDATELTIMEV Long date and long time 

6 CS-LDATENTIMEV Long date and numeric time 

7 CS-SDATELTIMEV Short date and long time 

8 CS-SDATENTIMEV Short date and numeric time 

9 CS-NDATELTIMEV Numeric date and long time 

10 CS-NDATENTIMEV Numeric date and numeric time 

CNV-NAME is passed to the procedure. It contains the name of the convention to be 
used to edit the date and time v8Iue. If this parameter ~ontains all blanks or zeros, the 
procedure will use the hierarchy to determine the convention to be used. Refer to the 
MLS Guide for the list of convention names and the explanation of the hierarchy. 

LANG-NAME is passed to the procedure. It contains the language to be used in 
formatting the date and time value. If this parameter contains all blanks or zeros, the 
procedure will use the hierarchy to determine the language to be used. Refer to the 
MLS Guide for information about determining the valid language names on your system 
and the explanation of the hierarchy. . 

8600 0296-000 



I nternationa I ization 

SDT-ARY is returned by the procedure. It contains the formatted date, formatted time, 
or both. The recommended length of the formatted value is 40 characters. 

RESULT is returned as the value of the procedure. It indicates whether an error 
occurred during the execution of the procedure. Values greater than or equal to 1000 
indicate an error. An explanation of the error result values can be found "at the end of 
this section. You should check the procedure result whenever you use this procedure. 
Possible values returned by CNV_SYSTEMDATETIME_COB are as follows: 

1 

2 

1001 

1002 

2001 

2002 

2003 

2004 

Sample output from Example 16-18 follows: 

RESULT = 1 
SDT-ARY = Wednesday, November 7, 1990 17:14:58 

See Also 

3000 

3001 

3006 

3011 

For more information on the error result values, see Table 16-2 later in this section. 

CNV TEMPLATE COB 

This procedure returns the requested format template for a designated convention. 

You might want to use this procedure to improve the performance of your program. By 
retrieving and storing a template that you want to use in many places, you can improve 
the performance of your program by eliminating the calls to the CENTRALSUPPORT 
library. 

Example 

Example 16-19 shows the parameter declarations and the PROCEDURE DIVISION 
syntax required to call the CNV _TEMPLATE_COB library procedure. The declarations 
identify the category of data-item required for parameter matching. For example, 
numeric items must be declared PIC S9(11) USAGE BINARY. 

In the explanation following the example, the parameters are explained using the names 
given to them in the example. In your program, choose parameter names that are 
appropriate for your use. 

This example retrieves a monetary editing template from the Turkey convention. The 
template is returned in TMP-ARY. 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 

Example 16-19. Calling the CNV_TEMPLATE_COB Procedure 

8600 0296-000 16-81 



I nternationa I ization 

16-82 

FI LE-CONTROL. 
SELECT OUTPUT-FILE ASSIGN TO DISK. 

DATA DIVISION •. 
FILE SECTION. 
FD OUTPUT-FILE 

LABEL RECORD IS STANDARD 
VALUE OF TITLE IS IOUT/COBOL74/CNVTEMPLATECOB." 
PROTECTION SAVE 
RECORD CONTAINS 80 CHARACTERS 
DATA RECORD IS OUTPUT-RECORD. 

01 OUTPUT-RECORD 

WORKING-STORAGE SECTION. 

01 OF-I. 
05 FILLER 
05 OF-RESULT 
05 FILLER 

01 OF-2. 
05 FILLER 
05 OF-TMP-ARY 
·05 FILLER 

PIC X(80). 

PIC X(09) VALUE "RESULT = " 
PIC ZZZZZZZZZZZ9. 
PIC X(59) VALUE SPACE. 

PIC X(10) VALUE "TMP-ARY = II 

PIC X(48). 
PIC X(22) VALUE SPACE. 

****************************************************************** 
*** The following global declarations are used as parameters *** 
*** to the CENTRALSUPPORT procedures. *** 
****************************************************************** 

01 CNV~NAME PIC X (17) • 
01 TMP-ARY PIC X(48). 

77 CS-DATAOKV PIC S9(11) 
77 CS-FALSEV PIC S9(11) 
77 CS-MONETARY-TEMPV PIC S9(11) 
77 RESULT PIC S9(11) 

PROCEDURE DIVISION. 
INTLCOBOL74. 

OPEN OUTPUT OUTPUT-FILE. 
PERFORM CNV-TEMPLATE-COB. 
CLOSE OUTPUT-FILE. 
STOP RUN. 

USAGE BINARY VALUE 1. 
USAGE BINARY VALUE 0. 
USAGE BINARY VALUE 5. 
USAGE BINARY. 

***** CNV-TEMPLATE-COB ******************************************* 
CNV-TEMPLATE-COB. 

CHANGE ATTRIBUTE LIBACCESS OF "CENTRALSUPPORT" TO BYFUNCTION. 
MOVE "Turkeyll TO CNV-NAME. 
CALL IICNV_TEMPLATE_COB OF CENTRALSUPPORT II 

USING CS-MONETARY-TEMPV, 

Example 16-19. Calling the CNV_TEMPLATE_COB Procedure (cont.) 

8600 0296-000 



I nternationa I ization 

CNV-NAME, 
TMP-ARY 

GIVING RESULT. 
MOVE RESULT TO OF-RESULT. 
WRITE OUTPUT-RECORD FROM OF-I. 
IF RESULT IS EQUAL TO CS-DATAOKV 

THEN STRING TMP-ARY DELIMITED BY @00@, 
@00@ DELIMITED BY SIZE 
INTO OF-TMP-ARY 

WRITE OUTPUT-RECORD FROM OF-2. 

Example 1~19. Calling the CNV_TEMPLATE_COB Procedure (cont.) 

Explanation 

CS-MONETARY-TEMPVis passed to the procedure. It specifies the type of template to 
be returned. This parameter can have the following values: 

Value Sample Data Item Template to be Retrieved 

0 CS-LONG DATE-TEM PV Long date 

1 CS-SHORTDATE-TEMPV Short date 

2 CS-NUMDATE-TEMPV Numeric date 

3 CS-LONGTIME-TEMPV Long time 

4 CS-NUMTIME-TEMPV Numeric time 

5 CS-MONETARY-TEMPV Monetary template 

6 CS-NUMERIC-TEMPV Numeric template 

CNV-NAME is passed to the procedure. It contains the name of the convention that 
you specify. If this parameter contains all blanks or zeros, the procedure will use the 
hierarchy to determine the convention to be used. Refer to the MLS Guide for the list of 
convention names and the explanation of the hierarchy. 

TMP-ARY is returned by the procedure. It contains the requested template. The 
recommended length of a template is 48 characters. 

RESULT is returned as the value of the procedure. It indicates whether an error 
occurred during the execution of the procedure. Values greater than or equal to 1000 
indicate an error. An explanation of the error result values can be found at the end of 
this section. You should check the procedure result whenever you use this procedure. 
Possible values returned by CNV _TEMPLATE_COB are as follows: 

1 

1001 

1002 

8600 0296-000 

2002 

3000 

3001 

3002 

3006 

16-83 



I nternationa I ization 

Sample output from Example 16-19 follows: 

RESULT = 1 
TMP-ARY = IT[.:0,3]D[,]'N[-]C[T]I 

See Also 

For more information on the error result values, see Table 16-2 later in this section. 

CNV VALIDATENAME 

16-84 

This procedure returns a value in the procedure result that indicates whether the 
convention name you specified is currently defined on the host system. 

You might use this procedure to ensure that a convention used as an input parameter 
exists on the system on which your program is running. 

Example 

Example 16-20 shows the parameter declarations and the PROCEDURE DIVISION 
syntax required to call the CNV _ V ALIDATENAME library procedure. The declarations 
identify the category of data-item required for parameter matching. For example, 
numeric items must be declared PIC S9(11) USAGE BINARY. 

In the explanation following the example, the parameters are explained using the names 
given to them in the example. In your program, choose parameter names that are 
appropriate for your use. 

This example determines whether or not a convention named Sweden is currently 
available on the system. 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FI LE-CONTROL. 

SELECT OUTPUT-FILE ASSIGN TO DISK. 

DATA DIVISION. 
FILE SECTION. 
FD OUTPUT-FILE 

LABEL RECORD IS STANDARD 
VALUE OF TITLE IS "OUT /COBOL74/VALIDATENAME. II 

PROTECTION SAVE 
RECORD CONTAINS 80 CHARACTERS 
DATA RECORD IS OUTPUT-RECORD. 

01 OUTPUT-RECORD PIC X(80). 

WORKING-STORAGE SECTION. 

Example 16-20. Calling the CNV_VALIDATENAME Procedure 

8600 0296-000 



I nternationa lization 

01 OF-1. 
05 FILLER 
05 OF-RESULT 
05 FILLER 

PIC X (09) VALUE II RESULT = II 

PIC ZZZZZZZZZZZ9. 
PIC X(59) VALUE SPACE. 

****************************************************************** 
*** The following global declarations are used as parameters *** 
*** to the CENTRALSUPPORT procedures. *** 
****************************************************************** 

01 CNV-NAME 

77 CS-DATAOKV 
77 CS-FALSEV 
77 RESULT 

PROCEDURE DIVISION. 
INTLCOBOL74. 

PIC X(17). 

PIC S9(11) USAGE BINARY 
PIC S9(11) USAGE BINARY 
PIC S9(11) USAGE BINARY. 

OPEN OUTPUT OUTPUT-FILE. 
PERFORM CNV-VALIDATENAME. 
CLOSE OUTPUT-FILE. 
STOP RUN. 

VALUE 1-
VALUE 0. 

***** CNV-VALIDATENAME ******************************************* 
CNV-VALIDATENAME. 

CHANGE ATTRIBUTE LIBACCESS OF "CENTRALSUPPORT" TO BYFUNCTION.· 
MOVE "Sweden" TO CNV-NAME. 
CALL "CNV_VALIDATENAME OF CENTRALSUPPORT" 

USING CNV-NAME 
GIVING RESULT. 

MOVE RESULT TO OF-RESULT. 
WRITE OUTPUT-RECORD FROM OF-1. 

Example 16-20. Calling the CNV_VALIDATENAME Procedure (cont.) 

Explanation 

CNV-NAME, is passed to the procedure. It contains the name of the convention that is 
to be checked. If this parameter contains all blanks or nulls, the RESULT parameter 
returns a value of 0 (zero) or FALSE. Refer to the MLS Guide for the list of convention 
names and the explanation of the hierarchy. 

RESULT is an integer that is returned by the procedure. It contains the procedure 
result. The possible values for RESULT and their meanings are as follows: 

Value 

o 
1 

8600 0296-000 

Condition-Name 

CS-FALSEV 

CS-OATAOKV 

Meaning 

The convention name is not valid. 

The convention name is valid. 

16-85 



I nternationa lization 

Sample output from Example 16-20 follows: 

RESULT = 

GET CS MSG 

16-86 

This procedure returns message text associated with the designated message number. 
The message number is obtained as the result value returned from a call to any of the 
CENTRALSUPPORT procedures. 

When calling the GET _ CS _ MSG procedure, you can designate the language to which 
the message is to be translated and the desired lerigth of the returned message. If the 
returned text is shorter than the length specified, the procedure pads the remaining . 
portion of the record with blanks. 

An entire message consists of the following three parts: 

• The header, which comprises the first 80 characters of the message text returned 
by the MSG parameter. The text in the header provides the message number and a 
concise text description. 

• The short description, which comprises the second 80 character of the message text 
returned by the MSG parameter. If space is a consideration, you might want to limit 
the description of the message to the header and short description. 

• The long description, which comprises the remaining characters of the message 
text returned by the MSG parameter. The long description provides a complete 
explanation of the message that was returned. 

Part or all of the message text can be returned. Note that the header part starts at 
offset 0 (zero), the short description at offset 80, and the long description at offset 160. 
For example, if you specify the MSG-LEN parameter to be equal to 200 characters, then 
the MSG parameter would contain the header message padded with blanks to offset 
80, if necessary, followed by the short description padded with blanks to offset 160, if 
necessary, followed by the first 40 characters of the long description. 

The message length should be at least 80 characters, equal to one line of text. Anything 
less results in an incomplete message. Unisys recommends using a value of either 80, 
160, or 999. The value of 999 causes the entire message to be returned. 

You might want to use this procedure to retrieve the text of an error message so that it 
can be displayed by your program. 

Example 

Example 16-21 shows the parameter declarations and the PROCEDURE DMSION 
syntax required to call the GET _ CS _ MSG library procedure. The declarations identify 
the category of data-item required for parameter matching. For example, numeric items 
must be declared PIC S9(11) USAGE BINARY. 

8600 0296-000 



Internationalization 

In the explanation following the example, the parameters are explained using the names 
given to them in the example. In your program, choose parameter names that are 
appropriate for your use. 

This example illustrates how to get the message text associated with a 
CENTRALSUPPORT error message. Assume that the sample call to 
VALIDATE_NAME_RETURN_NUM returns the error 3004 (The requested name was 
not found.). When the error is returned, this example gets the first 160 characters (2 
lines) of the message text for the error. 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FI LE-CONTROL. 

SELECT OUTPUT-FILE ASSIGN TO DISK. 

DATA DIVISION. 
FILE SECTION. 
FD OUTPUT-FILE 

LABEL RECORD IS STANDARD 
VALUE OF TITLE IS "OUT /COBOL74/GETCSMSG. II 

PROTECTION SAVE 
RECORD CONTAINS a8 CHARACTERS 
DATA RECORD IS OUTPUT-RECORD. 

81 OUTPUT-RECORD PIC X{a8). 

WORKING-STORAGE SECTION. 

81 OF-I. 
85 FILLER 

VALUE "R~SULT 

85 OF-RESULT! 
85 FILLER 

81 OF-2. 
85 FILLER 

VALUE "RESULT 
85 OF-RESULT2 
85 FILLER 

91 OF-3. 
85 FILLER 
85 FILLER 

91 OF-4. 
85 OF-MSG 

PIC X(39) 
FROM VALIDATE_NAME_RETURN_NUM = II 

PIC ZZZZZZZZZZZ9. 
PIC X(23) VALUE SPACE. 

PIC X(39) 
FROM GET_CS_MSG = II 

PIC ZZZZZZZZZZZ9. 
PIC X(23) VALUE SPACE. 

PIC X(86) 
PIC X(74) 

PIC X(a8). 

VALUE "MSG = .. 
VALUE SPACE. 

****************************************************************** 
*** The following global declarations are used as parameters *** 
*** to the CENTRALSUPPORT procedures. *** 
****************************************************************** 

81 LANG-NAME PIC X (l7) • 

Example 16-21. Calling the GET_CS_MSG Procedure 

8600 0296-000 16-87 



I nternationa lization 

16-88 

01 MSG. 
05 MSG-ELEM PIC X(80) OCCURS 2 TIMES. 

01 NAME-ARY PIC X (17) • 

77 CS-CHARACTER-SETV PIC S9 (11) USAGE BINARY VALUE 0. 
77 CS-DATAOKV PIC S9(11) USAGE BINARY VALUE 1. 
77 CS-FALSEV PIC S9(11) USAGE BINARY VALUE 0. 
77 MSG-LEN PIC S9(11) USAGE BINARY. 
77 NUM PIC S9(11) USAGE BINARY. 
77 RESULT1 PIC S9(11) USAGE BINARY. 
77 RESULT2 PIC S9(11) USAGE BINARY. 

PROCEDURE DIVISION. 
INTLCOBOL74. 

DISPLAY "*** INTL_COBOL74: GET_CS_MSG". 
OPEN OUTPUT OUTPUT-FILE. 
PERFORM GET-CS-MSG. 
CLOSE OUTPUT-FILE. 
STOP RUN. 

***** GET-CS-MSG ************************************************* 
GET-CS-MSG. 

CHANGE ATTRIBUTE LIBACCESS OF "CENTRALSUPPORT" TO BYFUNCTION. 
MOVE "BADNAME" TO NAME-ARY. 
CALL "VALIDATE_NAME_RETURN_NUM OF CENTRALSUPPORT" 

USING CS-CHARACTER-SETV, 
NAME-ARY, 
NUM 

GIVING RESULT1. 
MOVE RESULT1 TO OF-RESULTl. 
WRITE OUTPUT-RECORD FROM OF-I. 
IF RESULT1 IS NOT EQUAL TO CS-DATAOKV 

THEN MOVE·160 TO MSG-LEN 
CALL "GET_CS_MSG OF CENTRALSUPPORT" 

USING RESULTl, 
LANG-NAME, 
MSG, 
MSG-LEN 

GIVING RESULT2 
MOVE RESULT2 TO OF-RESULT2 
WRITE OUTPUT-RECORD FROM OF-2 
WRITE OUTPUT-RECORD FROM OF-3 
MOVE MSG-ELEM(I) TO OF-MSG 
WRITE OUTPUT-RECORD FROM OF-4 
MOVE MSG-ELEM(2} TO OF~MSG 
WRITE OUTPUT-RECORD FROM OF-4. 

Example 16-21. Calling the GET_CS_MSG Procedure (cont.) 

8600 0296-000 



I nternationa lization 

Explanation 

NUM is p~sed to the procedure. It contains the number of the message for which 
you want the text. These values are returned by calls on other CENTRALSUPPORT 
procedures. The message numbers and their meanings are listed at the end of this 
section. 

LANG-NAME is passed to the procedure. It specifies the language in which the 
message is to be displayed. The maximum length of a language name is 17 characters. 
If this parameter contains all blanks or zeros, the procedure uses the default language 
hierarchy to determine the language to be used. Refer to the MLS Guide for details 
about determining the valid language names on the system and for the explanation of the 
default language hierarchy. 

MSG is returned by the procedure. It contains the message text associated with the 
specified message number. Unisys recommends the size of this record be at least 80 
characters. 

MSG-LEN in passed to the procedure. For an output parameter, MSG _LEN contains 
an update value. For input, it specifies the maximum length of the message to be 
returned. If MSG-LEN is equal to 0 (zero), one line of text (80 characters) is returned. 
If MSG-LEN is between 1 and 79, then only a partial message is returned. MSG-LEN 
should not be greater than the size of the MSG record .. Recommended values for 
MSG-LEN are 80, 160, or a large number that returns all of the message. For output, 
MSG _LEN specifies the actua1length of the message returned by the procedure. 

NAME-ARYis passed to the procedure. It contains the coded character set or ccsversion 
name for which a message number is being requested. The name can be up to 17 
characters long. If this parameter contains zeros or blanks, the procedure uses the 
hierarchy to determine the ccsversion or character set to be used. If there is no system 
default, the procedure returns an error in RESULT. 

CS-CHARACTER-SETV is passed to the procedure. If this flag represents 0 (zero), the 
coded character set is being checked. If it represents 1 (one), the ccsversion is being 
checked. 

RESULT1 is passed to the procedure. It contains the number of the message for which 
you want the text. These values are returned by calls on other CENTRALSUPPORT 
procedures. The message numbers and their meanings are liSted at the end 
of this section. In Example 16-21, the RESULT1 field is from an executed 
VALIDATE_NAME _ RETURN _NUM procedure that requested a ccsversion number for 
the name BADNAME. 

RESULT2 is returned as the value of the procedure. It indicates whether an error 
occurred during the execution of the procedure. Values greater than or equal to 1000 
indicate an error. An explanation of the error result values can be found at the end of 
this section. You should check the procedure result whenever you use this procedure. 
Possible values returned by GET _ CS _ MSG are as follows: 

1 

1001 

1002 

8600 0296-000 

2004 

3000 

3001 

3002 

3003 

16-89 



I nternationa lization 

Sample output from Example 16-21 follows: 

RESULT FROM VALIDATE_NAME_RETURN_NUM = 3004 
RESULT FROM GET_CS_MSG = 1 
MSG = 
»> CENTRALSUPPORT INTERFACE ERROR (#3004) «< 
INVALID CHARACTER SET OR CCSVERSION NAME 

See Also 

For more information on the error result values, see Table 16-2 later in this section. 

MCP BOUND LANGUAGES - -

16-90 

This procedure returns the names of languages that are currently bound to the 
operating system. For information about binding a language to the operating system, 
refer to theMLS Guide. 

You might use this procedure to determine which languages are available on the system. 

Example 

Example 16-22 shows the parameter declarations and the PROCEDURE DMSION 
syntax required to call the MCP _BOUND_LANGUAGES library procedure. The 
declarations identify the category of data-item required for parameter matching. For 
example, numeric items must be declared PIC S9(11) USAGE BINARY. 

In the explanation following the example, the parameters are explained using the names 
given to them in the example. In your program, choose parameter names that are 
appropriate for your use. 

This example returns the languages bound by the operating system. Assume for this 
example that the bound language is English. 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FI LE-CONTROL. 

SELECT OUTPUT-FILE ASSIGN TO DISK. 

DATA DIVISION. 
FILE SECTION. 
FD OUTPUT-FILE 

LABEL RECORD IS STANDARD 
VALUE OF TITLE IS "0UT/COBOL74/MCPBOUNDLANGUAGES." 
PROTECTION SAVE 
RECORD CONTAINS 80 CHARACTERS 
DATA RECORD IS OUTPUT-RECORD. 

01 OUTPUT-RECORD PIC X(80). 

Example 16-22. Calling the MCP_BOUND_LANGUAGES Procedure 

8600 0296-000 



I nternationa I ization 

WORKING-STORAGE SECTION. 

01 OF-1. 
05 FILLER PIC X(09) VALUE "RESULT = II 

05 OF-RESULT PIC ZZZZZZZZZZZ9. 
05 FILLER PIC X(59) VALUE SPACE. 

01 OF-2. 
05 FILLER PIC X(09) VALUE "Languages". 
05 FILLER PIC X(71) VALUE SPACE. 

01 OF-3. 
05 FILLER PIC X(09) VALUE ALL "_". 
05 FILLER PIC X (71) VALUE SPACE. 

01 OF-4. 
05 OF-LANG-ELEM PIC X (17) • 
05 FILLER PIC X(63) VALUE SPACE. 

*.***************************************************************** 
*** The following global declarations are used as parameters *** 
*** to the CENTRALSUPPORT procedures. *** 
****************************************************************** 

01 LANGUAGES-ARY. 
05 LANGUAGES-ELEM PIC X(17) OCCURS 20 TIMES. 

01 SUB PIC 9(02). 

77 CS-DATAOKV PIC S9(11) USAGE BINARY VALUE 1-
77 CS-FALSEV PIC S9(11) USAGE BINARY VALUE 0. 
77 RESULT PIC S9(11) USAGE BINARY. 
77 TOTAL PIC S9(11) USAGE BINARY. 

PROCEDURE DIVISION. 
INTLCOBOL74. 

OPEN OUTPUT OUTPUT-FILE. 
PERFORM MCP-BOUND-LANGUAGES. 
CLOSE OUTPUT-FILE. 
STOP RUN. 

***** MCP-BOUND-LANGUAGES **************************************** 
MCP-BOUND-LANGUAGES. 

CHANGE ATTRIBUTE LIBACCESS OF "CENTRALSUPPORT" TO BYFUNCTION. 
CALL IIMCP _BOUND_LANGUAGES OF CENTRALSUPPORT" 

. USING TOTAL, 
LANGUAGES-ARY 

GIVING RESULT •. 
MOVE RESULT TO OF-RESULT. 
WRITE OUTPUT-RECORD FROM OF-1. 
IF RESULT IS EQUAL TO CS-DATAOKV 

8600 0296-000 

THEN MOVE SPACE TO OUTPUT-RECORD 
WRITE OUTPUT-RECORD 
WRITE OUTPUT-RECORD FROM OF-2 
WRITE OUTPUT-RECORD FROM OF-3 

Example 16-22. Calling the MCP_BOUND_LANGUAGES Procedure (cont.) 

16-91 



I nternationa I ization 

16-92 

MOVE 1 TO SUB 
PERFORM DISPLAYLANGUAGESARY 

UNTIL SUB IS GREATER THAN TOTAL. 

***** DISPLAYLANGUAGESARY **************************************** 
DISPLAYLANGUAGESARY. 

MOVE LANGUAGES-ELEM{SUB) TO O~-LANG-ELEM. 
WRITE OUTPUT-RECORD FROM OF-4. 
ADD 1 TO SUB. 

Example 16-22. Calling the MCP _BOUND_LANGUAGES Procedure (cont.) 

Explanation 

TOTAL is an integer returned by the procedure. It contains the total number of 
languages that are bound to the operating system. 

LANGUAGES-ARY is returned by the procedure. It contains the names of the 
languages bound to the operating system. The maximum length of each name is 
17 characters, and the names are left justified. For any name that is less than 17 
characters, the field is filled on the right with blanks. In the example, the size of the 
record is 84 characters; a record of that size holds 5 names. 

RESULT is returned as the value of the procedure. It indicates whether an error 
occurred during the execution of the procedure. Values greater than or equal to 1000 
indicate an error. An explanation of the error result values can be found at the end of 
this section. You should check the procedure result whenever you use this procedure. 
Possible values "returned by this procedure are as follows: 

1 

1001 

1002 

3000 

Sample output from Example 1&-22 follows: 

RESULT = 1 

Languages 

ENGLISH 

See Also 

3001 

For more information on the error result values, see Table 16-2 later in this section. 

8600 0296-000 



I nternationa I ization 

VALIDATE NAME RETURN NUM - - -
This procedure examines a coded character set or ccsversion name to determine if it 
resides in the file SYSTEM/CCSFILE. The first parameter specifies whether you want to 
examine a coded character set or ccsversion. The next parameter specifies the name to 
be validated. The procedure returns the number of the coded character set or ccsversion 
in the last parameter. 

You might use this procedure to obtain the ccsversion number needed as a parameter to 
other CENTRALSUPPORT library procedures. 

Example 

Example 16-23 shows the parameter declarations and the PROCEDURE DIVISION 
syntax required to call the V ALIDATE_NAME_RETURN_NUM library procedure. The 
declarations identify the category of data-item required for parameter matching. For 
example, numeric items must be declared PIC S9(11) USAGE BINARY. 

In the explanation following the example, the parameters are explained using the names 
given to them in the example. In your program, choose parameter names that are 
appropriate for your use. 

This example checks to see if a ccsversion named CanadaGP is valid. Assume for this 
example that CanadaGP is valid and its associated number is 75. 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FI LE-CONTROL. 

SELECT OUTPUT-FILE ASSIGN TO DISK. 

DATA DIVISION. 
FILE SECTION. 
FD OUTPUT-FILE 

LABEL RECORD IS STANDARD 
VALUE OF TITLE IS "OUT /COBOL74/VALIDATENAMERTRN." 
PROTECTION SAVE 
RECORD CONTAINS 80 CHARACTERS 
DATA RECORD IS OUTPUT-RECORD. 

01 OUTPUT-RECORD 

WORKING-STORAGE SECTION. 

01 OF-I. 
05 FILLER 
05 OF-RESULT 
05 FILLER 

01 OF-2. 
05 FILLER 
05 OF-NUM 

PIC X(80). 

PIC X(09) VALUE "RESULT = ". 
PIC ZZZZZZZZZZZ9. 
PIC X(59) VALUE SPACE. 

PIC X(09) VALUE "NUM 
PIC ZZZZZZZZZZZ9. 

- II . - . 

Example 16-23. Calling the VALIDATE_NAME_RETURN_NUM Procedure 

8600 0296-000 16-93 



I nternationa I ization 

16-94 

05 FILLER PIC X(59) VALUE SPACE. 

****************************************************************** 
*** The following global declarations are used as parameters *** 
*** to the CENTRALSUPPORT procedures. *** 
****************************************************************** 

01 NAME-ARY PIC X (I7} • 

77 CS-CCSVERSIONV PIC S9 (11) 
77 CS-DATAOKV PIC S9 (11) 
77 CS-FALSEV PIC S9(11) 
77 NUM PIC S9(11) 
77 RESULT PIC S9(11) 

PROCEDURE DIVISION. 
INTLCOBOL74. 

OPEN OUTPUT OUTPUT-FILE. 
PERFORM VALIDATE-NAME-RETURN-NUM. 
CLOSE OUTPUT-FILE. 
STOP RUN. 

USAGE BINARY VALUE 1. 
USAGE BINARY VALUE 1. 
USAGE BINARY VALUE 0. 
USAGE BINARY. 
USAGE BINARY. 

***** VALIDATE-NAME-RETURN-NUM *********************************** 
VALIDATE-NAME-RETURN-NUM. 

CHANGE ATTRIBUTE LIBACCESS OF IICENTRALSUPPORT" TO BYFUNCTION. 
MOVE "CanadaGpll TO NAME-ARY. 
CALL "VALIDATE_NAME_RETURN_NUM OF CENTRALSUPPORT" 

USING CS-CCSVERSIONV, 
NAME-ARY, 
NUM 

GIVING RESULT. 
MOVE RESULT TO OF-RESULT. 
WRITE OUTPUT-RECORD FROM OF-I. 
IF RESULT IS EQUAL TO CS-DATAOKV 

,THEN MOVE NUM TO OF-NUM 
WRITE OUTPUT-RECORD FROM OF-2. 

Example 16-23. Calling the VALIDATE_NAME_RETURN_NUM Procedure (cont.) 

Explanation 

CS-CCSVERSIONV is passed to the procedure. It indicates whether the entry specified 
in NAME is a coded character set or ccsversion name. The allowable values are as 
follows: 

Value 

o 
1 

Sample Data Item 

CS-CHARACTER-SET-V 

CS-CCSVERSION-V 

Meaning 

Coded character set name 

Ccsversion name 

NAME-ARY is passed to the procedure. It contains the coded character set or ccsversion 
name for which a number is being requested. The name can be up to 17 characters long. 

8600 0296-000 



I nternationa I ization 

If this parameter contains zeros or blanks and type is equal to 1, the procedure validates 
the system default ccsversion. 

NUM is returned by the procedure. It contains the coded character set or ccsversion 
number requested. 

RESULT is returned as the value of the procedure. It indicates whether an error 
occurred during the execution of the procedure. Values greater than or equal to 1000 
indicate an error. An explanation of the error result values can be found at the end of 
this section. You should check the procedure result whenever you use this procedure. 
Possible values returned by VALIDATE_NAME _RETURN _ NUM are as follows: 

1 3000 3006 

1001 

1002 

3002 

3004 

Sample output from Example 16-23 follows: 

RESULT = 
NUM = 

See Also 

1 
75 

For more information on the error result values, see Table 16-2 later in this section. 

VALIDATE NUM RETURN NAME 

This procedure examines the number of a coded character set or ccsversion to determine 
if it resides in the SYSTEM/CCSFILE. The first parameter designates whether a coded 
character set or ccsversion is to be examined. The second parameter specifies the 
number to be validated. The procedure then returns the name of the given character 
set or ccsversion number. Refer to the MLS Guide for the list of numbers for coded 
character sets and ccsversions. 

You might use this procedure to display the name of the coded character set or the 
ccsversion being used. 

Example 

Example 16-24 shows the parameter declarations and the PROCEDURE DMSION 
syntax required to call the VALIDATE _NUM _RETURN_NAME library procedure. The 
declarations identify the category of data-item r.equired for parameter matching. For 
example, numeric items must be declared PIC S9(11) USAGE BINARY. 

In the explanation following the example, the parameters are explained using the names 
given to them in the example. In your program, choose parameter names that are 
appropriate for your use. 

This example checks to see if the ccsversion number 75 is valid. Assume for this example 
that 75 is valid and its associated name is CanadaGP' 

8600 0296-000 16-95 



I nternationa I ization 

16-96 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FI LE-CONTROL •. 

SELECT OUTPUT-FILE ASSIGN TO DISK. 

DATA DIVISION. 
FILE SECTION. 
FD OUTPUT-FILE 

LABEL RECORD IS STANDARD 
VALUE OF TITLE IS "OUT /COBOL7 4/VALIDATENUMRTRN. II 
PROTECTION SAVE 
RECORD CONTAINS 80 CHARACTERS 
DATA RECORD IS OUTPUT-RECORD. 

01 OUTPUT-RECORD 

WORKING-STORAGE SECTION. 

01 OF-1. 
05 FILLER 
05 OF-RESULT 
05 FILLER 

01 OF-2. 
05 F'ILLER 
05 OF-NAME-ARY 
05 FILLER 

PIC X(80). 

PIC X(09). VALUE "RESULT = II 

PIC ZZZZZZZZZZZ9. 
PIC X(59) VALUE SPACE. 

PIC X(ll) VALUE "NAME-ARY = II 
PIC X (17) • 
PIC X(52) VALUE SPACE. 

****************************************************************** 
*** The following global declarations are used as parameters *** 
*** to the CENTRALSUPPORT procedures. *** 
****************************************************************** 

01 NAME-ARY PIC X (17) • 

77 CS-CCSVERSIONV PIC S9 (11) 
77 CS-DATAOKV PIC S9 (11) 
77 CS-FALSEV PIC S9(11) 
77 NUM PIC S9 (11) 
77 RESULT PIC S9(11) 

PROCEDURE DIVISION. 
INTLCOBOL74. 

OPEN OUTPUT OUTPUT-FILE. 
PERFORM VALIDATE-NUM-RETURN-NAME. 
CLOSE OUTPUT-FILE. 
STOP RUN. 

USAGE BINARY VALUE 1-
USAGE BINARY VALUE 1-
USAGE BINARY VALUE 0. 
USAGE BINARY. 
USAGE BINARY. 

***** VALIDATE-NUM-RETURN-NAME *********************************** 
VALIDATE-NUM-RETURN-NAME. 

CHANGE ATTRIBUTE LIBACCESS OF "CENTRALSUPPORT" TO BYFUNCTION. 

Example 16-24. Calling the VALIDATE_NUM_RETURN_NAME Procedure 

8600 0296-000 



I nternationa lizat~on 

MOVE 75 TO NUM. 
CALL IIVALIDATE_NUM_RETURN_NAME OF CENTRALSUPPORT II 

USING CS-CCSVERSIONV, 
NUM, 
NAME-ARY 

G.IVING RESULT. 
MOVE RESULT TO OF-RESULT. 
WRITE OUTPUT-RECORD FROM OF-I. 
IF RESULT IS EQUAL TO CS-DATAOKV 

THEN MOVE NAME-ARY TO OF-NAME-ARY 
WRITE OUTPUT-RECORD FROM OF-2. 

Example 16-24. Calling the VALIDATE_NUM_RETURN_NAME Procedure (cont.) 

Explanation 

CS-CCSVERSIONV is passed to the procedure. It indicates whether the value specified 
in NUM is a coded character set number or a ccsversion number. The following values 
are allowed: 

Value 

o 
1 

Sample Data Item 

CS-CHARACTER-SET-V 

CS-CCSVERSION-V 

Meaning 

Coded character set number 

Ccsversion number 

NUM is passed by reference to the procedure. It contains the number of the coded 
character set or ccsversion for which the name is being requested. If you supply the 
value -2 in the NUM parameter when you are checking a ccsversion, the procedure 
returns the name of the system default ccsversion. Refer to the MLS Guide for more 
information about the hierarchy. 

NAME-ARY is returned by the procedure. It contains the coded character set or 
ccsversion name. The recommended length of the name is 17 characters. 

RESULT is returned as the value of the procedure. It indicates whether an error 
occurred during the execution of the procedure. Values greater than or equal to 1000 
indicate an error. An explanation of the error result values can be found at the end of 
this section. You should check the procedure result whenever you use this procedure. 
Possible values returned by VALIDATE _ NUM _RETURN_NAME are as follows: 

1 

1001 

1002 

3000 

3001 

3003 

Sample output froin Example 16-24 follows: 

RESULT = 1 
NAME-ARY = CANADAGP 

See Also 

3006 

For more information on the error result values, see Table 16-2 later in this section. 

8600 0296-000 16-97 



I nternationa I ization 

VSNCOMPARE TEXT 

16-98 

This procedure compares two records, using one of three comparison methods. The 
comparison is specified as one of the following types: 

• A binary comparison, which is based on the hexadecimal code values of the 
characters 

• An equivalent comparison, which is based on the ordering sequence values (OSVs) of 
the characters 

• A logical comparison, which is based on the ordering sequence values (OSVs) plus 
the priority sequence values (PSV s) of the characters 

The procedure retrieves the OSV s and PSV s from the file SYSTEM/CCSFILE based on 
the specified ccsversion. 

Example 

Example 1~25 shows the parameter declarations and the PROCEDURE DMSION 
syntax required to call the VSNCOMP ARE _TEXT library procedure. The declarations 
identify the category of data-item required for parameter matching. For example, 
numeric items must be declared PIC S9(11) USAGE BINARY. 

In the explanation following the example, the parameters are explained using the names 
given to them in the example. In your program, choose parameter names that are 
appropriate for your use. 

This example compares two strings using the CanadaEBCDIC ccsversion. The first 
string is "hotel" and the second string is "tiOtel." Assume the following ordering values 
for the characters: 

Ordering Sequence Value Priority Sequence Value 
Character (OSV) (PSV) 

e 69 2 

h 72 2 

76 2 

0 79 2 

84 2 

~ 79 8 

The compare relation is CsCmpEql ( = ) to determine if "hotel" is. equal to "ffhtel" using 
a logical comparison. You can use the MLS Guide to determine that the ccsversion 
number for CanadaEBCDIC is 74. You can also retrieve this number by calling the 
procedure VALIDATE NAME RETURN NUM with the name CanadaEBCDIC. - ~ -

I 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FI LE-CONTROL. 

Example 16-25. Calling the VSNCOMPARE_TEXT Procedure 

8600 0296-000 



I nternationa I ization 

SELECT OUTPUT-FILE ASSIGN TO DISK. 

DATA DIVISION. 
FILE SECTION. 
FD OUTPUT-FILE 

LABEL RECORD IS STANDARD 
VALUE OF TITLE IS IOUT/COBOL74/VSNCOMPARETEXT." 
PROTECTION SAVE 
RECORD CONTAINS 80 CHARACTERS 
DATA RECORD IS OUTPUT-RECORD. 

01 OUTPUT-RECORD PIC X(80). 

WORKING-STORAGE SECTION. 

01 OF-I. 
05 FILLER 
05 OF-RESULT 
05 FILLER 

PIC X(09) VALUE "RESULT = ". 
PIC ZZZZZZZZZZZ9. 
PIC X(59) VALUE SPACE. 

****************************************************************** 
*** The following global declarations are used as parameters *** 
*** to the CENTRALSUPPORT procedures. *** 
****************************************************************** 

01 TEXTI-TEXT PIC X(05). 
01 TEXT2-TEXT PIC X(05). 

77 CS-CMPEQLV PIC S9 (ll) USAGE BINARY VALUE 2. 
77 CS-DATAOKV PIC S9(11) USAGE BINARY VALUE 1. 
77 CS-FALSEV PIC S9 (11) USAGE BINARY VALUE 0. 
77 CS-LOGICALV PIC S9(11) USAGE BINARY VALUE 2. 
77 TEXT1-START PIC S9(11) USAGE BINARY. 
77 TEXT2-START PIC S9(11) USAGE BINARY. 
77 COMPARE-LEN PIC S9(11) USAGE BINARY. 
77 RESULT PIC S9 (11) USAGE BINARY. 
77 VSN-NUM PIC S9(11) USAGE BINARY. 

PROCEDURE DIVISION. 
INTLCOBOL74. 

OPEN OUTPUT OUTPUT-FILE. 
PERFORM VSNCOMPARE-TEXT. 
CLOSE OUTPUT-FILE. 
STOP RUN. 

***** VSNCOMPARE-TEXT ******************************************** 
VSNCOMPARE-TEXT. 

8600 0296-000 

CHANGE ATTRIBUTE LIBACCESS OF "CENTRALSUPPORT" TO BYFUNCTION. 
MOVE 74 TO VSN-NUM. 
MOVE 5 TO COMPARE-LEN. 
MOVE "hotel" TO TEXTI-TEXT. 

Example 16-25. Calling the VSNCOMPARE_TE?CT Procedure (cont.) 

16-99 



I nternationa lization 

16-100 

MOVE "hOtel" TO TEXT2-TEXT. 
CALL "VSNCOMPARE_TEXT OF CENTRALSUPPORT" 

USING VSN-NUM, 
TEXTI-TEXT, 
TEXTI-START, 
TEXT2-TEXT, 
TEXT2-START, 
COMPARE-LEN, 
CS-CMPEQLV, 
CS-LOGICALV 

GIVING RESULT. 
MOVE RESULT TO OF-RESULT. 
WRITE OUTPUT-RECORD FROM OF-I. 

Example 16-25. Calling the VSNCOMPARE_TEXT Procedure (cont.) 

Explanation 

VSN -NUM is passed to the procedure. It contains the number of the ccsversion that is 
used to compare the text records. The number can be obtained by referring to the MLS 
Guide. The following values are allowed: 

Value 

Greater than or 
equal to 0 (zero) 

-2 

Meaning 

Designate a ccsversion. 

Use the system default ccsversion. If the system default ccsversion is not 
available, the procedure returns an error in RESULT. 

TEXTI-TEXT is passed to the procedure. It contains the first record of text to be 
compared. You determine the size of the record. 

TEXT1-START is passed by reference to the procedure. It contains the byte offset in 
TEXTI-TEXT, relative to 0 (zero), at which the comparison begins. 

TEXT2-TEXT is passed to the procedure. It contains the second record of text to be 
compared. You determine the size of the record. 

TEXT2-START is passed to the procedure. It contains the byte offset in TEXT2-TEXT, 
relative to o (zero), at which the comparison begins. 

COMPARE-LEN is passed by reference to the procedure. It contains the number of 
characters to compare. If COMPARE-LEN is larger than the number of characters 
in the strings, then the procedure might be comparing invalid data. The value 
of COMPARE-LEN should not exceed the bounds of either TEXTI-TEXT or 
TEXT2-TEXT. 

The strings should be of equal size or padded with blanks up to the value of 
COMP ARE-LEN. If all pairs of characters compare equally, the strings are considered 
equal. Otherwise, the· first pair of unequal characters encountered is compared to 
determine their relative ordering. The string that contains the character with the higher 
ordering (higher PSV and higher OSV) is' considered to be the string with the greater 

8600 0296-000 



I nternationa lization 

value. If substitution forms strings of unequal length, the comparison proceeds as if the 
shorter string were padded with blanks on the right. This padding ensures that the 
strings are of equal length. 

CS-CMPEQLV is passed by reference to the procedure. It indicates the relational 
operator of the comparison. The valid values are 

Value Sample Value Name Meaning 

0 CS-CMPLSSV TEXTI-TEXT is less than TEXT2-TEXT. 

1 CS-CMPLEQV TEXTI-TEXT is less than or equal to 
TEXT2-TEXT. 

2 CS-CMPEQLV TEXTI-TEXT is equal to TEXT2-TEXT. 

3 CS-CMPGTRV TEXTI-TEXT is greater than TEXT2-TEXT. 

4 CS-CMPGEQV TEXTI-TEXT is greater than or equal to 
TEXT2-TEXT. 

5 CS-CMPNEQV TEXTI-TEXT is not equal to TEXT2-TEXT. 

CS-LOGICALV is passed by reference to the procedure. It indicates the type of 
comparison to be performed by the procedure. The following are the valid values: 

Value 

o 
1 

2 

Sample Value Name 

BINARY-V 

EQUIVALENT-V 

LOG I CAL-V 

Meaning 

Perform a binary comparison 

Perform an equivalent comparison 

Perform a logical comparison 

RESULT is returned as the value of the procedure. It contains the procedure result or 
indicates that an error occurred during the execution of the procedure. The possible 
values for RESULT and their meanings are as follows: 

Value 

o 
1 

Condition-Name 

CS-FALSEV 

CS-OATAOKV 

Meaning 

No error and the conditipn is FALSE 

No error and the condition is TRUE 

Other possible values returned by the procedure are as follows:· 

1000 

1001 

1002 

3003 

3006 

The meanings of the error result values are explained at the end of this section. 

Sample output from Example 16-25 follows: 

RESULT = 

See Also 

For more information on the error result values, see Table 16-2 later in this section. 

8600 0296-000 16--101 



I nternationa I ization 

VSN ESCAPEM ENT 

16-102 

This procedure takes the input text and rearranges it according to the escapement 
rules of the ccsversion. Both the character advance direction and the character 
escapement direction are used. If the character advance direction is positive, then 
the starting position for the escapement process is the leftmost position of the text in 
the DEST-TEXT parameter. If the character advance direction is negative, then the 
starting position for the escapement process is the rightmost position of the text in the 
DEST-TEXT parameter. From that point on, the character advance direction value and 
the character escapement direction values, in combination, control where each character 
should be placed in relation to the previous character. 

Example 

Example 16-26 shows the parameter declarations and the PROCEDURE DIVISION 
syntax required to call the VSNESCAPEMENT library procedure. The declarations 
identify the category of data-item required for parameter matching. For example, 
numeric items must be declared PIC S9(11) USAGE BINARY. 

In the explanation following the example, the parameters are explained using the names 
given to them in the example. In your program, choose parameter names that are 
appropriate for your use. 

This example takes the stringABCDEFG and rearranges it according to the escapement 
rules of the ccsversion. Assume for this example a ccsversion number of 999 with a 
character advance direction of plus ( + , left to right) and with the following character 
escapements: 

Character 

A 

B 

C 

o 
E 

F 

G 

Escapement 

+ 

+ 

+ 

blank 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FI LE-CONTROL. 

SELECT OUTPUT-FILE ASSIGN TO DISK. 

DATA DIVISION. 
FILE SECTION. 
FD OUTPUT"'!FILE 

LABEL RECORD IS STANDARD 

Meaning 

Left to right. 

Right to left. 

Right to left. 

Right to left. 

Left to right. 

Left to right. 

Use character advance direction value. 

Example 16-26. Calling the VSNESCAPEM~NT Procedure 

8600 0296-000 



I nternationa I ization 

VALUE OF TITLE IS IOUT/COBOL74/VSNESCAPEMENT." 
PROTECTION SAVE 
RECORD CONTAINS 80 CHARACTERS 
DATA RECORD IS OUTPUT-RECORD. 

01 OUTPUT-RECORD PIC X(80). 

WORKING-STORAGE SECTION. 

01 OF-I. 
05 FILLER 
05 OF-RESULT 
05 FILLER 

PIC X(09) VALUE "RESULT = II 

PIC ZZZZZZZZZZZ9. 
PIC X(59) VALUE SPACE. 

01 OF-2. 
05 FILLER 
05 OF-DEST-TEXT 
05 FILLER 

PIC X(12) VALUE "DEST-TEXT = II 
PIC X(07}. 
PIC X(61) VALUE SPACE. 

****************************************************************** 
*** The following global declarations are used as parameters *** 
*** to the CENTRALSUPPORT procedures. *** 
****************************************************************** 

01 DEST-TEXT PIC X (07) • 
01 SOURCE;..TEXT PIC X (07) • 

77 CS-DATAOKV PIC S9(11) 
77 CS-FALSEV PIC S9(11) 
77 SOURCE-START PIC S9(11) 
77 TRANS-LEN PIC S9(11) 
77 RESULT PIC S9(11) 
77 VSN-NUM PIC S9(11) 

PROCEDURE DIVISION. 
INTLCOBOL74. 

OPEN OUTPUT OUTPUT-FILE. 
PERFORM VSNESCAPEMENT. 
CLOSE OUTPUT-FILE. 
STOP RUN. 

USAGE BINARY VALUE l. 
USAGE BINARY VALUE 0. 
USAGE BINARY. 
USAGE BINARY. 
USAGE B I NARY. 
USAGE BINARY. 

***** VSNESCAPEMENT ********************************************** 
VSNESCAPEMENT. 

CHANGE ATTRIBUTE LIBACCESS OF "CENTRALSUPPORT" TO BYFUNCTION. 
MOVE 999 TO VSN-NUM~ 
MOVE "ABCDEFG" TO SOURCE-TEXT. 
MOVE 7 TO TRANS-LEN. 
CALL "VSNESCAPEMENT OF CENTRALSUPPORT" 

8600 0296-000 

USING VSN-NUM, 
SOURCE-TEXT, 
SOURCE-START, 
DEST-TEXT, 

Example 16-26. Calling the VSNESCAPEMENT Procedure (cant.) 

16-103 



I nternationa I ization 

16-104 

TRANS-LEN 
GIVING RESULT. 

MOVE RESULT TO OF-RESULT. 
WRITE OUTPUT-RECORD FROM OF-I. 
IF RESULT IS EQUAL TO CS-DATAOKV 

THEN MOVE DEST-TEXT TO OF-DEST-TEXT 
WRITE OUTPUT-RECORD FROM OF-2. 

Example 16-26. Calling the VSNESCAPEMENT Procedure (cont.) 

Explanation 

VSN-NUM is passed by reference to the procedure. It specifies the ccsversion to be 
used. The ccsversion contains the escapement rules. The following are the values 
allowed for VSN-NUM: . 

Value 

Greater than or 
equal to 0 

-2 

Meaning 

Specifies a ccsversion. The numbers of the ccsversions are listed in the 
MLSGuide. 

Specifies the system default ccsversion. If the system default 
ccsversion is not available, an error is returned. 

SOURCE-TEXT is passed to the procedure. It contains the text to be arranged 
according to the escapement rules. You must determine the size of the record. 

SOURCE-START is passed by reference to the procedure. It specifies where in 
SOURCE-TEXT the procedure is to begin rearranging the text. 

DEST-TEXT is returned by the procedure. It contains the rearranged text. The length 
of the SOURCE-TEXT parameter and the DEST-TEXT parameter should be the same. 

TRANS-LEN is passed by refe~ence to the procedure. It specifies the number of 
characters to rearrange, beginning at SOURCE-START. 

RESULT is returned as the value of the procedure. It indicates whether an error 
occurred during the execution ofthe.procedure. Values greater than or equal to 1000 
indicate an error. An explanation of the error result values can be found at the end of 
this section. You should check the procedure result whenever you use this procedure. 
Possible values returned by the procedure are as follows: 

1 

1000 

1001 

1002 

3000 

3002 

3003 

8600 0296-000 



I nternationa I ization 

Sample. output from Example 1~26 follows: 

RESULT = 1 
DEST-TEXT = ADCBEFG 

See Also 

For more information on the error result values, see Table 1~2 later in this section. 

VSNGETORDERINGFOR ONE TEXT - -
This procedure returns the ordering information for a specified input text. The ordering 
information determines how the input text is collated. It includes the ordering sequence 
values (OSVs) and optionally the priority sequence values (PSVs) of the characters. It 
always includes any substitution of characters to be made when the input text is sorted. 
You can choose one of the following types of ordering information: 

Type of Ordering 

Equivalent 

Logical 

Example 

Explanation 

The DEST parameter consists of a sequence of OSVs. 

The DEST parameters consists of a sequences of OSVs 
followed by PSVs. 

Example 1~27 shows the parameter declarations and the PROCEDURE DMSION 
syntax required to call the VSNGETORDERINGFOR_ ONE_TEXT library procedure. 
The declarations identify the category of data-item required for parameter matching. 
For example, numeric items must be declared PIC S9(11) USAGE BINARY. 

In the explanation following the example, the parameters are explained using the names 
given to them in the example. In your program, choose parameter names that are 
appropriate for your use. 

This example obtains the OSVs and PSVs for the input text string "ABCcelE." The 
ccsversion is CanadaEBCDIC. You can use the MLS Guide to determine that the 
ccsversion for CanadaEBCDIC is 74. You can also retrieve this number by calling the 
procedure VALIDATE_NAME_RETURN_NUM with the name CanadaEBCDIC. 
This example requests logical ordering information, so both the OSV s and PSV s are 
returned. This example also allows for maxinium substitution, so the parameter 
max _ osvs is equal to itext _len * 3 and the parameter total storage is equal to max _ osvs 
+ round(max_osvs/2.0). 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FI LE-CONTROL. 

. SELECT OUTPUT-FILE ASSIGN TO DISK. 

DATA DIVISION. 
FILE SECTION. 
FD OUTPUT-FILE 

Example 16-27. Calling the VSNGETORDERINGFOR_ONE_TEXT Procedure 

8600 0296-000 16-105 



I nternationa Iization 

16-106 

LABEL RECORD IS STANDARD 
VALUE OF TITLE IS "OUT/COBOL74/VSNGETORDONETEXT." 
PROTECTION SAVE 
RECORD CONTAINS 80 CHARACTERS 
DATA RECORD IS OUTPUT-RECORD. 

01 OUTPUT-RECORD 

WORKING-STORAGE SECTION. 

01 OF-I. 
05 FILLER 
05 OF-RESULT 
05 FILLER 

01 OF-2. 
05 FILLER 
05 OF-DEST-TEXT 
05 FILLER 

PIC X(80). 

PIC X(09) VALUE "RESULT = ". 

PIC ZZZZZZZZZZZ9. 
PIC X(59) VALUE SPACE. 

PIC X(12) VALUE "DEST-TEXT = II 

PIC X(51). 
PIC X(17) VALUE SPACE. 

****************************************************************** 
*** The following global declarations are used as parameters *** 
*** to the CENTRALSUPPORT procedures. *** 
****************************************************************** 

01 DEST-TEXT PIC X(51). 
01 SOURCE-TEXT PIC X(51). 

77 CS-DATAOKV PIC S9(11) USAGE BINARY VALUE 1. 
77 CS-FALSEV PIC S9(ll) USAGE BINARY VALUE 0. 
77 CS-LOGICALV PIC S9(11) USAGE BINARY . VALUE 2. 
77 DEST-START PIC S9(11) USAGE BINARY. 
77 ITEXT-LEN PIC S9(11) USAGE BINARY. 
77 MAX-OSVS PIC S9(11) USAGE BINARY. 
77 RESULT PIC S9(11) USAGE BINARY. 
77 SOURCE-START PIC S9(11) USAGE BINARY. 
77 TOTAL-STORAGE PIC S9(11) USAGE BINARY. 
77 VSN-NUM PIC S9(11) USAGE BINARY. 

PROCEDURE DIVISION. 
INTLCOBOL74. 

OPEN OUTPUT OUTPUT-FILE. 
PERFORM VSNGETORDERINGFOR-ONE-TEXT. 
CLOSE OUTPUT-FILE. 
STOP RUN. 

***** VSNGETORDERINGFOR-ONE-TEXT ********************************* 
VSNGETORDERINGFOR-ONE-TEXT. 

CHANGE ATTRIBUTE LIBACCESS OF "CENTRALSUPPORT" TO BYFUNCTION. 
MOVE 74 TO VSN-NUM. 
MOVE 5 TO ITEXT-LEN. 
COMPUTE MAX-OSVS = ITEXT-LEN * 3. 

Example 16-27. Calling the VSNGETORDERINGFOR_ ONE_TEXT Procedure (cont.) 

8600 0296-000 



COMPUTE TOTAL-STORAGE = MAX-OSVS + MAX-OSVS / 2. 
MOVE II ABCrelE lI TO SOURCE-TEXT. 
CALL IIVSNGETORDERINGFOR_ONE_TEXT OF CENTRALSUPPORT II 

USING VSN-NUM, 
SOURCE-TEXT, 
SOURCE-START, 
ITEXT-LEN, 
DEST-TEXT, 
DEST-START, 
MAX-OSVS, 
TOTAL-STORAGE, 
CS-LOGICALV 

GIVING RESULT. 
MOVE RESULT TO OF-RESULT. 
WRITE OUTPUT-RECORD FROM OF-I. 
IF RESULT IS EQUAL TO CS-DATAOKV 

THEN MOVE DEST-TEXT TO OF-DEST-TEXT 
WRITE OUTPUT-RECORD FROM OF-2. 

I nternationa lization 

Example 16-27. Calling the VSNGETORDERINGFOR_ONE_TEXT Procedure (cont.) 

EXplanation 

VSN-NUM is passed to the procedure. It contains the number of the ccsversion that is 
used. The number can be obtained by calling the CENTRALSTATUS procedure or by 
referring to the MLS Guide. The following shows the allowed values: . 

Value 

Greater than or 
equal to 0 

-2 

Meaning 

Specifies a ccsversion. The numbers of the cC$versions are listed in the 
MLSGuide. 

Use the system default ccsversion. If the system default ccsversion is 
not available, an error is returned. 

SOURCE-TEXT is a record passed to the procedure. It contains the text for which the 
ordering information is requested. 

SOURCE-START is passed by reference to the procedure. It contains the offset of the 
location where the translation is to begin. 

!TEXT-LEN is passed by reference to the procedure. It contains the length of the text 
that is to be translated. 

DEST-TEXT is a record returned by the procedure. It contains the ordering information 
for the input text. 

DEST-START is returned by the procedure. It designates the starting offset at which 
the result values are placed. 

MAX-OSVS is an integer passed by reference to the procedure. It designates the 
maximum number of storage bytes to be used to store the ordering sequence values. 

8600 0296-000 16-107 



I nternationa I ization 

16-108 

The value of MAX-OSVS should be the length of the input text. In the case when 
substitution is required, the MAX-OSVS value might need to be more than the length 
of the input text. The maximum substitution length defined for any ccsversion is 3; 
therefore, to allow for substitution for every character, the value ofMAX-OSVS is as 
follows: 

(length of source text in bytes) * 3 

If the number ofOSVs returned is less thaD. MAX-OSVS, then the alphanumeric record 
is packed with the ordering sequence value for blank. 

TOTAL-STORAGE is passed by reference to the procedure. It defines the maximum 
number of bytes needed to store the complete ordering information for the text. If you 
request equivalent ordering information, TOTAL-STORAGE and MAX-OSVS should 
be set the same. If you request logical ordering information, you must provide space for 
the four-bit priority values in addition to the'space allowed for the OSVs. Each OSV 
has one PSv, and one byte can hold two PSVs. Therefore, the space allowed for PSV s 
MAX.-OSVS/2, and the value of TOTAL-STORAGE should be set as follows: 

MAX-OSVS + (MAX-OSVS)/2 

When the ordering information is returned by the procedure, all the OSV s are listed 
first, followed by all the PSV s. 

CS-LOGICALVis an integer passed by reference to the procedure. It indicates the type 
of ordering information you want, as follows: 

Value 

1 

2 

Sample Value Name 

CS-EQUIVALENTV 

CS-LOGICALV 

Meaning 

OSVsonly 

PSVs only 

RESULT is returned as the value of the procedure. It indicates whether an error 
occurred during the execution of the procedure. Values greater than or equal to 1000 
indicate an error. An explanation of the error result values can be found at the end of 
this section. You should check the procedure result whenever you use this procedure. 
Possible values returned by this procedure are as follows: 

a 
1 

1000 

1001 

1002 

3000 

3001 

3002 

Sample output from Example 16-27 follows: 

RESULT = CS_DATAOKV 

3003 

3006 

3008 

DEST-TEXT = 414243414541 454040404040 404040111221 111111111111 

Based on the values ofDEST-TEXT, the OSVs are 65, 66, 67, 65, 69, 65, and 69. The 
PSV s are 1, 1, 1, 2,2, 1, and 1. 

8600 0296-000 



International ization 

See Also 

For more information on the error result values, see Table 16-2 later in this section. 

VSNINSPECT TEXT 

This procedure searches a specified text for characters that are present or not present 
in a requested data class. The SCANNED-CHARS parameter is an integer that 
represents the number of characters that were searched when the criteria specified 
in the CS _NOT _ INTSETV parameter were met. If SCANNED-CHARS is equal to 
INSPECT-LEN, then all the characters were searched but none met the criteria. 
Otherwise, adding the TEXT-START value to the RESULT value gives the location of 
the character, from the start of the array, that met the search criteria. 

Example 

Example 16-28 shows the parameter declarations and the PROCEDURE DIVISION 
syntax required to call the VSNINSPECT _TEXT library procedure. The declarations 
identify the category of data-item required for parameter matching. For example, 
numeric items must be declared PIC S9(11) USAGE BINARY. 

In the explanation following the example, the parameters are explained using the names 
given to them in the example. In your program, choose parameter names that are 
appropriate for your use. 

This example examines a record that contains two fields, a name and a phone number. 
The name is verified to contain only alphabetic characters as defined by the France 
ccsversion. You can use the MLS Guide to determine that the ccsversion number for 
France is 35. You can also retrieve this number by calling the procedure CCSVSNNUM 
with the name France. 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVI$ION. 
INPUT-OUTPUT SECTION. 
FI LE-CONTROL. 

SELECT OUTPUT-FILE ASSIGN TO DISK. 

DATA DIVISION. 
FILE SECTION. 
FD OUTPUT-FILE 

LABEL RECORD IS STANDARD 
VALUE OF TITLE IS "OUT/COBOL74/VSNINSPECTTEXT." 
PROTECTION SAVE 

. RECORD CONTAINS 80 CHARACTERS 
DATA RECORD IS OUTPUT-RECORD. 

01 OUTPUT-RECORD PIC X(80). 

WORKING-STORAGE SECTION. 

Example 16-28. Calling the VSNINSPECT_TEXT Procedure 

8600 0296--000 16-109 



I nternationa I ization 

16-110 

01 OF-1. 
05 FILLER 
05 OF-RESULT 
05 FILLER 

PIC X(09) VALUE "RESULT = " 
PIC ZZZZZZZZZZZ9. 
PIC X(59) VALUE SPACE. 

01 OF-2. 
05 FILLER PIC X(16) VALUE "SCANNED-CHARS = " 
05 OF-SCANNED-CHARS PIC ZZZZZZZZZZZ9. 
05 FILLER PIC X(52) VALUE SPACE. 

****************************************************************** 
*** The following global declarations are'used as parameters *** 
*** to the CENTRALSUPPORT procedures. *** 
****************************************************************** 

01 SOURCE-TEXT PIC X(41). 

77 CS-DATAOKV PIC S9(11) USAGE BINARY VALUE 1. 
77 CS-FALSEV PIC S9(11) USAGE BINARY VALUE 0. 
77 CS-NOT-INTSETV PIC S9(11) USAGE BINARY VALUE 0. 
77 CS-NUMERICSV PIC S9(11) USAGE BINARY VALUE 13. 
77 ID-LEN PIC S9(11) USAGE BINARY VALUE 10. 
77 INSPECT-LEN PIC S9 (11) USAGE BINARY. 
77 NAME-LEN PIC S9(11) USAGE BINARY VALUE 30. 
77 SCANNED-CHARS PIC S9(11) USAGE BINARY. 
77 SOURCE-START PIC S9(11) USAGE BINARY. 
77 RESULT PIC S9(11) USAGE BINARY. 
77 VSN-NUM PIC S9(11) USAGE BINARY. 

PROCEDURE DIVISION. 
INTLCOBOL74. 

OPEN OUTPUT OUTPUT-FILE. 
PERFORM VSNINSPECT-TEXT. 
CLOSE OUTPUT-FILE. 
STOP RUN. 

***** VSNINSPECT-TEXT ******************************************** 
VSNINSPECT-TEXT. 

CHANGE ATTRIBUTE LIBACCESS OF "CENTRALSUPPORT" TO BYFUNCTION. 
MOVE 35 TO VSN-NUM. 
MOVE NAME-LEN TO INSPECT-LEN. 
MOVE "7775961089John Alan Smith 
CALL "VSNINSPECT_TEXT OF CENTRALSUPPORT" 

USING VSN-NUM, 
SOURCE-TEXT, . 
SOURCE-START, 
INSPECT-LEN, 
CS-NUMERICSV, 
CS-NOT-INTSETV, 
SCANNED-CHARS 

GIVING RESULT. 
MOVE RESULT TO OF-RESULT. 

II TO SOURCE-TEXT. 

Example 16-28. Calling the VSNINSPECT_TEXT Procedure (cont.) 

8600 0296-000 



I nternationa I ization 

WRITE OUTPUT-RECORD FROM OF-I. 
IF RESULT IS EQUAL TO CS-DATAOKV AND 

SCANNED-CHARS IS EQUAL TO ID-LEN 
THEN MOVE SCANNED-CHARS TO OF-SCANNED-CHARS 

WRITE OUTPUT-RECORD FROM OF-2. 

Example 16-28. Calling the VSNINSPECT_TEXT Procedure (cont.) 

Explanation 

VSN -NUM is passed by reference to the procedure. It specifies the ccsversion to be 
used. The ccsversion contains the rules for applying a truthset. The following are the 
values allowed for VSN -NUM: 

Value Meaning 

Greater than or 
equal to 0 

Specifies a ccsversion. The numbers of the ccsversions are listed in the 
MLSGuide. 

-2 Specifies the system default ccsversion. If the system default 
ccsversion is not available, an error is returned. 

SOURCE-TEXT is passed to the procedure. The record is searched for a character using 
the requested truthset and type of search. You determine the size of ,the record. 

SOURCE-START is passed by reference to the procedure. It contains the byte offset in 
SOURCE-TEXT, relative to 0 (zero), at which the search begins. 

ID-LEN is passed by reference to the procedure. It specifies the length of the inspected 
test; that is, the number of characters found to be numeric. 

INSPECT-LEN is passed by reference to the procedure. It specifies the number of, 
characters to be searched beginning at SOURCE-START. It specifies that maximum 
length of the search. 

NAME-LEN passed by reference to the procedure. It specifies the length of the name to 
be inspected. 

CS-NUMERICSV is passed to the procedure. It indicates the type oftruthset to be used 
for the search. The following are the values allowed for CS-NUMERICSV and their 
meanings: 

Value 

12 

13 

14 

15 

8600 0296-000 

Sample Data Name 

CS-ALPHAV 

CS-NUMERICSV 

CS-PRESENTATIONV 

CS-SPACESV 

Meaning 

Alphabetic truthset. It identifies the characters 
defined as alphabetic in the specified ccsversion. 

Numeric truthset. It identifies the characters 
defined as numeric in the specified ccsversion. 

Presentation truthset. It identifies the characters in 
the ccsversion that can be represented on a 
presentation device, such as a printer. 

Spaces truth set. It identifies the characters defined 
as spaces in the specified ccsversion. 

continued 

16-111 



I nternationa I ization 

16-112 

continued 

Value Sample Data Name 

16 CS-LOWERCASEV 

17 CS-U PPERCASEV 

Meaning 

Lowercase truthset. It identifies the characters 
defined as lowercase alphabetic in the specified 
ccsversion. 

Uppercase truthset. It identifies the characters 
defined as uppercase alphabetic in the specified 
ccsversion. 

A ccsversion is not required to have a definition for each of these truthsets. Some of the 
truthsets, such as 16 and 17, are optional. A result of 4002 might be returned if the 
truthset was not defined for the ccsversion. The input text remains unchanged. 

CS-NOT-INSETV is passed to the procedure. It indicates the type of search to be 
performed. The values allowed for this parameter and their meanings are as follows: 

Value 

o 

1 

Sample Data Name 

CS-NOTINTSETV 

CS-INTSETV 

Meaning 

Search the text until a character is found that is 
not in the requested truthset. 

Search the text until a character is found that isin 
the requested truthset. 

SCANNED-CHARS is an integer returned by the procedure. It contains the number of 
characters, relative to 0 (zero), that were scanned when the search criteria was met. 

RESULT is returned as the value of the procedure. It indicates whether an error 
occurred during the execution of the procedure. Values greater than or equal to 1000 
indicate an error. An explanation of the error result values can be found at the end of 
this section. You should check the procedure result whenever you use this procedure. 
Possible values returned by VSNINSPECT _TEXT are as follows 

1 

1000 

1001 

1002 

3000 

3001 

3003 

3006 

Sample output from Example 16-28 follows: 

RESULT = 
SCANNED-CHARS = 

See Also 

1 
10 

3007 

4002 

For more information on the error result values, see Table 16-21ater in this section. 

8600 0296-000 



I nternationa Iization 

VSNTRANS TEXT 

This procedure applies a specified mapping table to the source text and places the result 
into the destination parameter. You can use the same record for both the source and 
destination text. 

You might use this procedure to translate alternative digits received as data into numeric 
digits for arithmetic processing. 

Example 

Example 16-29 shows the parameter declarations and the PROCEDURE DMSION 
syntax required to call the VSNTRANS _TEXT library procedure. The declarations 
identify the category of data-item required for parameter matching. For example, 
numeric ~tems must be declared PIC S9(11) USAGE BINARY. 

In the explanation following the example, the parameters are explained using the names 
given to them in the example. In your program, choose parameter names that are 
appropriate for your use. 

This example translates a string in lowercase letters to uppercase letters using the 
CanadaEBCDIC ccsversion. The input string is "prean." You can use the MLS Guide to 
determine that the ccsversion number for CanadaEBCDIC is 74. You can also retrieve 
this number by calling the procedure CCSVSNNUM with the ilame CanadaEBCDIC. 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FI LE-CONTROL. 

SELECT OUTPUT-FILE ASSIGN TO DISK. 

DATA DIVISION. 
FILE SECTION. 
FD OUTPUT-FILE 

LABEL RECORD IS STANDARD 
VALUE OF TITLE IS IOUT/COBOL74/VSNTRANSTEXT." 
PROTECTION SAVE 
RECORD CONTAINS 80 CHARACTERS 
DATA RECORD IS OUTPUT-RECORD. 

01 OUTPUT-RECORD PIC X(80). 

WORKING-STORAGE SECTION. 

01 OF-I. 
05 FILLER 
05 OF-RESULT 
05 FILLER 

01 OF-2. 
05 FILLER 
05 OF-DEST-TEXT 

PIC X(09) VALUE "RESULT = II. 
PIC ZZZZZZZZZZZ9. 
PIC X(59) VALUE SPACE. 

PIC X(12) VALUE "DEST-TEXT = ". 
PIC X (07) • 

Exampte 16-29. Calling the VSNTRANS_TEXT Procedure 

8600 0296-000 16-113 



I nternationa lization 

16-114 

05 FILLER PIC X(61) VALUE SPACE. 

****************************************************************** 
*** The following global declarations are used as parameters *** 
*** to the CENTRALSUPPORT procedures. *** 
****************************************************************** 

01 DEST-TEXT PIC X (07) • 
01 SOURCE-TEXT PIC X (07) • 

77 CS-DATAOKV PIC S9(11) USAGE BINARY VALUE 1. 
77 CS-FALSEV PIC S9(11) USAGE BINARY VALUE 0. 
77 CS-LOWTOUPCASEV PIC S9 (11) USAGE BINARY VALUE 7. 
77 DEST-START PIC S9(11) USAGE BINARY. 
77 SOURCE-START PIC S9(11) USAGE BINARY. 
77 RESULT PIC S9 (11) USAGE BINARY. 
77 TRANS-LEN PIC S9 (11) USAGE BINARY. 
77 VSN-NUM PIC S9 (11) USAGE BINARY. 

PROCEDURE DIVISION. 
INTLCOBOL74. 

OPEN OUTPUT OUTPUT-FILE. 
PERFORM VSNTRANS-TEXT. 
CLOSE OUTPUT-FILE. 
STOP RUN. 

***** VSNTRANS-TEXT ******************************************** 
VSNTRANS-TEXT. 

CHANGE ATTRIBUTE LIBACCESS OF "CENTRALSUPPORT" TO BYFUNCTION. 
MOVE 74 TO VSN-NUM. 
MOVE 4 TO TRANS-LEN. 
MOVE "prean" TO SOURCE-TEXT. 
CALL IIVSNTRANS_TEXT OF CENTRALSUPPORT" 

USING VSN-NUM, 
SOURCE-TEXT, 
SOURCE-START, 
DEST-TEXT, 
DEST -START, 
TRANS-LEN, 
CS-LOWTOUPCASEV 

GIVING RESULT. 
MOVE RESULT TO OF-RESULT. 
WRITE OUTPUT-RECORD FROM OF-I. 
IF RESULT IS EQUAL TO CS-DATAOKV 

THEN MOVE DEST-TEXT TO OF-DEST-TEXT. 
WRITE OUTPUT-RECORD FROM OF-2. 

Example 16-29. Calling the VSNTRANS_TEXT Procedure (cont.) 

8600 0296-000 



I nternationa I ization 

Explanation 

VSN -NUM is an integer passed by reference to the procedure. It contains the number 
of the ccsversion to be used. The ccsversion contains the rules for translation of text. 
Refer to the MLS Guide for a list of the ccsversion numbers. The values allowed for 
VSNNUM and the meanings of the values are as follows: 

Value Meaning 

Greater than or equal to 0 

-2 

Use the specified ccsversion number. 

Use the system default ccsversion. If the system default 
ccsversion is not available, an error is returned. 

SOURCE-TEXT is passed to the procedure. It contains the data to translate. You 
should determine the size of this record. 

SOURCE-START is passed to the procedure. It designates the byte offset, relative to 0 
(zero), in SOURCE-TEXT at which translation is to begin. 

DEST-TEXT is returned by the procedure. It contains the translated text. This record 
and the record in the SOURCE-TEXT parameter should be the same size. 

DEST-START is passed to the procedure. It indicates the offset in the DEST-TEXT 
parameter where the translated text is to be placed. 

TRANS-LEN is passed to the procedure. It designates the number of characters in the 
SOURCE-TEXT parameter to translate, beginning at SOURCE-START. 

CS-LOWTOUPCASEV is passed to the procedure. It designates the type of translation 
requested. The allowed values for CS-LOWTOUPCASEV and their meanings are as 
follows: 

Value Sample Data Name Meaning 

5 CS-NUMTOALTDIGV Translate numbers 0 through 9 to alternate 
digits specified in the ccsversion. 

6 CS-ALTDIGTONUMV Translate alternate digits to numbers 0 through 
9. 

7 CS-LOWTOUPCASEV Translate all characters from lowercase to 
uppercase. 

8 CS-UPTOLOWCASEV Translate all character from uppercase to 
lowercase. 

9 CS-ESCMENTPERCHARV Translate a character to its escapement value. 

A ccsversion is not required to have a definition for each of these tables. Some of the 
tables, such as 5,6, 7, and 8, are optional .. A result of 4002 might be returned if the table 
was not defined for the ccsversion. The input text remains unchanged. 

RESULT is returned as the value of the procedure. It indicates whether an error· 
occurred during the execution of the procedure. Values greater than or equal to 1000 
indicate an error. An explanation of the error result values can be found at the end of 

8600 0296-000 16-115 



I nternationa I ization 

Errors 

this section. You should check the procedure result whenever you use this procedure. 
Possible values returned by VSNTRANS _TEXT are as follows: 

1 

1000 

1001 

1002 

3000 

3001 

3002 

3003 

Sample output from Example 16-29 follows: 

RESULT = 1 
DEST-TEXT = P~AN 

See Also 

3006 

4002 

For more information on the error result values, see Table 16-2 later in this section. 

All of the procedures in the CENTRALSUPPORT library return integer results to 
indicate the success or failure of the procedure. 

Declarations 

Example 16-80 shows a sample set of declarations for the message values. 

01 ERROR-VALUES PIC S9 (Ii) USAGE BINARY. 
88 CS-FILE-ACCESS-ERRORV VALUE 1000. 
88 CS-FAULTV VALUE 100!. 
88 CS-SOFTERRV VALUE 1002. 
88 LANGUAGE-NOT-FOUNDV VALUE 2001. 
88 CONVENTION-NOT-FOUNDV VALVE 2002. 
88 FLD-TRUNCATEDV VALUE 2003. 
88 I NCOMPLETE-DATAV VALUE 2004. 
88 BAD-ARRAY-DESCRIPTIONV VALUE 3000. 
88 ARRAY-TOO-SMALLV VALUE 3001. 
88 . BAD-DATA-LENV VALUE 3002. 
88 NO-NUM-FOUNDV VALUE 3003. 
88 NO-NAM~-FOUNDV VALUE 3004. 
88 NO-MSGNUM-FOUNDV VALUE 3005. 
88 BAD-TYPE-CODEV VALUE 3006. 
88 BAD-FLAGV VALUE 3007. 
88 BAD-TEXT-PARAMV VALUE 3008. 
88 BAD-TEMPCHARV VALUE 3011. 
88 BAD-DATEINPUTV VALUE 3012. 
88 BAD-TIMEINPUTV VALUE 3013. 
88 CNV-EXISTS-ERRV VALUE 3014. 
88 BAD-MAXDIGITSV VALUE 3015. 

Example 16-30. Declaring Message Values 

16-116 8600 0296-000 



I nternationa I ization 

88 BAD-FRACDIGITSV VALUE 3016. 
88 BAD-ALTFRACDIGITSV VALUE 3017. 
88 BAD-LDATETEMPV VALUE 3018. 
88 BAD-SDATETEMPV VALUE 3019. 
88 BAD-NDATETEMPV VALUE 3020. 
88 BAD-LTIMETEMPV VALUE 3021. 
88 BAD-NTIMETEMPV VALUE 3022. 
88 BAD-MONTEMPV VALUE 3023. 
88 BAD-NUMTEMPV . VALUE 3024. 
88 BAD-LPPV VALUE 3027. 
88 BAD-CPLV VALUE 3028. 
88 REQSYMBOLV VALUE 3029. 
88 BAD-TEMPLENV VALUE 3030. 
88 MUTUAL-EXCLUSIVEV VALUE 3031. 
88 BAD-MINDIGITSV VALUE 3032. 
88 MISSING-RBRACKETV VALUE 3033. 
88 MISSING-TCCOLONV VALUE 3034. 
88 BAD-INPUTVALV VALUE 3035. 
88 CNV-NOTAVAILV VALUE 3036. 
88 CNVFILE-NOTPRESENTV VALUE 3037. 
88 BAD-PRECISIONV VALUE 3038. 
88 NO-CNVNAMEV VALUE 3039. 
88 DEL-PERMANENTCNV-ERRV VALUE 3040. 
88 NO-HEXCODE-DELIMV VALUE 3041. 
88 BAD-HEXCODEV VALUE 3042. 
88 NO-ALTCURR-DELIMV VALUE 3043. 
88 DATA-NOT-FOUNDV VALUE 4002. 

Example 16-30. Declaring Message Values (cont.) 

Explanation of Error Values 

The range 1000 through 1999 are error messages that report a Unisys software error. 

Values from 2000 through 2999 contain error messages in which the caller passed invalid 
data to a procedure, but the CENTRALSUPPORT library was able to return some valid 
data. 

Values from 3000 through 3999 contain error messages in which the caller passed invalid 
data to a CENTRALSUPPORT procedure, and the CENTRALSUPPORT library was 
unable to return any valid data. 

Values from 4000 through 4999 contain error messages in which the caller passed some 
sort of data for which the CENTRALSUPPORT library eouId find no return information. 
CENTRALSUPPORT completed the request, but no data was returned. 

Table 16-2 lists the error numbers that can be returned for internationalization and the 
specific descriptions of the error messages that you can have your program display. 

8600 0296-000 16-117 



I nternationa I ization 

16-118 

See Also 

• Refer to GET _ CS _ MSG earlier in this section for information about the message 
parts. 

• Refer to the MLS Guide for a list of the complete error messages and for 
information about the corrective actions to be taken if an error occurs. 

Table 16-2. Specific Descriptions for Internationalization Error Values 

Error Value 

1000 

Specific Description 

An error occurred while accessing the SYSTEM/CCSFILE or the 
SYSTEM/CONVENTIONS file. 

1001 An unexpected fault occurred in CENTRALSUPPORt Your request cannot be 
processed at this time. 

1002 A CENTRALSUPPORT software error was detected. Your request cannot be 
processed at this time. 

2001 The data is not in the requested language. It is in MYSELF.LANGUAGE or the 
SYSTEM LANGUAGE or the first available LANGUAGE. 

2002 The data is not in the requested convention; it is in MYSELF.CONVENTION or 
the SYSTEM CONVENTION. 

2003 The DATE or TIME component was too long and was truncated. 

2004 Only partial data is being returned. There was insufficient space in the output 
array. 

3000 A parameter was incorrectly specified as less than or equal to o. 
3001 The output array size is smaller than the length of the data it is supposed to 

contain. 

3002 At least one array length is invalid or the offset + length is greater than the size 
of the array. 

3003 The requested number was not found. 

3004 The requested name was not found. 

3005 The requested number was not found. 

3006 The type code specified is out of the acceptable range. 

3007 The flag specified is out of the acceptable range. 

3008 The space for OSVs or total storage allocated in OUTPUT is not big enough for 
OSVs and/or PSVs. 

3011 An invalid control character was detected in the template. 

3012 DATE component specifies a value out of range. 

3013 TIME component specifies a value out of range. 

continued 

(8600 0296-000 



Internationalization 

Table 16-2. Specific Descriptions for Internationalization Error Values (cont.) 

Error Value 

3014 

3015 

3016 

3017 

3018 

3019 

3020 

3021 

3022 

3023 

3024 

3027 

3028 

3029 

3030 

3031 

3032 

3033 

3034 

3035 

3036 

3037 

3038 

3039 

3040 

8600 0296-000 

Specific Description 

An attempt was made to add a new convention with the name of an existing 
convention. 

The maximum digits value is either missing or out of range. 

The fractional digits value is either missing or out of range. 

The international fractional digits value is either missing or out of range. 

The long date template is either missing or contains invalid information. 

The short date template is either missing or it contains invalid information. 

The numeric date template is either missing or contains invalid information. 

The long time template is either missing or it contains invalid information. 

The numeric time template is either missing or contains invalid information. 

The monetary template is either missing or it contains invalid information. 

The numeric template is either missing or it contains invalid information. 

The lines per page value is either missing or it is out of range. 

The characters per line value is either misSing or it is out of range. 

A required symbol in either the monetary or the numeric template is missing. 

An invalid template length value was encountered. 

A mutually exclusive combination of control characters has been encountered in 
a monetary or numeric template. 

The mindigits field in a lit'"~ control character in a monetary or numeric template 
is out of range. 

A right bracket "]" is required to terminate a "t" control character symbol 
definition list. 

An expected colon ":" is missing from the "t" control character in a monetary or 
numeric template; 

The input value did not contain digits or an expected symbol was missing. 

Specified convention does not exist and cannot be retrieved, modified, or 
deleted. 

A convention definition cannot be added, modified, or deleted. 

The "PRECISION" parameter value is out of range. 

A required convention name was not provided. 

The named convention is a standard convention and cannot be modified or 
deleted. 

continued 

16-119 



I nternationa I ization 

Table 16-2. Specific Descriptions for Internationalization Error Values (cont.) 

16-120 

Error Value 

3041 

3042 

3043 

4002 

Specific Description 

A hexadecimal value representing a symbol in a monetary or numeric template 
is missing a required delimiter. 

An invalid character was encountered in a hex value representing a symbol in a 
monetary or numeric template. 

The international currency notation is missing a required terminating delimiter. 

The requested data was not found. 

8600 0296-000 



Section 17 
Control of the Compilation Process 

The COBOL74 compiler enables you to control portions of the compilation process. 
You can control the way you start the compilation, the files you use as input to and 
the files produced as output from the compiler, and the various options that direct the 
compilation. 

Starting a Compilation 
Programs can be compiled through CANDE or WFL. You can choose the method that is 
the most familiar or the most convenient. 

You can make a COBOL74 file in CANDE by using the following CANDE syntax: 

MAKE <MYFILE> C74 

Ifa program is created of type C74, then you can enter the COMPILE command to begin 
the compilation. 

The default value of a compiler option can depend on whether the compilation starts 
from CANDE or WFL. If this is the case for a particular option, the default for both 
CANDE and WFL compiles is documented under the description of the option. 

See Also 

• Refer to the CANDE Operations Reference Manual for information about the MAKE 
and COMPILE corrunands. These commands can be used to make and compile a file 
through CANDE. 

• WFL is invoked by using the ~L START command in CANDE. Refer to the WFL 
Reference Manual for information about compiling a program using a WFL deck. 

Using Cross-Reference Files 
A cross-reference file is a file that contains an alphabetized list of user-defined words 
that appear in a program. 

8600 0296-000 17-1 



Control of the Compilation Process 

17-2 

For each user-defined word, the cross-reference information contains the following data 
as well as other information: 

• The type of the item the word identifies 

• The sequence number of the source input record at which the identifier is declared 

• The sequence number of the source input record at which the word is declared 

• The sequence numbers of the input records at which the word is accessed 

Depending on the values offive related compiler control options-NOXREFLIST, 
XDECS, XREF, XREFFILES, and XREFS - the compiler optionally generates 
cross-reference information. 

The following cross-referencing factors can be controlled through the use of compiler 
control options: 

• Whether the compiler saves cross-reference information as it processes the source 
input 

• Which user-defined words and which references to these words are cross-referenced 

• Whether the compiler starts the SYSTEM/XREF ANALYZER utility automatically 

• If the compiler starts the SYSTEM/XREF ANALYZER utility automatically, 
whether the utility produces printed output, disk files suitable for input to the 
SYSTEM/INTERACTIVEXREF utility and the Editor, or both the printed output 
and the disk files 

The compiler saves cross-reference information·ifthe XREF option, the XREFFILES 
option, or both options are TRUE. If used, these options should be assigned the value 
TRUE before the end of the IDENTIFICATION DIVISION. 

Table 17-1 shows the effects of setting the XREFS option, the XDECS option, or both 
compiler control options. The XDECS option must be used with the XREF option, the 
XREFFILES option, or both options. The XREFS option must be used with the XDECS 
option, and the XREF and XREFFILES options. 

Table 17-1. Effects of the XDECS and XREFS Compiler Control Options 

Options That Are Set 

Any of the following combinations: 

• XREF and XDECS 

• XREFFILES and XDECS 

• XREF, XREFFILES, and XDECS 

XDECS 

Effects 

Selects the user-defined words to be 
cross-referenced. 

No effect when set by itself. 

continued 

8600 0296-000 



Control of the Compilation Process 

Table 17-1. Effects of the XDECS and XREFS Compiler Control Options (cont.) 

Options That Are Set 

Any of the following combinations: 

• XREF and XREFS 

• XREFFILES and XREFS 

• XREF, XREFFILES, and XREFS 

XREFS 

Effects 

Selects the user-defined words to be 
cross-referenced. If XDECS is FALSE, the 
XREFS option has no effect. 

No effect when set by itself. 

When the compiler is saving cross-reference information, this information is written 
to a disk file in raw form. Before this information can be printed or read by the 
SYSTEM/INTERACTIVEXREF utility or the Editor, it must be analyzed by the 
SYSTEM/XREF ANALYZER utility. . 

You have the option of instructing the compiler not to start the SYS-
TEM/XREF ANALYZER utility, keeping the raw file of the compiler on disk. Table 17-2 
show the effects of setting the NOXREFLIST option. 

Table 17-2. Effects of the NOXREFLIST Option 

NOXREFLIST Option Value 

FALSE 

TRUE 

Effect 

The compiler automatically starts the 
SYSTEM/XREFANALYZER utility to process the raw 
cross-reference file. 

The compiler does not start the SYSTEM/XREFANALYZER 
utility, and the raw file of the compiler is left on disk with the 
title XREF/code-file-name, where code-file-name is the name 
of the object code file produced by the compiler. You can 
then run the SYSTEM/XREFANALYZER utility directly at a 
later time to analyze the raw file. 

If the compiler starts the SYSTEM/XREFANALYZER utility (that is, if the 
NOXREFLIST option is FALSE), the program produces either a printed listing or a pair 
of disk files suitable for the Editor and the SYSTEM/INTERACTIVEXREF utility. 

8600 0296-000 17-3 



Control of the Com pHation Process 

Table 17-3 shows the effects of the XREF and XREFFILES options when the 
NOXREFLIST option is FALSE. 

Table 17-3. Effects of the XREF and XREFFILES Options 

Options That Are Set 

XREF 

XREFFILES 

XREF and XREFFILES 

Effect 

Produces a listing. 

Produces two disk files. These file are titled 
XREFFILESlcode-file-nameIXREFS and 
XREFFILESlcode-file-nameIXDECS. 

Produces both a listing and the disk files. 

References and declarations in the interactive cross-reference files and variables within 
a copy library refer to the line number of the COpy statement in the source program. 
These references and declaratives do not refer to the actual line numbers within the 
copy library. However, when both the XREF and XREFFILES options are set, the actual 
line numbers within the COPY file are used for the references and the declarations. 

Note: If syntax errors occur, the cross-reference information is 
still produced but might be unreliable. In extreme cases, the 
SYSTEMIXREFANALYZER utility might then fail. 

See Also 

• Refer to "NOXREFLIST," "XDEC," "XREF," "XREFFILES," and "XREFS" later in 
this section for more information about these options. 

• Refer to the discussion of the SYSTEM/XREF ANALYZER and 
SYSTEM/INTERACTIVEXREF utilities in the A Series System Software Utilities 
Manual for more information about cross-reference files. 

• Refer to the Editor Operations Guide for information about getting cross-reference 
information while in the Editor. 

Performing a Separate Compilation 

17-4 

You can separately recompile selected areas of a previously compiled COBOL program by 
using the SEPCOMP compiler control option. To perform a separate compilation, you 
must first compile the program with the compiler control option MAKEHOST assigned 
the value TRUE. This step creates the host file. The host file is an executable code file 
that contains additional information necessary for a separate compilation. Given only 
the name of the host file, the name of the original source, and the patches to change 
the source, the compiler is able to separately compile the patched areas, resulting in an 
abbreviated compilation. Only the affected areas of the program are actually compiled. 

You can use the separate compilation facility as a supplement to, not a replacement for, 
the standard method of compilation. This separate compilation is meant to be used in 

8600 0296-000 



Control of the Compilation Process 

development work on large COBOL programs where a reduction in the time required for 
compilation of large programs can be beneficial. 

The following considerations for using the SEPCOMP option apply when you are 
performing a separate compilation procedure: 

• The SEPCOMP option cannot be explicitly referenced after the begiruiing of the 
compilation. 

• The SEPCOMP option cannot be set more than once because when the option is first 
set, the SEPCOMP option starts the preprocessing of the CARD file input. 

• The title of the host program can be specified either as a string within parentheses 
immediately following the word SEPCOMP on the CCR, or by a file equation to the 
host file in the COBOL compiler. The optional string specification has precedence 
over the file equation. The host file contains the name of the symbolic file from 
which it was compiled. 

Examples 

Example 17-1 shows a. separate compilation using a WFL deck in which the title of the 
host program is given as a string. 

?BEGIN JOB COMPILE/A/B; 
. COMPILE A/B WITH COBOL74 LIBRARY; 

COBOL DATA 
0000HJ$ SEPCOMP ("A/HOST") LIST MAP 

<patch records> 

?END JOB 

Example 17-1. Separate Compilation with the Host Title Given as a String 

Example 17-2 shows a separate compilation using a WFL deck in which the title of the 
host program is file-equated to the COBOL file host. 

?BEGIN JOB COMPILE/A/B; 
COMPILE A/B WITH COBOL74 LIBRARY; 
COBOL FILE HOST (FILENAME=A/HOST); 
COBOL DATA 

000010$ SEPCOMP LIST MAP 

<patch records> 

?END JOB 

Example 17-2. Separate Compilation with the Host Title File-Equated 

8600 0296-000 17-5 



Control of the Compilation Process 

Providing the Changed Records 

A patch record is a record with a nonblank sequence number; that is, at least one digit of 
the sequence number is required. Once the host file name is known, the patch records 
must be provided. The compiler examines the patch records of a SEPCOMP compilation 
to determine the sections or code segments that need to be recompiled. The output from 
a SEPCOMP compilation is an executable code file that, unlike ALGOL and NEWP files, 
cannot be used as the host file for the next SEPCOMP compilation. 

The compiler accepts compiler control records (CCRs) with blank sequence numbers 
following the compiler control record that sets the SEPCOMP option and before the first 
patch record. 

Sequence errors are not allowed among patch records having nonblank sequence 
numbers. 

Observing Compilation Restrictions 

17-6 

You are responsible for observing the following restrictions when performing a separate 
compilation: 

• The host symbolic file and all of the COpy library files must be unchanged since the 
MAKEHOST compilation. A SEPCOMP compilation verifies this requirement by 
checking the date and timestamp. 

• Both the host symbolic file and the patch file for a SEPCOMP compilation must be in 
sequential order. 

• You must use a COBOL compiler of the same release level for both the MAKEHOST 
and SEPCOMP compilations. 

• The SEPCOMP option is not available for compilations of programs that access 
DMSn databases. 

• The SOURCE (host symbolic) file must be assigned to a mass-storage device, 
because random access is necessary. 

• All new label declarations must be unique, regardless of qualification. 

• Only PROCEDURE DIVISION statements are allowed to be patched with the 
SEPCOMP compilation facility. 

• New PROCEDURE DIVISION statements can be added, and existing statements 
can be modified or deleted. PROCEDURE DIVISION labels can be deleted as long 
as the label is referenced only within the code segment in which the label resides. 

• The SORT, MERGE, USE, and ALTER verbs cannot be used in either the 
MAKEHOST or the SEPCOMP compilation. 

• A DECLARATIVES SECTION cannot be added, deleted, or modified. 

• The DEBUG facility of COBOL cannot be used with a SEPCOMP compilation. 

If any of the preceding restrictions are violated, the COBOL compiler aborts the 
SEPCOMP compilation. 

8600 0296-000 



Control of the Compilation Process 

The compiler control options MERGE, NEW, OPTIMIZE, and STATISTICS are ignored 
during a MAKEHOST or a SEPCOMP compilation. 

The compiler control options MERGE and XREF are ignored during a SEPCOMP 
compilation. 

See Also 

• For information about creating a host file, refer to "MAKEHOST" later in this 
section. 

• For information about separately recompiling selected areas of a previously compiled 
program, refer to "SEPCOMP" later in this section. 

Compiler Control Option Concepts 
Compiler control options provide control of the following compiler functions: 

• Source language input 

• Source language output 

• Optional compilation mechanisms 

• Printed output 

• Compiler diagnostic messages 

• Compiler debugging 

• User options 

• Code generation 

You can specify these options on compiler control records (CCRs). A CCR contains 
compiler control statements made up of options or groups of options and the associated 
parameters, if any. By using CCRs, you can control the options provided by the compiler. 

Types of Compiler Control Records (CCRs) 

A CCR can be either temporary or permanent. The differences between the two types of 
CCRs are described in the following list: 

• Temporary CCRs apply only to a given compilation. These CCRs have a dollar 
currency sign ($) in column 7. 

• Permanent CCRs remain associated with the source language. These CCRs have a 
dollar currency sign ($) in columns 7 and 8. The compiler includes permanent CCRs 
in any NEWSOURCE file created. 

17-7 



Control of the Compilation Process 

Types of Compiler Control Options 

Boolean 

Value 

17-8 

A compiler control option can be of type Boolean, value, or immediate. The following lists 
show the options belonging to each category. 

A Boolean option is either enabled (set to TRUE) or disabled (set to FALSE). When 
enabled, the option directs the compiler to apply an associated function to all subsequent 
processing until the option is disabled. 

Boolean options can also have associated parameters related to the function affected by 
the Boolean option. The Boolean options are as follows: 

BINARYCOMP GROUPMOVEWARN MERGE SPEC 

BINDINFO INFO NEW STATISTICS 

CODE LlB$ NEWID SUMMARY 

COMPILERDEBUG LlBDOLLAR NOXREFLIST TADS 

DATADICTINFO LlBRARYLOCK OMIT TEMPORARY 

DELETE LlNEINFO OPT User Option 

DICTIONARY LIST OPTIMIZE WARN FATAL 

DOUBLE LlSTDELETED OWN WARNSUPR 

ERRORLIST LlST$ OWNTEMP XDECS 

FREE LlSTDOLLAR SEPCOMP XREF 

GLOBAL LlSTOMITTED· SEQ XREFFILES 

GLOBALTEMP LlSTP SEQCHECK XREFS 

LIST! SEQUENCE 

A value option directs the compiler to store a value associated with a given function. The 
value options are as follows: 

DEBUG 

ERRORLIMIT 

FEDLEVEL 

LEVEL 

Sequence Base 

Sequence Increment 

SHARING 

Symbolic 10 

TARGET 

86000296-000 



Control of the Compilation Process 

Immediate 

An immediate option directs the compiler to apply a function that is independent of 
subsequent processing. Immediate options can also have associated parameters. The 
immediate options are as follows: 

CLEAR 

PAGE 

VOID 

Compiler Control Option Formats 
The following text describes how compiler control options are formatted. 

compiler control record 

The following is the general format for a compiler control record (CCR): 

[ I {SET } [{BOOlean-option }] II 
[$] POP immediat:-option... . .. 

~ - RESET value-optiOn 

SET {Boolean-option [ = option-expression]} ... 

option-expression 

The following is the general format for an option expression: 

{
BOOlean-option-l } 

[NOT] ~ option-expression-1 2 

[{ { 
AND } {BOOlean-option-2 }}] 
~~v [ NOT] ~ option-expression-2 2 ... 

Explanation of Formats 

CCRs must have a dollar currency sign. ($) in column 7 and can have an optional dollar 
sign In column 8. The options follow the dollar currency sign, and one or more spaces 
follow each option. No option can continue past column 72 of a CCR. 

The option expressions follow the standard rules of Boolean algebra for statement 
evaluation. 

86000296-000 17-9 



Cont~ol of the Compilation Process 

CCRs can be interspersed at any point in the source language input. However, a CCR 
might affect the syntactical element that precedes it for the following reason. The CCR 
that follows a COBOL74 syntactical element actually is processed while the compiler 
is preparing that syntactical element for future analysis and delivering the previous 
syntactical element for parsing. 

Sp~cial attention should be paid to the use of CCRs in the immediate vicinity of 
COpy statements. For example, if a COpy statement immediately follows a CCR, 
the options specified in the CCR can affect the first record included as a result of the 
COpy statement, Wlless these options are explicitly prevented from doing so. Adding 
a semicolon (;) after the ending period in the COPY statement ensures that the option 
changes take effect after all source information from the COPY statement haS been 
processed. 

Because the CCR can affect the preceding statement or clause, U nisys recommends that 
a dummy statement be inserted between the two records to avoid unexpected results. 

Some options affect generated object code. These effects are discussed in the description 
of the particular option. 

See Also 

• For information about instructing the compiler to treat all COMPUTATIONAL 
items as if they were declared USAGE IS BINARY, refer to "BINARYCOMP" in this 
section. 

• For information on causing all data items in the WORKING-STORAGE SECTION to 
be global except those specifically declared LOCAL or OWN, refer to "GLOBAL" in 
this section. 

• For information on causing all data items in the WORKING-STORAGE SECTION to 
be OWN except those specifically declared LOCAL or GLOBAL, refer to "OWN" in 
this section. . 

• For information about the COpy statement, refer to "COPY" in Section 9, 
"PROCEDURE DMSION Statements." 

Option Action Indicators 

17-10 

Option action indicators preceding a list of options set, reset, or recall the last setting of 
each settable option in the list. 

A register that reflects the last 47 settings of the option is associated with each of the 
settable options. The presence of any precediI}.g option action indicator is ignored when 
nonsettable options are processed. 

86000296-000 



Control of the Compilation Process 

The option action indicators are defined as follows: 

Indicator 

SET 

RESET 

POP 

Meaning 

The current setting of each option specified is saved, and each of the options is 
set to TRUE (enabled or on). The option can also be set to the value of an 
optional Boolean expression. 

The current setting of each option specified is saved, and each of the options is 
set to FALSE (disabled or off). 

The current setting of each option specified is discarded, and each of the 
options is set to its prior setting. When no prior setting exists, a POP option 
action indicator leaves the option set to FALSE. 

A CCR that consists solely of a dollar currency sign ($) and no option information has no 
effect unless the MERGE option is TRUE. If the MERGE option is TRUE and a record is 
present in the secondary input file (SOURCE file) that has the same sequence number 
as the blank CCR, then the source record is ignored. 

A CCR that contains valid information in the primary input file (CARD file) always takes 
effect before a CCR that already exists in the secondary input file (SOURCE file) if the 
MERGE option is set and both records have the same sequence number. 

8600 0296-000 17-11 



Control of the Compilation Process 

COBOL74 Source and Object Files 

17-12 

Source input is submitted to the COBOL compiler as one or more punched card, disk, 
or magnetic tape files. If more than one source file is used, the input from these files is 
merged on the basis of sequence numbers or as specified by the COpy statement. In 
addition to the· object code file, the COBOL compiler produces the following optional 
output files: an updated symbolic file, an error message file, and a printer listing 
containing the source records and compiler control records (CCRs) used by the compiler, 
and other types of information. 

Figure 17-1 shows the flow of input and output data during compilation. 

Compiler input files 
(source language 

input and compiler 
control stateme'nts) 

Prima'ry 
input 
(CARD) 

Secondary 
input 

(SOURCE) 

Source 
input by 

COpy li brary 
stateme'nt 

I 
.J 

Compiler 

Compiler-generated 
output files 

Updated 
r - =-- symbol 

(NEWSOURCE) 

I 
J 

-, 
l I 

I 
L 

Object 
code 

(CODE) 

Line printer 
listing 
(LINE) 

error messages 
listing 

(ERRORFILE 
or ERRORS) 

Cross-reference 
information 
(XREFFILE) 

Figure 17-1. Compiler Data Flow 

=--- Program 
execution 

8600 0296-000 



Control of the Compilation Process 

Input Files 

The compiler accepts input from the CARD file, the SOURCE file, and the COPY library 
files. Input can be from the CARD file only, from the CARD file and the SOURCE file, 
from the CARD file and the COpy library files, or from all three. 

Table 17-4 shows the file attribute name, its assigned value, and its purpose for the 
compiler input files. 

Table 17-4. Attribute Values for the Compiler Input File 

Name 

EXTMODE 

DEPENDENTSPECS 

INTMODE 

MAXRECSIZE 

BLOCKSIZE 

Value 

EBCDIC or ASCII 

TRUE 

EBCDIC 

Taken from the 
length of the 
physical file. 

Taken from the 
length of the 
physical file. 

Purpose 

Specifies the character type of the 
physical file. 

Specifies that the format of the records 
and the structure of the logical file should 
be determined by the structure of the 
associated permanent file. ' 

Specifies the units for the BLOCKSIZE and 
MAXRECSIZE attributes. 

Defines the smallest unit of the file that 
the program can read from or write to at 
anyone time. 

Defines the smallest unit of the file that 
the I/O subsystem can physically read 
from or write to. Because the value of the 
BLOCKSIZE attribute for this file is 
assumed from the physical file, this 
attribute does not require explicit 
assignment. 

Each file has an internal name specified by the INTNAME file attribute. Each file is 
assigned to a device specified by the KIND file attribute. Table 17-5 shows the internal 
name and the device to which the file is assigned for each compiler input file. In some 
cases, the default device depends on whether the compilation is started from CANDE or 
WFL. 

8600 0296-000 17-13 



Control of the Compilation Process 

Table 17-5. Compiler Input Files 

Internal Language 
Name Initiation Device Explanation 

CARD WFL READER The CARD file supplies the primary 
source input to the compiler and must 
be present for each compilation. If the 
compilation is started from CANDE or 
WFL, and the compiler file equation is 
not applied to the CARD file, the file is 
assumed to be a card reader file. 

CARD CANDE DISK If the compilation is started from 
CANDE and compiler file equation is 
not applied to the CARD file, the file is 
assumed to be a disk file. 

SOURCE WFL, SOURCE The SOURCE file, which is optional, 
CANDE supplies secondary source input to the 

compiler. If the compiler file equation 
is not applied to the SOURCE file, the 
file is assumed to be a disk file 
regardless of whether the compilation 
is started from WFL or CANDE. 

When this file is present and the 
MERGE option is TRUE, records from 
the SOURCE file are merged with those 
of the CARD file on the basis of 
sequence numbers. If a record from 
the CARD file and a record from the 
SOURCE file have the same sequence 
number, the CARD file record is 
compiled and the SOURCE file record 
is ignored. 

COPY files WFL, DISK COPY library files provide source input 
CANDE to the compiler in addition to that 

supplied by the CARD and SOURCE 
files and are present only if one or 
more COpy statements appear in the 
CARD or SOURCE files. 

See Also 

• For information about merging source-language records from the CARD and 
SOURCE files, refer to "MERGE" later in this section. 

• For information on the COPY statement, refer to "COpy" in Section 9, 
"PROCEDURE DMSION Statements." 

17-14 86000296-000 



Control of the Compilation Process 

• Refer to the I/O Subsystem Programming Guide for information about using file 
attributes. 

• Refer to the WFL Reference Manual for detailed information pertaining to the 
compiler file equation. 

Output Files 

The compiler produces one to five output files. These files are the CODE file, the 
NEWSOURCE file, the LINE file, the ERRORFILE file, and the XREFFILE file. 
Table 17-6 explains-each of these files. 

File 

CODE file 

NEWSOURCE file 

LINE file 

8600 0296-000 

Table 17-6. Compiler Output Files 

Explanation 

The CODE file is produced unconditionally and contains the executable 
object code produced by the compiler. Whether this file is discarded 
after compilation, executed and then discarded, or stored permanently 
depends on the specifications in the COMPILE statement and whether or 
not syntax errors occurred during compilation. 

The NEWSOURCE file is produced only if the NEW option is TRUE. The 
NEWSOURCE file is an updated source file that contains the portion of 
source input from the CARD and SOURCE files that was actually 
compiled. If the compiler file equation is not applied to the 
NEWSOURCE file, the file is written to disk. 

The LINE file is produced unless the LIST option is FALSE. Ifthe 
compiler is started from CANOE, the default value of the LIST option is 
FALSE and must be explicitly set to TRUE for the LINE file to be 
produced. If the compiler isstarted from WFL, the LINE file is produced 
by default. If the compiler file equation is not applied to the LINE file, 
the file is written to the printer. 

The contents of the LINE file depends on the values of the CODE option 
and the MAP option; however, when printed, the line file contains the 
following minimum information: 

• Source used as input to the compiler 

• Code segmentation information 

• Error messages and error count, if syntax errors occur 

continued 

17-15 



Control of the Compilation Process· 

File 

ERRORFILE file 

XREFFILE file 

17-16 

Table 17-6. Compiler Output Files (cont.) 

Explanation 

The ERRORFILE file is produced only if the ERRORLIST option is TRUE. 
If the compiler is started from WFL, the default value of the ERRORLIST 
option is FALSE and must be explicitly set to TRUE for the ERRORFILE 
file to be produced. If the compiler file equation is not applied to the 
ERRORFILE file, the file is written to the printer. If the compiler is started 
from CAN DE, the ERRORFILE file is produced by default and written to 
the remote station that started the compiler. If no syntax errors occur 
during compilation, no ERRORFILE file is produced regardless of the 
value of the ERRORLIST option. 

For every record that contains syntax errors, a copy of the source record 
containing the error is written to the ERRORFILE file, followed by the 
syntax errors that occurred for that record. 

The synonym ERRORS can be used instead of ERRORFILE. If you 
do not file equate to either ERRORFILE or ERRORS, the file is created 
with the title ERRORS. If you file equate to both ERRORFILE and 
ERRORS, only the equation to ERRORS is used. 

When either the XREF or XREFFILES compiler control option is TRUE, 
the compiler saves raw cross-reference information in the XREFFILE file. 
The XREFFILE file is named XREFFILES/code-file-name, where 
code-file-name is the name of the object code file produced by the 
compiler. The SYSTEM/XREFANALYZER utility can read this file to 
produce a printed cross-reference file, a disk XREFFILE file, or both for 
use with the SYSTEM/INTERACTIVEXREF utility or the Editor utility. The 
SYSTEM/XREFANALYZER utility is run automatically unless the 
NOXREFLIST compiler control option is TRUE. 

8600 0296-000 



Control of the Compilation Process 

Table 17-7 summarizes the attribute settings for each type of compiler output file. For 
the file ERRORFILE, the default device depend on whether the compilation starts from 
CANDE or from WFL. 

Table 17-7. Attribute Assignments for Compiler Output Files 

INTNAME KIND INTMODE MAXRECSIZE BLOCKSIZE 

CODE Disk HEX 30 words 150 words 

NEWSOURCE Disk EBCDIC 15 words 450 words 

LINE Printer EBCDIC 22 words 22 words 

ERRORFILE Printer EBCDIC 12 words 12 words 
(WFL) . 

ERRORFILE Remote EBCDIC 12 words 12 words 
(CAN DE) 

XREFFILE Disk EBCDIC 510 words 510 words 

Legend 
ERRORFILE Synonymous with ERRORS 

See Also 

• Refer to the discussions of the COMPILE statement in the WFL Reference Manual 
and the CANDE Operations Reference Manual. 

• For information on creating a new source-language symbolic, refer to "NEW" in this 
section. 

• For information on requesting a listing of the object code, refer to "CODE" in this 
section. 

• For information on requesting a map of variabl~s in the object program, refer to 
"MAP" later in this section. 

• For information about cross-reference files, refer to "Using Cross-Reference Files" 
earlier in this section. 

Compiler Control Options 
The following paragraphs describe the general format, the default settings, and the 
details of the individual compiler control options. The options are listed in alphabetic 
order. 

8600 0296-000 17-17 



Control of the Compilation Process 

BINARYCOMP 

BINARYCOMP 

(Type: Boolean, Default: FALSE) 

The BINARYCOMP option directs the compiler to treat all COMPUTATIONAL items as 
if they were declared USAGE IS BINARY. 

The compiler examines the current setting of the BINARYCOMP option as it parses 
each data declaration, after it examines the level-number, and before it examines the 
data-name. A change to the BINARYCOMP option within a data declaration affects the 
data item if the option change occurs before the first clause following the data-name. 

Unisys recommends not changing the BINARYCOMP option within the clauses of a data 
declaration. Instead, the option should be changed either before the level number or 
after the ending period of the data declaration. 

BINDINFO 

BINDINFO 

17-18 

(Type: Boolean, Default: FALSE) 

The BIND INFO option causes information used for binding to be placed in the code 
file unconditionally. This information is then available to the PROGRAMDUMP and 
DUMP ANALYZER utilities. 

The BINDINFO option has no effect on programs compiled with the LEVEL option set 
to 3 or higher, nor does the BINDINFO option affect programs that call an external 
procedure. Binding information is always produced for such programs. 

The setting of this option cannot be changed after the first source record. 

The BINDINFO option is incompatible with the STATISTICS andTADS options. Ifan 
attempt is made to set both the STATISTICS and BINDINFO options to TRUE, the 
first option that became TRUE is unaffected, the second option is set to FALSE, and a 
warning message is issued. 

8600 0296-000 



Control of the Compilation Process 

CLEAR 

CLEAR 

CODE 

(Type: Immediate) 

The CLEAR option sets to FALSE the current setting and all previous settings of all 
Boolean options except MERGE, OPTIMIZE, and, conditionally, NEW, STATISTICS, 
FREE, and LINEINFO. 

IT a source-language record has been written to the new symbolic file (NEWSOURCE) as 
a result of the NEW option, then the NEW option is not set to FALSE. 

IT the first source record has been processed, STATISTICS, FREE, and LINEINFO are 
not set to F ALBE. 

(Type: Boolean, Default: FALSE) 

The CODE option provides a listing of the object code. 

COMPILERDEBUG 

This option is for Unisys internal use only. 

DEBUG 

This option is for U nisys internal use only. 

8600 0296--000 17-19 



Control of the Compilation Process 

DELETE 

DELETE 

(Type: Boolean, Default: FALSE) 

The DELETE option discards source-language records from the secondary input 
(SOURCE file) until the option becomes FALSE. 

This option can appear only on a CCR in the primary source-language input (CARD file). 

If the MERGE option is FALSE, the compiler ignores the DELETE option. The 
DELETE option does not alter the normal merging process. The compiler does not 
carry forward the discarded source-language records to the output symbolic file 
(NEWSOURCE file) if the NEW option is TRUE, and these records are not listed unless 
the LISTDELETED option is TRUE. 

See Also 

For information on listing discarded source-language records, refer to "LISTDELETED" 
later in this section. 

DOUBLE 

DOUBLE 

(Type: Boolean, Default: FALSE) 

The DOUBLE option double-spaces all printed output. 

17-20 8600 0296-000 



Control of the Compilation Process 

ERRORLIMIT 

ERRORLIMIT = integer 

(Type: Value, Default: 10 for compilations originated through CANDE; otherwise, 150) 

The ERRORLIMIT option specifies the maximum number of errors that the compiler 
can produce before a compilation is ended. 

If the error limit is exceeded, the compiler produces a listing of the errors and informs 
you that the compilation was ended because the error limit was exceeded. 

If the error limit is exceeded and the NEW option is TRUE, then the new symbolic file 
(NEWSOURCE) is purged. 

ERRORLIST 

ERRORLIST 

(Type: Boolean, Default: TRUE for compilations originated through CANDE; otherwise, 
FALSE) 

The ERRORLIST option causes syntax errors to be written to the file ERRORFILE. 

When the compiler detects a syntax error in the source input, it writes the line of text in 
error, an error message, and a pointer to the syntactical item in question on two lines in 
the file ERRORFILE. The ERRORLIST option is provided primarily for use when the 
compiler is called from a remote terminal through CANDE, but the option can be used 
regardless of the manner in which the compiler is called. 

i 

When the compiler is called from CANDE, the default value of the ERRORLIST option 
is TRUE and the file ERRORFILE is automatically equated to the remote device from 
which the compilation originated. 

8600.0296-000 17-21 



Control of the Compilation Process 

FEDLEVEL 

FREE 

I FREE 

17-22 

(Type: Value, Default: 4) 

The FEDLEVEL option provides a facility for specifying and evaluating levels of COBOL 
to measure compliance with U.S. Government COBOL standards. 

The default value for FEDLEVEL with no level is 4. 

The compiler produces nonfatal warnings for constructs not available at the level at 
which the program was compiled. For example, if FEDLEVEL is set to 2, all constructs 
allowed only for level 3 and higher produce warnings. 

The Ol-level corresponds to the U.S. Government low-level, the 02-level corresponds 
to low-intermediate, the 03-level corresponds to high~intermediate, and the 04-level 
corresponds to high-level. The 05-level inc1ud~s all Unisys A Series extensions to the 
ANSI standard. 

If the FEDLEVEL option is set to 5 and there is a program-name specified in the 
PROGRAM-ID clause, that name is used as the entry-point-name. Otherwise, the 
entry-point-name is PROCEDUREDIVISION. 

(Type: Boolean, Default: TRUE for compilations originated through CANDE; otherwise, 
FALSE) 

The FREE option removes most of the margin restrictions required by COBOL. This 
option must be FALSE when you are using a debugging line in the program. Because 
the default setting is TRUE for compilations started from CANDE, you must remember 
to explicitly set the option to FALSE. 

8600 0296-000 



Control of the Compilation Process 

See Also 

For a description of debugging lines, refer to "Debugging Lines" in Section 11, 
"Debugging. " 

GLOBAL 

GLOBAL 

(Type: Boolean, Default: FALSE) 

The GLOBAL option causes all data items in the WORKING-STORAGE SECTION and 
the FILE SECTION to be global except those specifically declared LOCAL or OWN. 
The GLOBAL option only affects the data descriptions in the FILE SECTION, not the 
files themselves. The GLOBAL option has no effect on entries in the ENVIRONMENT 
DIVISION or the COMMUNICATION SECTION. 

If the compilation is an 02-level, the GLOBAL option is ignored. The OWN and 
GLOBAL options CaDnot both be TRUE. 

As the compiler parses each data declaration, it checks the setting of the GLOBAL 
option when the current syntactical element is the data-name in the declaration and the 
next syntactical element has been prepared for future analysis. If an ending period 
follows the data-name and the next syntactical element is a CCR that changes the setting 
of the GLOBAL option, the new GLOBAL ()ption setting affects the data item. 

To prevent the new GLOBAL option setting from affecting the data item, redundant 
clauses or semicolons (;) can be inserted in the data declaration that precedes the CCR so 
that at least one syntactical element exists between the data-name and the ending period 
of the data declaration. 

Unisys recommends not changing the GLOBAL option within the clauses of a data 
declaration. Instead, the option should be changed either before the level number or 
after the ending period of the data declaration. 

The VALUE clause cannot be used with the GLOBAL option. 

8600 0296-000 17-23 



Control of the Compilation Process 

GLOBALTEMP 

I GLOBALTEMP 

(Type: Boolean, Default: FALSE) 

The GLOBALTEMP option causes the temporary arrays generated by the compiler for 
the processing of some statements to be global. The GLOBAL TEMP and OWNTEMP 
compiler control options cannot both be TRUE. If the GLOBALTEMP option is TRUE in 
a program compiled at the 02-level , then the temporary arrays for the host program are 
also shared by all bound procedures in which the GLOBAL TEMP option is TRUE. 

This option must appear before the first source record and cannot appear on any 
compiler control record (CCR) after the first source record. 

Note This option can produce unpredictable errors or results if used in a 
bound procedure that is then used as an asynchronous process (that 
is, by an ALGOL PROCESS statement). 

GROUPMOVEWARN 

I GROUPMOVEWARN 

17-24 

(Type: Boolean, Default: FALSE) 

The GROUPMOVEW ARN option issues a warning whenever the compiler encounters 
a MOVE statement in which one operand is a group item, the other operand is 
an elementary item, and the usages of the two operands differ. Some compilers 
and systems generate incorrect results for MOVE statements of this type. The 
GROUPMOVEWARN option is useful for programs migratingfrom such systems 
because it identifies code that is expecting results contrary to the requirements of the 
standard. 

If the ERRORLIST option is TRUE, the compiler produces an ERRORFILE file. The 
ERRORFILE file contains the warnings produced by the GROUPMOVEWARN option 
even if there were no actual syntax errors in the program. 

The warning messages produced by the GROUPMOVEW ARN option are not suppressed 
by the W ARNSUPR option. 

The GROUPMOVEW ARN option must appear before the first source record and cannot 
appear on any compiler control record (CCR) after the first source record. 

8600 02964)00 



INFO 

I rnFO 

Control of the Compilation Process 

Example 

Example 17-3 illustrates the situation that theGROUPMOVEW ARN option is intended 
to help diagnose. 

* The record description 
* 

* 

01 THE-RECORD. 
03 A-PACKED-DATE PIC 9(6) COMP VALUE 031990. 
03 A-GROUP-ITEM. 

05 DATE-YEAR PIC 99. 
05 DATE-MONTH PIC 99. 
05 DATE-DAY PIC 99. 

03 AN-ELEMENTARY-ITEMS REDEFINES A-GROUP-ITEM PIC 9(6). 

PROCEDURE DIVISION 

* After execution of the next statement, the correct value for 
* THE-RECORD is @031990031990404040@. Since a move operation 
* involving group items is an 'alphanumeric-to-alphanumeric move, 
* the move operation transfers 3 bytes of data from A-PACKED-DATE 
* to the first 3 bytes of A-GROUP-ITEM, and fills the remainder of 
* of A-GROUP-ITEM with spaces. 
* 

MOVE A-PACKED-DATE TO A-GROUP-ITEM. 
* 
* After execution of the next statement, the correct value for 
* THE-RECORD is @031990F0F3F1F9F9F0@. This is an elementary numeric 
* move operation, and as such, the data is transformed from 
* computational to display form in the process. 
* 

MOVE A-PACKED-DATE TO AN-ELEMENTARY-ITEM. 

Example 17-3. Understanding the GROUPMOVEWARN Option 

(Type: Boolean, Default: FALSE) 

This option is for U nisys internal use only. 

8600 0296-000 17-25 



Control of the Compilation Process 

LEVEL 

I LEVEL = integer 

(Type: Value, Default: 2) 

The LEVEL option controls the lexicographical level at which the compilation is to occur. 
The integer must be in the range from 2 through 14. The LEVEL option must appear 
before the IDENTIFICATION DIVISION. 

LIB$ OR LIBDOLLAR 

{
LIB$ } 
LIBDOLLAR 

(Type: Boolean, Default: FALSE) 

The Lffi$ option causes a CCR that occurs as part ofa COBOL library file to be 
processed. When this option is FALSE, CCRs in a COBOL library file are ignored. 

This option is treated as an error nit occurs on a CCR in a COBOL library file. 

LIB$ and LIBDOLLAR are synonymous. 

LIBRARYLOCK 

LIBRARYLOCK 

17-26 

(Type: Boolean, Default: FALSE) 

When TRUE, the LIBRARYLOCK option provides locking code to maintain data 
integrity for private libraries. 

See Also 

• For information on specifying the way a program is shared when it is called as a 
library, refer to "SHARING" later in this section. 

• For a description of the compiler control options that determine the way a library is 
used, refer to "Library Compiler' Control Options" in Section 15, "Libraries." 

8600 0296-000 



Control of the Compilation Process 

LINEINFO 

LINEINFO 

LIST 

(Type: Boolean, Default: TRUE for compilations originated through CANDE; otherwise, 
FALSE) 

The LINEINFO option saves source-language sequence numbers in the code file so that 
if the object program abnormally ends, you can investigate the problem by program 
sequence number rather than by code address. 

(Type: Boolean, Default: FALSE for compilations originated through CANDE; 
otherwise, TRUE) 

. The LIST option produces 

• A source-language listing 

• A compilation summary 

• An error message listing 

LIST$ or LISTDOLLAR 

{
LIST$ } 
LISTDOLLAR 

(Type: Boolean, Default: FALSE) 

The LIST$ option lists all temporary CCRs encountered during the compilation. 

LIST$ and LISTDOLLAR are synonymous. 

8600 0296-000 17-27 



Control of the Compilation Process 

LISTDELETED 

I LISTDELETED 

(Type: Boolean, Default: FALSE) 

The LISTDELETED option lists that part of the source-language input that was deleted 
by the DELETE or the VOID option. 

LISTOMITTED 

I LISTOMI'ITED 

LISTP 

(Type: Boolean, Default: FALSE) 

The LISTOMITTED option lists that part of the source-language input that was omitted 
by the OMIT option. 

ILISTP 

LISTl 

I LIST! 

17-28 

(Type: Boolean, Default: FALSE) 

The LISTP option lists source-language records that originate from the primary input 
file (CARD file). 

If the LIST option is TRUE, this option has no effect. 

(Type: Boolean, Default: FALSE) 

The LIST! option produces a listing during the first pass. 

8600 0296-000 



Control of the Compilation Process 

MAKEHOST 

MAKEHOST 

MAP 

(Type: Boolean, Default: FALSE) 

The MAKEHOST option creates a host file when compiling a COBOL program. The 
output host file is an executable code file that is then used as one of the inputs to a 
SEPCOMP compilation. 

The code segments of a MAKEHOST compilation are different from those of a normal 
compilation. All MAKEHOST sections are placed into separate code segments, as 
opposed to putting contiguous sections with the same segment-number in the same code 
segment, which is done in a normal compilation. 

The MAKEHOST option must appear as the first record of the compiler input file. 

The MAKEHOST option is incompatible with the MERGE, NEW, OPTIMIZE, and 
STATISTICS. options. If one of these options is used with the MAKEHOST option, then 
the option is ignored and a warning message is issued. 

The MAKEHOST option is also incompatible with programs invoking DMSII databases. 
If such an invocation is encountered during compilation, a warning message is issued and 
the MAKEHOST option is set to FALSE. 

(Type: Boolean, Default: FALSE) 

The MAP option includes information concerning the allocation of variables in the object 
program as part of the output listing. 

8600 0296-000 17-29 



Control of the Compilation Process 

MERGE 

MERGE [ 1 file-title [ {~:~} ] ] 1 

NEW 

17-30 

(Type: Boolean, Default: FALSE) 

The MERGE option starts the process that merges the primary source-language records 
(CARD file) with the secondary source-language input records (SOURCE file) specified 
by the MERGE parameters. 

The file title must be a string. If you do not specify a file title, SOURCE is assumed, 
unless this file title is preempted by a file equation. 

If you do not specify a device, DISK is assumed, unless preempted by a file equation. 

This option remains TRUE throughout a compilation. If you try to change this option, 
your attempt is treated as an error and is ignored. 

You cannot use the MERGE option with the MAKEHOST and SEPCOMP options. If 
the MAKEHOST option is TRUE or becomes TRUE, the compiler reads the SOURCE 
file as the compiler input file, but the compiler issues a warning message and stops 
reading records from the CARD file. If the SEPCOMP option is TRUE or becomes 
TRUE, the MERGE option is set to FALSE and the compiler issues a warning message. 

(Type: Boolean, Default: FALSE) 

The NEW option creates a new source-language symbolic file (NEWSOURCE file) of all 
source-language records accepted for compilation. 

The file title must be a string. If you do not specify a file title, NEWSOURCE is assumed 
unless it is preeinpted by a file equation. 

If you do not specify a device, DISK is assumed unless it is preempted by a file equation. 

This option starts the writing of all input source-language records accepted for 
compll8.tion to a new symbolic file (NEWSOURCE file). Source-language records 

8600 0296-000 



NEWID 

Control of the Compilation Process . 

discarded by the DELETE or VOID options are excluded; however, input records 
omitted by the OMIT option and permanent CCRs are included. 

Once set to TRUE, this option remains TRUE throughout a compilation. An attempt to 
change this option is treated as an error and is ignored. 

You cannot use the NEW option with the MAKEHOST and SEPCOMP options. If the 
MAKEHOST or the SEPCOMP option is TRUE or becomes TRUE, the compiler sets 
the NEW option to FALSE and issues a warning message. 

(Type: Boolean, Default: FALSE) 

The NEWID option replaces the rightmost eight character positions of the 
source-language record with the symbolic-id literal associated with this option. 

If this option is FALSE, the rightmost eight character positions of the source-language 
record remain unchanged. 

See Also 

Refer to "Symbolic ID" later in this section for information on this literal. 

NOXREFLIST 

I NOXREFLIST 

(Type: Boolean, Default: FALSE) 

When set to TRUE, the NOXREFLIST option prevents the SYSTEM/XREFANALYZER 
utility from being started by the compiler when cross-reference information is being 
saved (that is, when either the XREF option or the XREFFILES option is TRUE). 
Instead, the file XREF/code-file-name, where code-file-name is the name cjfthe object 
code file generated by the compiler, remains on disk. The SYSTEM/XREF ANALYZER 
utility can be run later by using the file XREF/code-file-name as input. The 
NOXREF~IST option has no effect if both the XREF option and the XREFFILES option 
are FALSE. 

8600 0296-000 17-31 



Control of the Compilation P.rocess 

OMIT 

See Also 

For more information about cross-reference files, refer to "Using Cross-Reference Files" 
earlier in this section. . 

. (Type: Boolean, Default: FALSE) 

The OMIT option causes all source-language records, except other compiler control 
records (CCRs), to be ignored (but not discarded) for compilation until the option is 
FALSE. 

This option can appear on a CCR in either the primary (CARD file) or the secondary 
(SOURCE file) source-language input. 

The omitted source-language records are carried forward to the output symbolic file 
(NEWSOURCE file) if the NEW option is also TRUE. The records are not listed unless 
the LISTOMITTED option is TRUE. 

CCRs encountered in the source-language input while this option is TRUE are processed 
in the normal fashion. 

See Also 

For information on listing that part of the source-language input that was omitted by the 
OMIT option, refer to "LISTOMITTED" earlier in this section . 

. OPTIMIZE or OPT 

17-32 

(Type: Value, Default: No optimization). 

The OPTIMIZE option applies optional optimization functions that are included at 
appropriate levels during the compilation process. 

OPT and OPTIMIZE are synonymous. 

8600 0296-00q 



OWN 

Control of the Compilation Process 

The setting of this option cannot be altered after the first source record. 

The setting of this option results in the following actions: 

• Numerical comparisons involving some unsigned display items are compared as 
characters, rather than being converted to binary items and then compared. The 
zone portion of each character is masked with hex letter F so that uninitialized data 
items compare equal to 0 (zero). 

• Simple ADD statements involving some unsigned display items are executed as 
character additions with all zones masked with hex letter F so that uninitialized data 
items are considered 0 (zero). 

• Invalid index checking on subscripting is bypassed, thus the responsibility for 
ensuring the validity of any given subscript rests with the· programmer. System 
protection against accesses beyond the bounds of the record remains in effect. 

• The characteristics of the PERFORM statements and ranges of the program 
are analyzed. If the increase in the amount of object code is not too great, the 
statements in the PERFORM range are expanded in line. 

The use of the USE FOR DEBUGGING statement to monitor items might not always 
work correctly when the OPTIMIZE option is TRUE. Some items in certain statements 
might not be monitored correctly (or at all). . 

You cannot use the OPTIMIZE option with the TADS, MAKEHOST, and SEPCOMP 
options. lfthe TADS, the MAKEHOST, or the SEPCOMP option is TRUE or becomes 
TRUE, the compiler sets the OPTIMIZE option to FALSE and issues a warning 
message. 

(Type: Boolean, Default: FALSE) 

The OWN option causes all WORKING-STORAGE SECTION data items to assume the 
declaration OWN except those for which LOCAL or GLOBAL is explicitly declared. The 
OWN option is ignored if the compilation is at the 02-level, OWN and GLOBAL options 
cannot.both be TRUE. 

As the compiler parses each data declaration, it checks the setting of the OWN option 
when the current syntactical element is the data-name in the declaration and the next 
syntactical element has been prepared for future analysis. If an ending period follows 
the data-name and the next syntactical element is a CCR that changes the setting of the 
OWN option, the new OWN option setting affects the data item. 

To prevent the new OWN option setting from affecting the data item, redundant clauses 
or semicolons (;) can be inserted in the data declaration that precedes the CCR so that at 

8600 0296-000 17-33 



Control of the Compilation Process 

least one syntactical element exists between the data-name and the ending period of the 
data declaration. 

Unisys recommends not changing the OWN option within the clauses of a data 
declaration. Instead, the option should be changed either before the level number or 
after'the ending period of the data declaration. 

The VALUE clause cannot be used with the OWN option. 

OWNTEMP 

PAGE 

17-34 

(Type: Boolean, Default: FALSE) 

The OWNTEMP option causes the temporary arrays generated by the compiler for 
the processing of some statements to be OWN. The OWNTEMP. and GLOBALTEMP 
compiler control options cannot both be TRUE. The OWNTEMP option is ignored in a 
program compiled at level 2. 

This option must appear before the first source record and cannot appear on any 
. compiler control record (CCR) after the first source record. 

Note: This option can produce unpredictable errors or results if used in a 
bound procedure that is then -used as an asynchronous process (that 
is, by an ALGOL PROCESS statement). 

(Type: Immediate) 

The PAGE option ejects a page on the output listing. 

If the LIST option is FALSE, the PAGE option is ignored. 

If the OMIT option is TRUE and the LISTOMITrED option is FALSE, the PAGE option 
is ignored. 

8600 0296-000 



Control of the Compilation Process 

SEPCOMP 

I SEPCOMP [ (file-title) 1 

(Type: Boolean, Default: FALSE) 

The SEPCOMP option separate1y recompiles selected areas of a previously compiled 
COBOL program. To do a SEPCOMP compilation, you must first compile the program 
with the compiler control option MAKEHOST compilation set to TRUE. This step 
creates the host file. The host file is an executable code file that contains additional 
information necessary for a SEPCOMP compilation. Given only the name of the host 
file, the name of the original source, and the patches to change the source, the compiler 
is able to separately compile the patched areas, resulting in an abbreviated compilation. 
Only the affected areas of the program are actually compiled. 

The file-title must be a quoted string containing a file title. If you do not specify a file 
title, HOST is assumed unless it is preempted by a file equation. 

The SEPCOMP option can be specified only in the compiler file CARD. 

See Also 

For specific information on using the SEPCOMP option, refer to "Performing a Separate 
Compilation" earlier in this section. 

SEQCHECK 

(Type: Boolean, Default: FALSE) 

This option checks the sequence numbers of the primary, secondary, and/or new symbolic 
records to ensure that the numbers are in ascending order in a manner specified by the 
parameters. 

This option then verifies that the sequence number of the current source-language 
record acquired from the primary input (CARD file) o:r the secondary input (SOURCE 
file) or directed to the output (NEWSOURCE file) is greater than the sequence number 
of the previous source-language record acquired from or directed to the same file. 

If the sequence numbers are not in ascending order, a sequencing warning is produced. 

8600 0296-000 17-35 



Control of the Compilation P'rocess 

For the primary input only, if the previous sequence number was made up of spaces and 
if the current sequence number is also made up of spaces, then a sequencing warning is 
not produced. 

The comparison of sequence numbers is done to allow nonnumeric sequence number 
values. 

The specification of the parameter INERROR directs the compiler to treat sequencing 
warnings on the primary or secondary inputs as syntax errors. 

The specification of the parameter OUTERROR directs the compiler to treat sequencing 
warnings. on the output symbolic file (NEWSOURCE file) as syntax errors. 

The specification of the parameter PURGE directs the compiler to purge the output 
symbolic file (which is not locked or entered into the directory) if sequencing warnings 
occur that refer to the output symbolic file. 

SEQUENCE or SEQ 

{
SEQUENCE} 
SEQ 

17-36 

(Type: Boolean, Default: FALSE) 

The SEQUENCE option assigns new sequence numbers to the source-language records 
accepted for compilation. 

SEQUENCE and SEQ are synonymous. 

This option affects only input source-language records encountered by the compiler 
following the merging process, including records that were omitted because of the OMIT 
option. 

The SEQCHECK option assigns the current Sequence Base option value to the current 
source-language record and increments the Sequence Base option value by the Sequence 
Increment option value. Sequencing occurs before the production of a new symbolic file 
and before the source-language record is listed. 

If the result base exceeds 999999 when the compiler increments the Sequence Base 
option value by the Sequence Increment option value, then the SEQUENCE option is 
disabled and a sequencing error is produced. 

86000296--000 



Control of the Compilation Process 

Sequence Base 

integer 

(Type: Value, Default: 10) 

The Sequence Base option stores the specified integer value as the Sequence Base 
associated with the SEQUENCE option. 

This option must appear on a CCR so that it is dissociated from any other option that 
requires an integer as a parameter or a value. 

The maximum value of the integer is 999999. 

This option can be specified independently of the SEQUENCE option. 

Sequence Increment 

+ integer 

(Type: Value, Default: 10) 

The Sequence Increment option stores the specified integer value as the Sequence 
Increment associated with the SEQUENCE option. 

This option must appear on a CCR so that it is dissociated from any other option 
requiring a positive integer as a parameter or a value. 

The maximum value of the integer is 999999. 

The plus sign ( + ) must immediately precede the integer. 

This option can be specified independently of the SEQUENCE option. 

8600 0296-000 17-37 



Control of the Compilation Process 

SHARING 

1 
SHAREDBYRUNUNIT I 

SHARING = SHAREDBYALL 
PRIVATE 
DONTCARE 

(Type: Value, Default: SHAREDBYRUNUNIT) 

The· SHARING option specifies the way in which the program is shared when called as a 
library. Table 17-8 shows the result of settings each SHARING option value. 

Table 17-8. Effects of the SHARING Option 

Value Effect 

SHAREDBYRUNUNIT All users of this run unit (the program and any libraries that 
are called) share the same instance of the library. 

SHAREDBYALL 

PRIVATE 

DONTCARE 

All simultaneous users share the same instance of the 
library. 

A separate instance of the library is started for each user. If 
the library can be called by programs other than COBOL74 
programs, consider setting the LlBRARYLOCK option to 
TRUE. 

The sharing is determined by the operating system. 

If the library is called by a COBOL74 program, the library services only one user at a 
time, regardless of the setting of the SHARING option. In a complex environment 
where multiple libraries are linked together, a COBOL74 library with the SHARING 
option set to PRN ATE should also have the LmRARYLOCK option set to TRUE to 
ensure data integrity. 

See Also 

• For information about the state of a library, refer to "Effect of Library Initial State 
on CANCEL Statement" in Section 15, "Libraries." 

• For information on locking and sharing libraries, refer to "LmRARYLOCK" and 
"SHARING," respectively, earlier in this section. 

17-38' 8600 0296-000 



SPEC 

Control of the Compilation Process 

(Type: Boolean, Default: FALSE) 

The SPEC option suppresses printing of warning messages, sequence error messages, 
the expansion of the Data Management System II (DMSII) INVOKE statement, and the 
list of elementary items in a CORRESPONDING option. 

STATISTICS 

STATISTICS 

(Type: Boolean, Default: FALSE) 

The STATISTICS option compiles the source language input so that statistical data 
about the object program is written when the object program is executed. Use of this 
option is designed for a development environment, not a production environment, 
because extra processor overhead is generated. 

The STATISTICS option is incompatible with the MAKEHOST, SEPCOMP, and 
BINDINFO options. In addition, the STATISTICS option is not valid if the LEVEL 
option has a value greater than 2. 

If the MAKEHOST or the SEPCOMP option is TRUE or becomes TRUE, then the 
STATISTICS option is set to FALSE and a warning message is issued. If an attempt is 
made to set both the STATISTICS and BINDINFO options to TRUE, the first option 
that became TRUE is unaffected, the second option is set to FALSE, and a warning 
message is issued. 

8600 0296-000 17-39 



Control of the Compilation Process 

SUMMARY 

(Type: Boolean, Default: FALSE) 

The SUMMARY option produces a summary listing of appropriate information about the 
compilation. 

The summary produced by this option is the same as that produced when the LIST 
option is set to TRUE. In addition, usage levels of the capacity of the internal tables of 
the compiler are included. 

Symbolic 10 

" alphanumeric literal " 

TAOS 

(Type: Value, Default: None) 

The Symbolic ID option stores the specified alphanumeric literal as the Symbolic ID 
option value associated with the NEWID option. 

The alphanumeric literal cannot be longer than 8 characters. 

This option must appear on a CCR so that it is dissociated from any other option that 
might require a quoted string as a parameter. 

TADS [ ( {FREQUENCY } ) 1 
-- - REMOTE file-identifier -

17-40 

(Type: Boolean, Default: FALSE) 

When the TADS option is TRUE, the Test and Debug System (T ADS) generates 
special debugging code and tables as part of the object program. The tables support the 
symbolic debugging environment. of T ADS. 

You must place the TADS option before the first record that is not a CCR in the source 
program. 

8600 0296-000 

I 



Control of the Compilation Process 

The FREQUENCY option generates additional code and tables for test coverage and 
frequency analysis. You must specify the FREQUENCY option if you want to use the 
TADS commands FREQUENCY or COVERAGE to determine the number of times 
individual statements have been executed or to determine which statements have not 
been executed. 

The REMOTE option allows T ADS to share a REMOTE file with the program being 
tested. Sharing a file might be necessary because only one REMOTE input file can be 
open for each station. The file must have been assigned to the REMOTE file identifier, 
and must be opened 1-0. The record size must not be less than 72. 

After the compiler reaches the PROCEDURE DIVISION header, if the source file 
contains sequence numbers, the TADS option performs some of the sequence number 
checking associated with the SEQCHECK INERROR compiler control option. 

The sequence numbers of source records must be in ascending order. If this is not the 
case, the compiler issues a syntax error. This rule does not apply to CCRs. 

A CCR can have the same sequence number as the source record that immediately 
precedes or follows it. The compiler issues a syntax error if the sequence number of a 
CCR is less than that of the preceding source record that is not a CCR. 

You cannot use the TADS option with the OPTIMIZE, MAKEHOST, SEPCOMP and 
BINDINFO options. 

Programs compiled with the TADS option set to TRUE cannot be used as input to the 
Binder. 

See Also 

For more information on debugging COBOL74 programs, refer to the A Series COBOL 
ANSI-74 Test and Debug System (TADS) Programming Guide. 

8600 0296-000 17-41 



Control of the Compilation Process 

TARGET 

THIS THIS 
ALL ALL 
A17 Al7 
Al6 Al6 
Al5 Al5 
Al2 Al2 
AIO AIO 
A9 A9 
A6 A6 
A5 A5 

TARGET = A4 ~ A4 .. ·2 

17-42 

A3 A3 
A2 A2 
Al Al 
MICROA MICROA 
B7900 B7900 
B7000 B7000 
LEVEL4 LEVEL4 
LEVEL2 LEVEL2 
LEVELl LEVELl 
LEVELO LEVELO 

(Type: Target, Default: Installation defined) 

The TARGET option generates code suited for a specific computer system or a group of 
systems, and should be used to specify all machines on which the code file needs to run. 

The code file generated is optimized for the machine or the group of machines identified 
by the primary identifier, subject to the compatibility constraints of the machine or 
the group of machines identified by the secondary identifier. That is, the code file is 
optimized for the machine or machines listed as the primary identifier, but no operator is 
generated that is not supported by all the machines listed as secondary identifiers. 

The TARGET option identifiers are as follows: 

• A target identifier that names a specific machine (for example, A4) optimizes a code 
file to be run on that machine so that the code file receives the characteristics for 
that machine. . 

• The THIS identifier is a synonym for the target identifier of the machine on which 
the code file is compiled. 

8600 0296-000 



Control of the Compilation Process 

• The ALL identifier indicates that the code file must be able to be run on all currently 
supported machines. Note that the code generated when the TARGET option is 
equal to ALL changes as older machines are no longer supported and as new ones 
are added. LEVELO is presently a synonym for ALL. 

• The B7900 and B7000 identifiers generate code that can be used to run on a 
previously supported Mark release. B7900 and B7000 are synonyms. 

• The LEVELl and LEVEL2 identifiers encompass the MICROA, Al, A2, A3, A4, A5, 
A6, Al2, Al5, and Al7 target identifiers. 

• The LEVEL4 identifier encompasses the Al6 target identifier. Code files compiled 
with a primary target identifier of either Al6 or LEVEL4 might not run on machines 
other than the A 16. 

The TARGET option must appear before the first record that is not a compiler control 
record (CCR) in the source program. 

Note: 'The A 16 system ruTts most code files compiled with Mark 3.7 SR 2 or 
later compilers. 

See Also 

For a description of the COMPILERTARGET command, refer to the A Series System 
Commands Operations Reference Manual. 

TEMPORARY 

I TEMPORARY 

(Type: Boolean, Default: FALSE) 

The TEMPORARY option causes the object program, when called as a library, to function 
as a temporary library. This option is FALSE by defaq1.t, causing the program to function 
as a permanent library. 

This option is dictated by the value of the SHARING option. A library is made 
permanent only if the SHARING option has been specified as SHAREDBYALL or 
DONTCARE. 

See Also 

• For information on sharing a library, refer to "SHARING" earlier in this section. 

• For information about temporary and permanent libraries, refer to "TEMPORARY" 
in Section 15, "Libraries." 

8600 0296-000 17-43 



Control of the Compilation Process 

USER 

identifier 

VOID 

(Type: Boolean, Default: FALSE) 

If an identifier on a compiler control record (CCR) is not recognized as one of the 
standard options, it is considered a USER option. This option must be an alphanumeric 
identifier. 

A user option can be manipulated exactly like any other Boolean option; that is, you can 
set, reset, or pop it. In addition, the USER option can be used as a variable in option 
expressions to assign values to standard Boolean options or to other user options. 

VOID sequence-number 

17-44 

(Type: Immediate) 

The VOID option discards all input records, except other compiler control records 
(CCRs) in the secondary source-language input file (SOURCE file), until the secondary 
input sequence-number exceeds the specified sequence-number. 

The sequence-number must be an unsigned integer. The sequence-number cannot be 
less than the sequence-number of the CCR on which the VOID option is specified. The 
maximum value of sequence-number is 999999. 

This option can appear only on a CCR in the primary source-language input (CARD file). 

This option is ignored if the MERGE option is FALSE. 

The source-language records that are discarded are not carried forward to the output 
symbolic file (NEWSOURCE file). 

The source-language records that are discarded are not listed unless the LISTDELETED 
option is set. 

See Also 

For information on listing that part of the source language that was deleted by the 
DELETE or VOID options, r~fer to " LISTDELETED" earlier in this section. 

8600 0296-000 



Control of the Compilation Process 

WARN FATAL 

I WARNFATAL 

(Type: Boolean, Default: FALSE) 

The W ARNF AT AL option causes warning messages to be treated as syntax errors. 

The value of the WARNFATAL option when the compiler encounters the end of the 
source file is used during the entire code-generation process. If the option has the value 
TRUE at the end of the source file, any warnings issued during the code-generation 
process will be syntax errors even if the particular source records were analyzed when 
the value of the W ARNF ATAL option was FALSE. 

WARNSUPR 

I WARNSUPR 

(Type: Boolean, Default: FALSE) 

The W ARNSUPR option suppresses the printing of warning messages only. 

XDECS 

I XDECS 

(Type: Boolean, . Default: TRUE) 

When the compiler is saving cross-reference information because the XREF option or the 
XREFFILES option is TRUE, only user-defined words declared while the XDECS option 
is TRUE are included in the cross-reference information. If both the XREF option and 
the XREFFILES option are FALSE, the XDECS option has no effect. 

See Also 

For more information about cross-reference files, refer to "Using Cross-Reference Files" 
earlier in this section. 

8600 0296--000 17-45 



Control of the Compilation Process 

XREF 

I _____ XREF ____ ------'I 
(Type: Boolean, Default: FALSE) 

The XREF option causes cross-reference information to be saved by the compiler. 

If the XREF option is TRUE, a listing is produced. If the XREFFILES option is TRUE, a 
pair of disk files is produced. These files are titled XREFFILES/code-/ile-name/XREFS 
and XREFFILES/code-/ile-name/XDECS. If both the XREF option and the XREFFILES 
option are TRUE, both a listing and the disk files are produced. 

The XREF option can be used anywhere in the source, but the setting of the option at 
the end of the IDENTIFICATION DMSION is effective for the entire compilation. Any 
set, reset, or pop of this option after the end of the IDENTIFICATION DIVISION is 
ignored. 

See Also 

For more information about cross-reference files, refer to "Using Cross-Reference Files" 
earlier in this section. 

XREFFILES 

XREFFILES 

17-46 

(Type: Boolean, Default: . FALSE) 

When TRUE, the XREFFILES option causes cross-reference information to 
be saved by the compiler and causes the SYSTEM/XREF ANALYZER utility, 
if it is started by the compiler, to produce files that can be used by the Editor 
and the SYSTEM/INTERACTIVEXREF utility. These files have the titles 
XREFFILES/code-/ile-name/DECS and XREFFILES/code-/ile-name/REFS, where the 
code-file-name is the name of the object code file that the compiler is generating. 

This option can be used anywhere in the source, but the setting of the option at the end 
of the IDENTIFICATION DIVISION is effective for the entire compilation. Any set, 
reset, or pop of this option after the end of the IDENTIFICATION DIVISION is ignored. 

See Also 

For more information about cross-reference files, refer to "Using Cross-Reference Files" 
earlier in this section. 

8600 0296-000 



Control of the Compilation Process 

XREFS 

XREFS 

(Type: Boolean, Default: FALSE) 

When the compiler is saving cross-reference information because the XREF option or the 
XREFFILES option is TRUE, only references that are found while the XREFS option is 
TRUE are included in the cross-reference information. References to user-defined words 
that are declared when the XDECS option is FALSE are not cross-referenced. If both 
the XREF option and the XREFFILES option are FALSE, then the XREFS option has 
no effect. 

The files produced can be used by the SYSTEM/INTERACTIVEXREF utility or by the 
Editor. The titles of the files produced are XREFFILESlcode-file-nameIDECS and 
XREFFILESlcode-file-nameIREFS , where the name of the code file is produced by the 
compiler. 

Generation of the interactive XREFFILES file is inhibited if the NOXREFLIST option is 
TRUE. 

See Also 

For more information on cross-reference files, refer to "Using Cross-Reference Files" 
earlier in this section. 

8600 0296-000 17-47 



17-48 8600 0296-000 



Appendix A 
General Format Notation 

General format notations are syntax diagrams that show the rules for creating 
COBOL74 code from words and symbols. These format notations visually represent the 
valid combinations of words and symbols that make COBOL74 statements or clauses. 

To familiarize you with format notations, this appendix describes the components of 
the general format notation and provides examples of using format notations to create 
COBOL74 entries. You can refer to the examples at the back of this appendix as you 
read the explanation of each component of the general format notation. 

All the format notations, whether simple or complex, follow the same basic rules. Once 
you understand them, the format notations serve as quick references to the syntaX for 
statements and clauses. 

The general format notation shows you the following: 

• Required words and optional keywords 

• Words you must provide 

• The order in which the items must appear 

• Entries that can be repeated 

• Required and optional punctuation 

When more than one format notation appears for a statement or clause, each format 
describes the valid combinations of COBOL74 code for a particular application. For 
example, there are three separate formats for three separate types of addition. The 
formats are numbered and labeled for ease of reference. 

You can construct COBOL74 statements and clauses from the components shown in 
the following list. Some components represent words that you use in your code. Other 
components symbolize the rules for constructing your code. For example, you include 
uppercase underlined words in your code. You do not include the braces and brackets in 
your code. Instead, these symbols indicate alternatives and options for the words they 
enclose. 

• Uppercase words 

• Lowercase words 

• Level numbers 

• Braces ({}) 

• Brackets ([l) 

• Ellipses (oo.) 

8600 0296-000 A-I 



General Format Notation 

A-2 

• Separators 

• Special characters 

You must code the words in the order in which they appear in the general format. The 
words can appear in a different order only if it is explicitly stated in the explanation of 
the format that you can do so. 

Table A-l shows each component of the format notation and explains its meaning. 

Table A-I. General Format Notation Components 

Components 

Underlined uppercase 
words 

Not underlined 
uppercase keywords 

Lowercase words 

Level numbers 

{} (Braces) 

[] (Brackets) 

... (Ellipses) 

Separators 

t Unisys extension 

Explanation 

Identify required words that you must include in the statement or 
clause. 

Show optional keywords that you can include or omit without 
affecting the meaning of the statement or clause. An optional word 
enclosed in braces indicates a default option. 

Indicate words that you must. supply. If you see a number appended 
to a lowercase word, that lowercase word represents a particular 
occurrence of that word. 

Describe numbers that you must provide to show the organization of 
your data. 

Enclose a group of phrases stacked vertically from which you must 
pick only one. If braces enclose a single phrase, you can repeat the 
phrase. If braces enclose multiple phrases, you must pick one 
phrase from the list of alternatives. 

Enclose a group of phrases stacked vertically that are optional. If 
brackets enclose a single option, you can omit that option. If 
brackets enclose multiple options, you can omit all the options or 
you can pick one option from the list of options. Phrases with 
phrases are allowed. Nested phrases appear e~closed in braces or 
brackets within another phrase enclosed in braces or brackets. 

Represent the point at which you can repeat a part of the format. 
Ellipses can appear only immediately to the right of a right bracket 
or a right brace. The part of the format that you can repeat is the 
part enclosed within the preceding brackets or braces. 

Indicate punctuation in a sentence. Table 3-2 lists all the 
separators. Commas and semicolons are optional. You can use 
separators between statements if you want. (You can interchange 
the comma, semicolon, and space characters.)t 

Periods are required. You must end with a period the paragraphs 
within the IDENTIFICATION and PROCEDURE DIVISIONS and 
entries within the ENVIRONMENT and DATA DIVISIONS. 

continued 

8600 0296-000 



General Format Notation 

Table A-I. General Format Notation Components (cont.) 

Components 

Special characters 

Example 1 

Explanation 

Indicate arithmetic operations or relation conditions. Special 
characters are not underlined in the general format notation. 
However, if a special character appears, it is required. The special 
characters include the symbols for addition, subtraction, 
multiplication, division, and exponentiation (+, -, *, I, **) and the 
symbols for less than, equal to, and greater than «, =, ». 

The following example is the general format notation for the BLOCK clause: 

BLOCK CONTAINS [ integer-! TO ] integer-2 {RECORDS } 
-- CHARACTERS 

Explanation 

This example illustrates the following: 

• BLOCK is a word that you must enter. 

• CONTAINS is an optional keyword for improving readability. 

• The integer-l TO phrase is optional. If it is used, TO is required. 

• Integer-2 is a required entry. You must substitute a number for integer-2. 

• CHARACTERS is the default phrase. If you do not enter either RECORDS or 
CHARACTERS, the compiler assumes CHARACTERS. However, you can enter 
CHARACTERS to improve the readability of your code. If you do not want 
characters and do want records, then you must enter RECORDS. 

U sing the preceding format notation, you can code any of the following lines. Notice that 
all three lines of code are equivalent to the compiler, but the full notation is clearer to an 
outside reader. 

BLOCK CONTAINS 400 TO 500 CHARACTERS 
. BLOCK CONTAINS 400 T0 500 

BLOCK 400 TO 500 

You can also code the following line. In this instance, you can choose not to use the 
integer-l TO option and you can choose RECORDS. 

BLOCK CONTAINS 15 RECORDS 

8600 0296-000 A-3 



General Format Notation 

A-4 

Example 2 

The following example is the general format notation for the COMPUTE statement: 

COMPUTE identifier-! [ROUNDED] [, identifier-2 [ROUNDED] ] ... 

= arithmetic-expression [ ; ON SIZE ERROR imperative-statement] 

Explanation 

This example illustrates the following: 

• COMPUTE is a word that you must enter. 

• Identifier-! and arithmetic-expression are entries that you must provide. 

• ROUNDED is an option. If you choose to use it, your results are arithmetically 
rounded. 

• , identifier-2 is an option. It can be repeated with or without the ROUNDED option. 

• The equals sign and period are required. 

• The comma and semicolon are optional. 

• ; ON SIZE ERROR imperative-statement is an option. If you choose to use this 
option, the phrase, ON is optional, but SIZE, ERROR, and imperative-statement are 
required. 

Two valid statements that you could form are the following: 

COMPUTE fruit-inventory = apples + oranges + bananas. 
COMPUTE ws-fruit, print-fruit ROUNDED = fruit-inventory + order-size. 

8600 0296-000 



Appendix B 
Reserved Words and Keywords 

This section describes and lists the reserved words and the keywords provided in U nisys 
COBOL74. 

Reserved Words 
A reserved word can never be declared as an identifier. Its predefined meaning cannot 
be changed. 

Following is the list of reserved words. Words that are reserved but are described in 
Volume 2 of this manual are also included. 

ABORT-TRANSACTION 

ADD 

ALARM 

ALPHABETIC 

ALTERNATE 

AREA 

ASSIGN 

AUDIT 

BEFORE 

BINARY 

BOTTOM 

CALL 

CD 

CHANGE 

CLOCK-UNITS 

COBOL 

COLLATING 

COMMANDKEYS 

COMPUTATIONAL 

CONTAINS 

CONTROL 

A 

ACCEPT 

ADVANCiNG 

ALL 

ALSO 

AND 

AREAS 

AT 

AUTHOR 

B 

BEGI N-TRANSACTION 

BLANK 

BY 

C 

CANCEL 

CF 

CHARACTER 

CLOSE 

CODE 

COLUMN 

COMMUNICATION 

COMPUTE 

CONTENT 

CONTROL-POINT 

ACCESS 

AFTER 

ALLOW 

ALTER 

ARE 

ASCENDING 

ATTACH 

BEGINNING 

BLOCK 

CAUSE 

CH 

CHARACTERS 

CMP 

CODE-SET 

COMMA 

COMP 

CONFIGURATION 

CONTINUE 

CONTROLS 

continued 

8600 0296-000 8-1 



Reserved Words and Keywords 

continued 

C 

COPY COPY-NUMBER CORR 

CORRESPONDING COUNT CP 

CREATE CRUNCH CURRENCY 

CURRENT 

0 

DATA DATA-BASE DATE 

DATE-COMPILED DATE-WRITTEN DAY 

DB DE DEBUG-CONTENTS 

DEBUG-ITEM DEBUG-LINE DEBUG-NAME 

DEBUG-SUB-l DEBUG-SUB-2 DEBUG-SU B-3 

DEBUGGING DECIMAL-POINT DECLARATIVES 

DELETE DELIMITED DELIMITER 

DEPENDING DESCENDING DESTINATION 

DETACH DETAIL DICTIONARY 

DISABLE DISALLOW DISK 

DISPLAY DIVIDE DIVISION 

DMERROR DMSTATUS DMSTRUCTURE 

DMTERMINATE DMUPDATECOUNT DOUBLE 

DOWN DUPLICATES DYNAMIC 

E 

EGI ELSE EMI 

ENABLE END END-OF-PAGE 

END-TRANSACTION ENDING ENVIRONMENT 

EOP EQUAL ERROR 

ESI EVENT EVERY 

EXCEPTION EXCLUSIVE EXECUTE 

EXIT EXTEND EXTERNAL 

F 

FALSE FD FIELD 

FILE FILE-CONTROL FILLER 

FINAL FIND FIRST 

FOOTING FOR FORM 

FORM-KEY FREE FROM 

FUNCTION 

8-2 8600 0296-000 



Reserved Words and Keywords 

G 

GENERATE GIVING GO 

GREATER GROUP 

H 

HEADING HIGH-VALUE HIGH-VALUES 

1-0 I-O-CONTROL ID 

IDENTI FICATION IF IN 

INDEX INDEXED INDICATE 

INITIAL INITIALIZE INITIATE 

INPUT INPUT-OUTPUT INQUIRY 

INSERT INSPECT INSTALLATION 

INTERRUPT INTO INVALID 

INVOKE IS 

J 

JUST JUSTIFIED 

K 

KANJI KEY 

l 

LABEL LAST LD 

LEADING LEFT LENGTH 

LESS LIMIT LIMITS 

LINAGE LI NAG E-COU NTER LINE 

LINE-COUNTER LINES LINKAGE 

LOCAL LOCAL-STORAG E LOCK 

LOCKED LOW-VALUE LOW-VALUES 

LOWER-BOUND LOWER-BOUNDS 

M 

MEMORY MERGE MESSAGE 

MID-TRANSACTION MODE MODULES 

MOVE MULTIPLE MULTIPLY 

N 

NATIVE NEGATIVE NEXT 

NO NO-AUDIT NONE 

NOT NULL NUMBER 

NUMERIC 

8600 0296-000 B-3 



Reserved Words and Keywords 

0 

OBJ ECT-COMPUTER OC OCCURS 

ODT-INPUT-PRESENT OF OFF 

OFFSET OMITIED ON 

OPEN OPTIONAL OR 

ORGANIZATION OUTPUT OVERFLOW 

OWN 

p 

PAGE PAGE-COUNTER PC 

PERFORM PF PH 

PIC PICTURE PLUS 

POINT POINTER POSITION 

POSITIVE PRINTING PRIOR 

PROCEDURE PROCEDURES PROCEED 

PROCESS PROGRAM PROGRAM-ID 

PURGE 

Q 

QUEUE QUOTE QUOTES 

R 

RANDOM RD READ 

READ-OK READ-WRITE REAL 

RECEIVE RECEIVED RECORD 

RECORDS RECREATE REDEFINES 

REEL REF REFERENCE 

REFERENCES RELATIVE RELEASE 

REMAINDER REMOVAL REMOVE 

RENAMES REPLACING REPORT 

REPORTING REPORTS RERUN 

RESERVE RESET RETURN 

REVERSED REWIND REWRITE 

RF RH RIGHT 

ROUNDED RUN 

5 

SAME SAVE SD 

SEARCH SECTION SECURE 

SECURITY SEEK SEGMENT 

SEGMENT-LIMIT SELECT SEND 

continued 

8-4 8600 0296-000 



Reserved Words and Keywords 

continued 

5 

SENTENCE SEPARATE SEQUENCE 

SEQUENTIAL SET SIGN 

SINGLE SIZE SORT 

SORT-MERGE SOURCE SOURCE-COMPUTER 

SPACE SPACES SPECIAL-NAMES 

STACK STANDARD STANDARD-l 

START STATUS STOP 

STORE STRING SUB-QUEUE-l 

SUB-QUEUE-2 SUB-QUEUE-3 SUBTRACT 

SUM SYMBOLIC SYNC 

SYNCHRONIZED SYSTEM SYSTEM ERROR 

T 

TABLE TAG-KEY TAG-SEARCH 

TALLYING TASK TB 

TERMINAL TERMINATE TEXT 

THAN THEN THROUGH 

THRU TIME TIMER 

TIMES TO TO DAYS-DATE 

TODAYS-NAME TOP TRACTORS 

TRAILING TRANSACTION TRANSPORT 

TRUE TYPE 

U 

UNIT UNLOCK UNSTRING 

UNTIL UP UPDATE 

UPON USAGE USE 

USING 

V 

VA VALUE VALUES 

VARYING VIA 

W 

WAIT WHEN WITH 

WORDS WORKING-STORAGE WRITE 

WRITE-OK 

Z 

ZERO ZEROES ZEROS 

86000296-000 B-5 



Reserved Words a nd Keywords 

See Also 

For further information about product-specific extensions of these words, refer to 
Volume 2 of this manual. 

Context-Sensitive Keywords 
A context-sensitive keyword can be redeclared as an identifier, and if it is used where the 
syntax calls for that reserved word, it carries the predefined meaning; otherwise, it has 
the user-declared meaning. 

The following are the context-sensitive keywords: 

AREAOVERFLOW HERE SW3 

ASCII INTEGER SW4 

BACKUP KEYSPERENTRY SW5 

CAPABLE LIST SW6 

CATEGORY MOD SW7 

CHANNEL ODT SW8 

COLON OPEN SW9 

CONVERSATION PORT TAPE 

DBKIND PRINTER TAPES 

DEFAULT PRODUCTION TEMPORARY 

DN PUNCH TEST 

DMSII READER TITLE 

DMEXCEPTIONMSG REM TRUNCATED 

DMNEXTEXCEPTION REMOTE URGENT 

DUMP SEMANTIC USER 

EBCDIC SPO VERSION 

ERRORTYPE STRUCTURE WFL 

FILEOVERFLOW SWI WHERE 

HEADER SW2 

Application-Specific Keywords 

8-6 

An application-specific keyword is reserved by the compiler for the extent of the program 
when you are using a SIM or some network applications. 

The compiler reserves the following words in programs only when you specify the 
RESERVE NETWORK clause in the SPECIAL-NAMES paragraph. 

AWAIT-OPEN 

. RESPOND 

8600 0296-000 



Reserved Words and Keywords 

See Also 

Refer to Volume 2 of this manual for the list of words the compiler reserves when you 
specify the RESERVE SEMANTIC clause in the SPECIAL-NAMES paragraph. 

8600 0296-000 8-7 



8-8 8600 0296-000 



Appendix C 
EBCDIC and ASCII Character Sets 

Tables C-l and C-2 list the hexadecimal representation and ordinal number for each 
ASCII and EBCDIC character. Table C-l is sorted by EBCDIC ordinal number and 
represents the EBCDIC-to-ASCII translation performed when necessary. Table C-2 
is sorted by ASCII ordinal number and represents the ASCII-to-EBCDIC translation 
performed when necessary. 

Note: In the following tables, any ASCII character greater than 127 (4"7F'') 
is not valid. 

Table C-l. EBCDIC-to-ASCII Translation Chart 

EBCDIC ASCII 

Hex Ordinal Hex Ordinal 
Code Number Code Number Char Description 

00 0 00 0 NUL Null 

01 1 01 1 SOH Start of Heading 

02 2 02 2 STX Sta rt of Text 

03 3 03 3 ETX End of Text 

04 4 9C 15 

05 5 09 9 HT Horizontal 
Tabulation 

06 6 86 13 

07 7 7F 127 DEL Delete 

08 8 97 15 

09 9 8D 14 

OA 10 8E 14 

08 11 08 11 VT Vertical Tabulation 

OC 12 OC 12 FF Form Feed 

OD 13 00 13 CR Carriage Return . 

OE 14 OE 14 SO Shift Out 

OF 15 OF 15 SI Shift In 

continued 

8600 0296-000 C-l 



EBCDIC and ASCII Character Sets 

Table C-l. EBCDIC-to-ASCII Translation Chart (cant.) 

EBCDIC ASCII 

Hex Ordinal Hex Ordinal 
Code Number Code Number Char Description 

10 16 10 16 DLE Data Link Escape 

11 17 11 17 DCl Device Control 1 

12 18 12 18 DC2 Device Control 2 

13 19 13 19 DC3 Device Control 3 

14 20 9D 157 

15 21 85 13 

16 22 08 8 BS Backspace 

17 23 87 135 

18 24 18 24 CAN Cancel 

19 25 19 25 EM End of Medium .. 

lA 26 92 146 

IB 27 8F 143 

lC 28 lC 28 FS File Separator 

ID 29 ID 29 GS Group Separator 

IE 30 IE 30 RS Record Separator 

IF 31 IF 31 US Unit Separator 

20 32 80 128 

21 33 81 129 

22 34 82 130 

23 35 83 131 

24 36 84 132 

25 37 OA 10 LF Line Feed 

26 38 17 23 ETB End of 
Transmission 
Block 

27 39 IB 27 ESC Escape 

28 40 88 136 

29 41 89 137 

continued 

C-2 8600 0296-000 



EBCDIC and ASCII Character Sets 

Table C-l. EBCDIC-to-ASCII Translation Chart (cont.) 

EBCDIC ASCII 

Hex Ordinal Hex Ordinal 
Code Number Code Number Char Description 

2A 42 8A 138 

2B 43 8B 139 

2C 44 8C 140 

2D 45 05 5 ENQ Enquiry 

2E 46 06 6 ACK Acknowledge 

2F 47 07 7 BEL Bell 

30 48 90 144 

31 49 91 145 

32 50 16 22 SYN Synchronous Idle 

33 51 93 147 

34 52 94 148 

35 53 95 149 

36 54 96 150 

37 55 04 4 EOT End of 
Transmission 

38 56 98 152 

39 57 99 153 

3A 58 9A 154 

3B 59 9B 155 

3C 60 14 20 DC4 Device Control 4 

3D 61 15 21 NAK Negative 
Acknowledge 

3E 62 9E 158 

3F 63 1A 26 SUB Substitute 

40 64 20 32 SP Space 

41 65 AO 160 

42 66 Al 161 

43 67 A2 162 

continued 

8600 0296-000 C-3 



EBCDIC and ASCII Character Sets 

Table C-l. EBCDIC-to-ASCII Translation Chart (cont.) 

EBCDIC ASCII 

Hex Ordinal Hex Ordinal 
Code Number Code Number Char Description 

44 68 A3 163 

45 69 A4 164 

46 70 A5 165 

47 71 A6 166 

48 72 A7 167 

49 73 A8 168 

4A 74 5B 91 [ Opening Bracket 

4B 75 2E 46 Period 

4C 76 3C 60 < Less Than 

4D 77 28 40 ( Opening 
Parenthesis 

4E 78 2B 43 + Plus 

4F 79 21 33 ! Exclamation Point 

50 80 26 38 / Ampersand 

51 81 A9 169 

52 82 AA ' 170 

53 83 AB 171 

54 84 AC 172 

55 85 AD 173 

56 86 AE 174 

57 87 AF 175 

58 88 BO 176 

59 89 B1 177 

5A 90 5D 93 ] Closing Bracket 

5B 91 24 36 $ Dollar Sign 

5C 92 2A 42 * Asterisk 

5D 93 29 41 ) Closing 
Parenthesis 

continued 

C-4 86000296-000 



EBCDIC and ASCII Character Sets 

Table C-l. EBCDIC-to-ASCII Translation Chart (cont.) 

EBCDIC ASCII 

Hex Ordinal Hex Ordinal 
Code Number Code Number Char Description 

5E 94 3B 59 ; Semicolon 

5F 95 5E 94 "'- Circumflex (ASCII); 
Not Sign (EBCDIC) 

60 96 2D 45 - Hyphen (Minus) 

61 97 2F 47 I Slant (Slash) 

62 98 B2 178 

63 99 B3 179 

64 100 B4 180 

65 101 B5 181 

66 102 B6 182 

67 103 B7 183 

68 104 B8 184 

69 105 B9 185 

6A 106 7C 124 I Vertical Line 

6B 107 2C 44 , Comma 

6C 108 25 37 % Percent 

6D 109 5F 95 Underline -
6E 110 3E 62 > Greater Than 

6F 111 3F 63 ? Question Ma rk 

70 112 BA 186 

71 113 BB 187 

72 114 BC 188 

73 115 BD 189 

74 116 BE 190 

75 117 BF 191 

76 118 CO 192 

77 119 Cl 193 

78 120 C2 194 

continued 

8600 0296-000 C-5 



EBCDIC and ASCII Character Sets 

Table C-l. EBCDIC-to-ASCII Translation Chart (cant.) 

EBCDIC ASCII 

Hex Ordinal Hex Ordinal 
Code Number Code Number Char Description 

79 121 60 96 , G rave Accent 
(Opening Single 
Quotation Mark) 

7A 122 3A 58 : Colon 

78 123 23 35 # Number Sign 

·7C 124 40 64 @ Commercial At 

70 125 27 39 , Apostrophe 
(Closing Single 
Quotation Mark) 

7E 126 3D 61 = Equals 

7F 127 22 34 II Quotation Marks 

80 128 C3 195 

81 129 61 97 a Lowercase a 

82 130 62 98 b Lowercase b 

83 131 63 99 c Lowercase c 

84 132 64 100 d Lowercase d 

85 133 65 101 e Lowercase e 

86 134 66 102 f Lowercase f 

87 135 67 103 g Lowercase g 

88 136 68 104 h Lowercase h 

89 137 69 105 i Lowercase i 

8A 138 C4 196 

88 139 C5 197 

8C 140 C6 198 

80 141 C7 199 

8E 142 C8 200 

8F 143 C9 201 

90 144 CA 202 

91 145 6A 106 j Lowercase j 

continued 

C-6 8600 0296-000 



EBCDIC and ASCII Character Sets 

Table C-l. EBCDIC-to-ASCII Translation Chart (cont.) 

EBCDIC ASCII 

Hex Ordinal Hex Ordinal 
Code Number Code Number Char Description 

92 146 6B 107 k Lowercase k 

93 147 6C 108 I Lowercase I 

94 148 6D 109 m Lowercase m 

95 149 6E 110 n Lowercase n 

96 150 6F 111 0 Lowercase 0 

97. 151 70 112 P Lowercase p 

98 152 71 113 q Lowercase q 

99 153 72 114 r Lowercase r 

9A 154 CB 203 

9B 155 CC 204 

9C 156 CD 205 

9D 157 CE 206 

9E 158 CF 207 

9F 159 DO 208 

AO 160 01 209 

Al 161 7E 126 - Overline (Tilde) 

A2 162 73 115 s Lowercase s 

A3 163 74 116 t Lowercase t 

A4 164 75 117 u Lowercase u 

A5 165 76 118 v Lowercase v 

A6 166 77 119 w Lowercase w 

A7 167 78 120 x Lowercase x 

A8 168 79 121 Y Lowercase y 

A9 169 7A 122 z Lowercase z 

AA 170 02 210 

AB 171 D3 211 

AC 172 04 212 

AO 173 05 213 

continued 

8600 0296-000 C-7 



EBCDIC and ASCII Character Sets 

Table C-l. EBCDIC-to-ASCII Translation Chart (cont.) 

EBCDIC ASCII . 

Hex Ordinal Hex Ordinal 
Code Number Code Number Char Description 

AE 174 D6 214 

AF 175 D7 215 

BO 176 D8 216 

B1 177 D9 217 

B2 178 DA 218 

B3 179 DB 219 

B4 180 DC 220 

B5 181 DD 221 

B6 182 DE 222 

B7 183 DF 223 

B8 184 EO 224 

B9 185 E1 225 

BA 186 E2 226 

BB 187 E3 227 

BC 188 E4 228 

BD 189 E5 229 

BE 190 E6 230 

BF 191 E7 231 

CO 192 7B 123 { Opening Brace 

C1 193 41 65 A Uppercase A 

C2 194 42 66 B Uppercase B 

C3 195 43 67 C Uppercase C 

C4 196 44 68 D Uppercase D 

C5 197 45 69 E Uppercase E 

C6 198 46 70 F Uppercase F 

C7 199 47 71 G Uppercase G 

C8 200 48 72 H Uppercase H . 

continued 

C-8 86000296-000 



EBCDIC and ASCII Character Sets 

Table C-l. EBCDIC-to-ASCII Translation Chart (cont.) 

EBCDIC ASCII 

Hex Ordinal Hex Ordinal 
Code Number Code Number Char Description 

C9 201 49 73 I Uppercase I 

CA 202 E8 232 

CB 203 E9 233 

CC 204 EA 234 

CO 205 EB 235 

CE 206 EC 236 

CF 207 EO 237 

00 208 70 125 } Closi ng Brace 

01 209 4A 74 J Uppercase J 

02 210 4B 75 K Uppercase K 

03 211 4C 76 L Uppercase L 

04 212 40 77 M Uppercase M 

05 213 4E 78 N Uppercase N 

06 214 4F 79 0 Uppercase 0 

07 215 50 80 P Uppercase P 

08 216 51 81 Q Uppercase Q 

09 217 52 82 R Uppercase R 

OA 218 EE 238 

OB 219 EF 239 
) 

OC 220 FO 240 

00 221 Fl 241 

OE 222 F2 242 

OF 223 F3- 243 

EO 224 5C 92 \ Reverse Slant 

El 225 9F 159 

E2 226 53 83 S Uppercase S 

E3 227 54 84 T Uppercase T 

continued 

8600 0296-000 C-9 



EBCDIC and ASCII Character Sets 

Table C-l. EBCDIC-to-ASCII Translation Chart (cont.) 

EBCDIC ASCII (0 

Hex Ordinal Hex Ordinal 
Code Number Code Number Char Description 

E4 228 55 85 U Uppercase U 

E5 229 56 86 V Uppercase V 

E6 230 57 87 W Uppercase W 

E7 231 58 88 X Uppercase X 

E8 232 59 89 Y Uppercase Y 

E9 233 5A 90 Z Uppercase Z 

EA 234 F4 244 

EB 235 F5 245 

EC 236 F6 246 

ED 237 F7 247 

EE 238 F8 248 

EF 239 F9 249 

FO 240 30 48 0 Zero 

F1 241 31 49 1 One 

F2 242 32 50 2 Two 

F3 243 33 51 3 Three 

F4 244 34 52 4 Four 

F5 245 35 53 5 Five 

F6 246 36 54 6 Six 

F7 247 37 55 7 Seven 

F8 248 38 56 8 Eight 

F9 249 39 57 9 Nine 

FA 250 FA 250 

FB 251 FB 251 

FC 252 FC 252 

FD 253 FD 253 

continued 

C-IO 8600 0296-000 



EBCDIC and ASCII Character Sets 

Table C-l. EBCDIC-to-ASCII Translation Chart (cont.) 

EBCDIC ASCII 

Hex Ordinal Hex Ordinal 
Code Number Code Number Char Description 

FE 254 FE 254 

FF 255 FF 255 

Table C-2. ASCII-to-EBCDIC Translation Chart 

ASCII EBCDIC 

Hex Or,dinal Hex Ordinal 
Code Number Code Number Char Description 

00 0 00 0 NUL Null 

01 1 01 1 SOH Start of Heading 

02 2 02 3 STX Sta rt of Text 

03 3 03 4 ETX End of Text 

04 4 37 55 EaT End of 
Transmission 

05 5 20 45 ENQ Enquiry 

06 6 2E 46 ACK Acknowledge 

07 7 2F 47 BEL Bell 

08 8 16 22 BS Backspace 

09 9 05 5 HT Horizontal 
Tabulation 

OA 10 25 37 LF Line Feed 

OB 11 OB 11 VT Vertical Tabulation 

OC 12 OC 12 FF Form Feed 

00 13 00 13 CR Carriage Return 

OE 14 OE 14 SO Shift Out 

OF 15 OF 15 SI Shift In 

10 16 10 16 OLE Data Li n k Esca pe 

continued 

8600 0296-000 C-l1 



EBCDIC and ASCII Character Sets 

Table C-2. ASCII-to-EBCDIC Translation Chart (cont.) 

ASCII EBCDIC 

Hex Ordinal Hex Ordinal 
Code Number Code Number Char Description 

11 17 11 17 DC1 Device Control 1 

12 18 12 18 DC2 Device Control 2 

13 19 13 19 DC3 Device Control 3 

14 20 3C 60 DC4 Device Control 4 

15 21 3D 61 NAK Negative 
Acknowledge 

16 22 32 50 SYN Synchronous Idle 

17 23 26 38 ETB End of 
Transmission 
Block 

18 24 18 24 CAN Cancel 

19 25 19 25 . EM End of Medium 

lA 26 3F 63 SUB Substitute 

IB 27 27 39 ESC Escape 

lC 28 lC 28 FS File Separator 

1D 29 1D 29 GS Group Separator 

IE 30 IE 30 RS Record Separator 

IF 31 IF 31 US Unit Separator 

20 32 40 64 SP Space 

21 33 4F 79 ! Exclamation Point 

22 34 7F 127 II Quotation Marks 

23 35 7B 123 # Number Sign 

24 36 5B 91 $ Dollar Sign 

25 37 6C 108 % Percent 

26 38 50 80 & Ampersand 

27 39 7D 125 
, 

Apostrophe 
(Closing Single 
Quotation Ma rk) 

continued 

C-12 8600 0296-000 



EBCDIC and ASCII Character Sets 

Table C-2. ASCII-to-EBCDIC Translation Chart (cont.) 

ASCII EBCDIC 

Hex Ordinal Hex Ordinal 
Code Number Code Number Char Description 

28 40 40 77 ( Opening 
Parenthesis 

29 41 50 93 ) Closing 
Parenthesis 

2A 42 5C 92 * Asterisk 

28 43 4E 78 + Plus 

2C 44 68 107 , Comma 

20 45 60 96 - Hyphen (Minus) 

2E 46 48 75 Period 

2F 47 61 97 / Slant (Slash) 

30 48 FO 240 0 Zero 

31 49 F1 241 1 One 

32 50 F2 242 2 Two 

33 51 F3 243 3 Three 

34 52 F4 244 4 Four 

35 53 F5 245 5 Five 

36 54 F6 246 6 Six 

37 55 F7 247 7 Seven 

38 56 F8 248 8 Eight 

39 57 F9 249 9 Nine 

3A 58 7A 122 : Colon 

38 59 5E 94 j Semicolon 

3C 60 4C 76 < Less Than 

30 61 7E 126 = Equals 

3E 62 6E 110 > Greater Than 

3F 63 6F 111 ? Question Mark 

40 64 7C 124 @ Commercial At 

41 65 C1 193 A Uppercase A 

continued 

8600 0296-000 C-13 



EBCDIC and ASCII Character Sets 

TableC-2. ASCII-to-EBCDIC Translation Chart (cant.) 

ASCII EBCDIC 

Hex Ordinal Hex Ordinal 
Code Number Code Number Char Description 

42 66 C2 194 8 Uppercase 8 

43 67 C3 195 C Uppercase C 

44 68 C4 196 D Uppercase D 

45 69 C5 197 E Uppercase E 

46 70 C6 198 F Uppercase F 

47 71 C7 199 G Uppercase G 

48 72 C8 200 H Uppercase H 

49 73 C9 201 I Uppercase I 

4A 74 D1 209 J Uppercase J 

48 75 D2 210 K Uppercase K 

4C 76 D3 211 L Uppercase L 

4D 77 D4 212 M Uppercase M 

4E 78 D5 213 N Uppercase N 

4F 79 D6 214 0 Uppercase 0 

50 80 D7 215 P Uppercase P 

51 81 D8 216 Q Uppercase Q 

52 82 D9 217 R Uppercase R 

53 83 E2 226 S Uppercase S 

54 84 E3 227 T Uppercase T 

55 85 E4 228 U Uppercase U 

56 86 E5 229 V Uppercase V 

57 87 E6 230 W Uppercase W 

58 88 E7 231 X Uppercase X 

59 r 89 E8 232 Y Uppercase Y 

5A 90 E9 233 Z Uppercase Z 

58 91 4A 74 [ Opening 8racket 

continued 

C-14 8600 0296-000 



EBCDIC and ASCII Character Sets 

Table C-2. ASCII-to-EBCDIC Translation Chart (cont.) 

ASCII EBCDIC 

Hex Ordinal Hex Ordinal 
Code Number Code Number Char Description 

5C 92 EO 224 \ Reverse Slant 

5D 93 5A 90 ] Closing Bracket 

5E 94 5F 95 A Circumflex (ASCI!); 
Not Sign (EBCDIC) 

5F 95 6D 109 Underline -
60 96 79 121 

, 
G rave Accent 
(Opening Single 
Quotation Ma rk) 

61 97 81 129 a Lowercase a 

62 98 82 130 b Lowercase b 

63 99 83 131 c Lowercase c 

64 100 84 132 d Lowercase d 

65 101 85 133 e Lowercase e 

66 102 86 134 f Lowercase f 

67 103 87 135 g Lowercase g 

68 104 88 136 h Lowercase h 

69 105 89 137 i Lowercase i 

6A 106 91 145 j Lowercase j 

6B 107 92 146 k Lowercase k 

6C 108 93· 147 I Lowercase I 

6D 109 94 148 m Lowercase m 

6E 110 95 149 n Lowercase n 

6F 111 ·96 150 0 Lowercase 0 

70 112 97 151 P Lowercase p 

71 113 98 152 q Lowercase q 

72 114 99 153 r Lowercase r 

73 115 A2 162 s Lowercase s 

74 116 A3 163 t Lowercase t 

continued 

86000296-000 C-15 



EBCDIC and ASCII Character Sets 

Table C-2. ASCII·to·EBCDIC Translation Chart (cent.) 

ASCII EBCDIC 

Hex Ordinal Hex Ordinal 
Code Number Code Number Char Description 

75 117 A4 164 u Lowercase u 

76 118 A5 165 v Lowercase v 

77 119 A6 166 w Lowercase w 

78 120 A7 167 x Lowercase x 

79 121 A8 168 Y Lowercase y 

7A 122 A9 169 z Lowercase z 

78 123 CO 192 { Opening Brace 

7C 124 6A 106 I Vertical Line 

7D 125 DO 208 } Closing Brace 

7E 126 Al 161 - Overline (Tilde) 

7F 127 07 7 DEL Delete 

C-16 8600 0296-000 



Appendix D 
Examples 

Following are a group of examples that show various constructs. 

Example 1 

Example D-l shows a way to read records from a data file and print them out on a 
printer. 

IDENTIF~CATION DIVISION. 
PROGRAM-ID. EXECTEST. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. A-9. 
OBJECT-COMPUTER. A-9. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT OPTIONAL CURRFILE 
ASSIGN TO DISK. 

SELECT PFILE ASSIGN TO PRINTER. 
DATA DIVISION. 
FILE SECTION. 
FD CURRFILE 

BLOCK CONTAINS 60 CHARACTERS 
RECORD CONTAINS 60 CHARACTERS. 

01 SOURCE-IN-REC. 
05 SOURCE-IN PIC X(52). 
05 SOURCE-SEQ PIC 9(8). 

FD PFILE RECORD CONTAINS 64 CHARACTERS. 
01 PRINT-REC. 

05 PRINT-LINENUM PIC 9(2). 
05 BLANK-SPACES PIC X(2). 
05 PRINT-DATA PIC X(52). 
05 PSEQ PIC 9(8). 

WORKING-STORAGE SECTION. 
01 LINE-NUMBER PIC 9(8). 
01WSREC. 

05 WSNUM 
05 WSPAC 
05 WSIN 
0'5 WSEQ 

PIC 9(2). 
PIC X(2). 
PIC X(52). 
PIC 9(8). 

P~OCEDURE DIVISION. 
PARA-l. 

OPEN INPUT CURRFILE. 

Example 0-1. Coding READ and WRITE Statements 

8600 0296-000 D-1 



Examples 

0-2 

OPEN OUTPUT PFILE. 
MOVE SPACES TO WSPAC. 
MOVE 1 TO LINE-NUMBER. 

PARA-2. 

EOJ. 

READ CURRFILE AT END GO TO EOJ. 
MOVE LINE-NUMBER TO WSNUM. 
MOVE SOURCE-IN TO WSIN. 
MOVE SOURCE-SEQ TO WSEQ. 
WRITE PRINT-REC FROM WSREC. 
ADD 1 TO LINE-NUMBER. 
GO TO PARA-2. 

CLOSE CURRFILE. CLOSE PFILE. 
STOP RUN. 

Example D-1. Coding READ and WRITE Statements (cont.) 

Example 2 

Example D-2 shows the use of indexed files with alternate keys. . 

IDENTIFICATION DIVISION. 
PROGRAM-ID. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. 
OBJECT-COMPUTER. 
INPUT-OUTPUT SECTION. 
FI LE-CONTROL. 

IND-EXMPL. 

A9. 
A9. 

SELECT KENNEL-FILE ASSIGN TO DISK 
ORGANIZATION IS INDEXED 
ACCESS MODE IS RANDOM 
RECORD KEY IS NAME 
ALTERNATE RECORD KEY IS COLOR WITH DUPLICATES 
ALTERNATE RECORD KEY IS BREED WITH DUPLICATES. 

SELECT PRINT-FILE ASSIGN TO PRINTER. 

DATA DIVISION. 
FILE SECTION. 
FD KENNEL-FILE BLOCK CONTAINS 6 RECORDS 

VALUE OF TITLE IS "KENNEL/RECORDS". 
01 KENNEL-RECORD. 

05 NAME 
05 COLOR 
05 BREED 
05 PRICE 
05 KENNEL 
05 KENNEL-NUMBER 

FD PRINT-FILE. 
01 PRINT-RECORD. 

PIC X(12). 
PIC X(10). 
PIC X(10). 
PIC 9999.99. 
PIC X(10). 
PIC 9999. 

Example 0-2. Coding Indexed Files with Alternate Keys 

8600 0296-000 



05 PRINT-ITEM PIC X (12) OCCURS 6 TIMES INDEXED BY J. 
05 PRINT-TRAIL PIC X(8). 

WORKING-STORAGE SECTION. 
01 RED PIC X(10) VALUE IS II RED" • 
01 TAN PIC X(10) VALUE IS II SPOTTED" • 
01 BLACK PIC X (10) VALUE IS IIBLACK II . 
01 EXPENSIVE PIC 999V99 VALUE IS 800.00. 
01 CHEAP PIC X (10) VALUE IS IICHEAp lI

• 

01 NO-SALE PIC X (10) VALUE IS "NO SALE". 
01 INDEX-TYPE PIC X(10) DISPLAY. 

PROCEDURE DIVISION. 
SECTION-l SECTION. 

PROCEDURE-I. 
OPEN OUTPUT KENNEL-FILE. OPEN OUTPUT PRINT-FILE. 

PROCEDURE-2. 
* 
* 

This procedure opens an indexed file with 
alternate keys and then writes data into it. 

MOVE "OTTO" TO NAME.· 
MOVE EXPENSIVE TO PRICE. 

MOVE "GOLDEN II TO COLOR. 
MOVE BLACK TO KENNEL. 

MOVE 13 TO KENNEL-NUMBER. MOVE IICOLLIE" TO BREED. 
WRITE KENNEL-RECORD; 

INVALID KEY DISPLAY "ERROR - PRIMARY KEY NOT UNIQUE". 

MOVE "GERONIMO" TO NAME. MOVE RED TO COLOR. 
MOVE 350.00 TO PRICE. MOVE "ANOTHER" TO KENNEL. 
MOVE 97 TO KENNEL-NUMBER. MOVE "RETRIEVER" TO BREED. 
WRITE KENNEL-RECORD; 

INVALID KEY DISPLAY "ERROR - PRIMARY KEY NOT UNIQUE". 

MOVE "CHARLIE" TO NAME. MOVE "WHITE" TO COLOR .. 
MOVE CHEAP TO PRICE. MOVE "NONE" TO KENNEL. 
MOVE 01 TO KENNEL-NUMBER. MOVE "MIXED" TO BREED. 
WRITE KENNEL-RECORD; 

INVALID KEY DISPLAY "ERROR - PRIMARY KEY NOT UNIQUE". 

CLOSE KENNEL-FILE SAVE. 
PROCEDURE-3. 
* 
* 

8600 0296-000 

This procedure opens an indexed file, reads 
data with alternate keys and writes to a printer file. 

OPEN 1-0 KENNEL-FILE. 

MOVE "RED" TO COLOR. 
MOVE "COLOR" TO INDEX-TYPE. 
READ KENNEL-FILE KEY IS COLOR 

INVALID KEY PERFORM INVALID-READ-MARKER GO TO G3. 

Example 0-2. Coding Indexed Files with Alternate Keys (cont.) 

Examples 

D-3 



Examples 

0-4 

PERFORM WRITE-OUT-RECORD. 

G3. MOVE "MIXED" TO BREED. 
MOVE "BREED" TO INDEX-TYPE. 
READ KENNEL-FILE KEY IS BREED 

INVALID KEY PERFORM INVALID-READ-MARKER GO TO Gl. 
PERFORM WRITE-OUT-RECORD. 

Gl. MOVE "WHITE" TO COLOR. 
MOVE "COLOR" TO INDEX-TYPE. 
READ KENNEL-FILE KEY IS COLOR 

INVALID KEY PERFORM INVALID-READ-MARKER GO TO G2. 
PERFORM WRITE-OUT-RECORD. 

G2. STOP RUN. 

WRITE-OUT-RECORD. 
MOVE SPACES TO PRINT-RECORD. 
MOVE NAME TO PRINT-ITEM(l). 
MOVE COLOR TO PRINT-ITEM(2). 
MOVE BREED TO PRINT-ITEM(3). 
MOVE PRICE TO PRINT-ITEM(4). 
MOVE KENNEL TO PRINT-ITEM(5).· 
MOVE KENNEL-NUMBER TO PRINT-ITEM(6). 
WRITE PRINT-RECORD. 

INVALID-READ-MARKER. 
DISPLAY "ERROR - NO SUCH II INDEX-TYPE II IN FILE" 
MOVE "INVALID RECORD ACCESS" TO PRINT-RECORD. 

Example 0-2. Coding Indexed Files with Alternate Keys (cont.) 

Example 3 

Example D-3 shows the use of the OCCURS DEPENDING ON phrase in a WRITE 
FROM statement. This phrase enables the program to vary the length of the record 
to be stored. For example, the length of the record PRINT-ODO-ITEM varies from 1 
through 13, depending on the length of the record PRINT-SUB. 

Mter execution of this program, the external file PRINT -FILE contains two records. 
The first records contains the characters 13 followed by 130 occurrences of the letter A. 
The second record contains the characters 03 followed by three occurrences of the string 
1234567890. Note that the value contained in the record PRINT-SUB prior to the 
execution of the statement WRITE PRINT-RECORD FROM ODO does not determine 
the number of occurrences ofPRINT-ODO-ITEM written to FILEA. 

IDENTIFICATION DIVISION. 
PROGRAM-ID. ODO-EXAMPLE. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 

SOURCE-COMPUTER. B7900. 
OBJECT-COMPUTER. B7900. 

Example 0-3. Coding OCCURS DEPENDING ON Phrase in WRITE FROM Statement 

8600 0296--000 



Examples 

INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT FILEA ASSIGN TO PRINTER. 
DATA DIVISION. 
FI LE SECTION. 
FD FILEA 

LABEL RECORDS ARE OMITTED 
DATA RECORD IS PRINT-RECORD. 

01 PRINT-RECORD. 
02 PRINT-SUB PIC 99. 
02 PRINT-ODO-GROUP. 

03 PRINT-ODO-ITEM OCCURS 1 TO 13 
TIMES DEPENDING ON PRINT-SUB. 
04 PRINT4 PIC X(4) • 
04 PRINT6 PIC X(6) 

WORKING-STORAGE SECTION. 
01 000. 

02 ODO-SUB PIC 99. 
02 ODO-GROUP. 

03 ODO-ITEM OCCURS 1 TO 5 TIMES 
DEPENDING ON ODO-SUB. 
04 0006 PIC X(6). 
04 0004 PIC X(4). 

PROCEDURE DIVISION. 
PI. 

P2. 

P3. 

OPEN OUTPUT FILEA. 
MOVE 13 TO PRINT-SUB. 
MOVE ALL "A" TO PRINT-ODO-GROUP. 
WRITE PRINT-RECORD. 

MOVE 3 TO ODO-SUB. 
MOVE 2 TO PRINT-SUB. 
MOVE ALL "1234567890" TO ODO-GROUP. 
WRITE PRINT-RECORD FROM 000. 
CLOSE FILEA. 

STOP RUN. 

Example 0-3. Coding OCCURS DEPENDING ON Phrase in WRITE FROM Statement 
(cont.) 

Example 4 

Example D-4 shows a Sort program with the USING and GMNG options. In this 
example, the files that are directly involved in the sort operation must not be open 
when the SORT statement is encountered, because the USING and GMNG options 
perform the functions of the INPUT PROCEDURE and the OUTPUT PROCEDURE 
clauses automatically. Although the use of the GMNG and USING options requires a 
minimum amount of coding, it is not possible to select, add, modify, or delete individual 

8600 0296-000 D-5 



Examples 

D-6 

records of the sort file in any way. This means that no special processing records can be 
incorporated into a sort function when these options are used. 

IDENTIFICATION DIVISION. 
PROGRAM-ID. SORTB. 
* THIS SORT PROGRAM EXAMPLE ILLUSTRATES 
* THE FOLLOWING SORT OPTIONS 
* USING 
* GIVING. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. B7900. 
OBJECT-COMPUTER. B7900. 
INPUT-OUTPUT SECTION. 
FI LE-CONTROL. 

SELECT INDATA 
SELECT SORTED 
SELECT WORKFL 
SELECT PRFI LE 

DATA DIVISION. 
FILE SECTION. 
FD INDATA 

ASSIGN TO DISK. 
ASSIGN TO DISK. 
ASSIGN TO SORT DISK. 
ASSIGN TO PRINTER. 

BLOCK CONTAINS 60 CHARACTERS 
LABEL RECORDS ARE OMITTED 
DATA RECORD IS A-FILE. 

01 A-FILE. 
02 1-ACCT PICTURE IS X(4). 
02 I-DEPT PICTURE IS X(4). 
02 I-BODY PICTURE )S X(52). 

FD SORTED 
BLOCK CONTAINS 60 CHARACTERS 
LABEL RECORDS ARE OMITTED 
DATA RECORD IS B-FILE. 

01 B-FILE. 
02 2-ACCT PICTURE IS X(4). 
02 2-DEPT PICTURE IS X(4). 
02 2-BODY PICTURE IS X(52). 

SO WORKFL 
; DATA RECORD IS C-FILE. 

01 C-FILE. 
02 3-ACCT PICTURE IS X(4). 
02 3-DEPT PICTURE IS X(4). 
02 3-BODY PICTURE IS X(52). 

FD PRFILE 
LABEL RECORDS ARE OMITTED 
DATA RECORD IS D-FILE. 

01 D-FILE. 
02 4-ACCT PICTURE IS X(4). 
02 4-DEPT PICTURE IS X(4). 
02 4-BODY PICTURE IS X(52). 

Example 0-4. Coding the SORT Program with the USING and GIVING Options 

8600 0296-000 



PROCEDURE DIVISION. 
OPENING SECTION. 
OPENER. 

OPEN OUTPUT PRFILE. 
A-SORT SECTION. 
PI. 

SORT WORKFL ON ASCENDING KEY 3-ACCT 3-DEPT. 
USING INDATA GIVING SORTED. 

OK-PRINT SECTION. 
P2. OPEN INPUT SORTED. 
A-LOOP SECTION. 
P3. READ SORTED AT END GO TO A-l-MOVE. 

PERFORM A-MOVE. 
WRITE D-FI LE
GO TO A-LOOP. 

A-MOVE SECTION. 
P4. MOVE 8-FILE TO D-FILE. 
A-l-MOVE SECTION. 
P5. EXIT. 
ALL-DONE SECTION. 
P6. CLOSE SORTED PRFILE. 

STOP RUN. 

Examples 

Example 0-4. Coding the SORT Program with the USING and GIVING Options (cont.) 

Example 5 

Example D-5 shows coding of the MERGE program using the USING and GMNG 
options. In this example, the files that are directly involved in the merge process must 
not be open when the MERGE statement is encountered. This restriction is necessary 
because the USING and GIVING options perform the functions of the OPEN, READ, 
RETURN, WRITE, and CLOSE statements automatically. Although the use of the 
USING and GIVING options require a minimum amount of coding, it is not possible to 
select, add, modify, or delete records of the sort-merge file in any way. This means that 
no special processing procedures can be incorporated into a merge function when these 
options are used. 

The files TO-BE-MERGEDI and TO-BE-MERGED2 are merged into the file 
AFTER-THE-MERGE. This merged file is then listed after the merge function has been 
accomplished. The files that were merged were already in sorted order according to the 
keys defined in the MERGE statement. 

IDENTIFICATION DIVISION. 
PROGRAM-ID. MERGEA. 
*. THIS MERGE PROGRAM EXAMPLE ILLUSTRATES 
* THE FOLLOWING MERGE OPTIONS 
* USING 
* GIVING. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. 87900. 

Example 0-5. Codi~g MERGE Program with the USING and GIVING Options 

8600 0296-000 D-7 



Examples 

D-8 

OBJECT-COMPUTER. B7900. 
INPUT-OUTPUT SECTION. 
FI LE-CONTROL. 

SELECT TO-BE-MERGEDI ASSIGN TO DISK. 
SELECT TO-BE-MERGED2 ASSIGN TO DISK. 
SELECT AFTER-THE-MERGE ASSIGN TO DISK. 
SELECT WORK-ING ASSIGN TO MERGE DISK. 
SELECT FOR-THE-PRINTER ASSIGN TO PRINTER. 

DATA DIVISION. 
FILE SECTION. 
SO WORK-ING 

RECORD CONTAINS 60 CHARACTERS 
; DATA RECORD IS C-FILE 
; BLOCK CONTAINS 60 CHARACTERS. 

01 C-FILE. 
02 3-ACCT PICTURE IS X(4). 
02 3-DEPT PICTURE IS X(4). 
02 3-BODY PICTURE IS X(S2). 

FD TO-BE-MERGEDI 
BLOCK CONTAINS 60 CHARACTERS 
RECORD CONTAINS 60 CHARACTERS 
LABEL RECORDS ARE OMITTED 
DATA RECORD IS A-FILEI VALUE OF TITLE IS IIMGI I1

• 

01 A-FILEl. 
. 02 l-ACCT PICTURE IS X(4). 

02 I-DEPT PICTURE IS X(4). 
02 I-BODY PICTURE IS X(52). 

FD TO-BE-MERGED2 
BLOCK CONTAINS 60 CHARACTERS 
RECORD CONTAINS 60CHARACTfRS 
LABEL RECORDS ARE OMITTED 
DATA RECORD IS A-FILE2 VALUE OF TITLE IS "MG2". 

01 A-FILE2. 
02 l-ACCT PICTURE IS X(4). 
02 I-DEPT PICTURE IS X(4). 
02 I-BODY PICTURE IS X(S2). 

FD AFTER-THE-MERGE 
BLOCK CONTAINS 60 CHARACTERS 
RECORD CONTAINS 60 CHARACTERS 
LABEL RECORDS ARE OMITTED 
DATA RECORD IS B-FILE VALUE OF TITLE IS IIAFTER/MERGE". 

01 B-FI LE. 
02 2-ACCT PICTURE IS X(4). 
02 2-DEPT PICTURE IS X(4). 
02 2-BODY PICTURE IS X(52). 

FD FOR-THE-PRINTER 
LABEL RECORDS ARE OMITTED 
DATA RECORD IS D-FILE. 

01 D-FILE. 
02 4-ACCT PICTURE IS X(4). 

Example 0-5. Coding MERGE Program with the USING and GIVING Options (cont.) 

86000296-000 



02 4-DEPT PICTURE IS X(4). 
02 4-BODY PICTURE IS X(52). 

PROCEDURE DIVISION. 
OPENING SECTION. 
OPEN-PARA. 

OPEN OUTPUT FOR-THE-PRINTER. 
A-MERGE SECTION. 
Pl. MERGE WORK-ING ON ASCENDING KEY 3-ACCT 3-DEPT 

USING TO-BE-MERGEDl TO-BE-MERGED2 
GIVING AFTER-THE-MERGE. 

OK-PRINT SECTION. 
P2. OPEN INPUT AFTER-THE-MERGE. 
A-LOOP SECTION. 
P3. READ AFTER-THE-MERGE AT END GO TO A-l-MOVE. 

PERFORM A-MOVE. 
WRITE D-FI LE
GO TO A-LOOP. 

A-MOVE SECTION. 
P4. MOVE B-FILE TO D-FILE. 
A-l-MOVE SECTION. 
P5. EXIT. 
ALL-DONE SECTION. 
P6. CLOSE AFTER-THE-MERGE WITH LOCK. CLOSE FOR-THE-PRINTER. 

STOP RUN. 

Examples 

Example 0-5. Coding MERGE Program with the USING and GIVING Options (cont.) 

Example 6 

Example D-6 shows the use of remote files with variable record lengths. Variable length 
records for a remote file are declared by the use of the RECORD CONTAINS and 
the RECORD CONTAINS ... DEPENDING ON phrases in the FD statement for the 
remote file in the source code. Run-time code is generated by the compiler to handle the 
variable length records. Other than specifying one of the RECORD CONTAINS phrases, 
you do not need to be concerned with the processing of variable-length records except as 
noted in the following examples. 

IDENTIFICATION DIVISION. 
PROGRAM-ID. 
ENVIRONMENT DIVISION. 

CONFIGURATION SECTION. 
SOURCE-COMPUTER. 
OBJECT-COMPUTER. 

INPUT-OUTPUT SECTION. 

FI LE-CONTROL. 
SELECT RMTE 

VARl-METHOD1. 

B7900. 
B7900. 

ASSIGN TO REMOTE. 

Example 0-6. Coding Remote Files with Variable-Record Lengths 

8600 0296-000 0-9 



Examples 

0-10 

DATA DIVISION. 

FILE SECTION. 
FD RMTE 

RECORD CONTAINS 125 TO 200 CHARACTERS. 
01 SHORT-RECORD PIC X(125). 
01 LONG-RECORD PIC X(200). 

WORKING-STORAGE SECTION. 

01 REMOTE-MESSAGE. 
05 SPACING-AREA 
05 MESSAGE-AREA 

PROCEDURE DIVISION. 

OPEN-REMOTE. 
OPEN 1-0 RMTE. 

WRITE-SHORT-RECORD. 

PIC X(50) VALUE SPACES. 
PIC X(200) VALUE SPACES. 

* ONLY THE FIRST 125 CHARACTERS ARE WRITTEN TO FILE RMTE. 
MOVE II HELLO USER, PLEASE WAIT FOR MY MESSAGE. II 

TO MESSAGE-:-AREA. 
WRITE SHORT-RECORD FROM REMOTE-MESSAGE. 
MOVE SPACES TO MESSAGE-AREA. 
WAIT 2. 

WRITE-LONG-RECORD. 
* UP TO 200 CHARACTERS ARE WRITTEN TO REMOTE FILE RMTE. 

MOVE IIHELLO USER. WELCOME TO THE WORLD OF VARIABLE 
II LENGTH REMOTE FILE RECORDS. WE ARE HAPPY YOU ARE HERE.II 

TO MESSAGE-AREA. 
WRITE LONG-RECORD FROM REMOTE-MESSAGE. 
WAIT 2. 

CLOSE-FILE. 
CLOSE RMTE. 
STOP RUN. 

Example 0-6. Coding Remote Files with Variable-Record Lengths (cont.) 

. 8600 0296-000 



Examples 

Example 7 

Example D-7 shows coding of the PERFORM program with the VARYING UNTIL 
option and the use of remote files. The program creates a lunch menu and displays it on 
the screen. 

IDENTIFICATION DIVISION. 
PROGRAM-ID. 
ENVIRONMENT DIVISION. 

CONFIGURATION SECTION. 

SOURCE-COMPUTER. 
OBJECT-COMPUTER. 

INPUT-OUTPUT SECTION. 

FILE-CONTROL. 
SELECT RMTE 

DATA DIVISION. 

FILE SECTION. 

FD RMTE 

VARI-METHOD1. 

B7900. 
B7900. 

ASSIGN TO REMOTE. 

RECORD CONTAINS 280 TO 680 CHARACTERS. 

01 OCCURS-RECORD. 
05 FILLER PIC X(120). 
05 VARIABLE-PART. 

10 FIRST-PART PIC X(80). 
10 SECOND-PART PIC X(80) 

OCCURS 1 TO 6 TIMES DEPENDING ON Z. 

WORKING-STORAGE SECTION. 
77 Z PIC 9 COMP VALUE 1. 
01 ENTREES. 

05 FILLER PIC X(15) VALUE "ONION SOUP 
05 FILLER PIC X(65) VALUE SPACES. 
05 FILLER PIC X (15) VALUE "FRUIT SALAD 
05 FILLER PIC X(65) VALUE SPACES. 
05 FILLER PIC X(15) VALUE "HAMBURGER 
05 FILLER PIC X(65) VALUE SPACES. 
05 FILLER PIC X(15) VALUE "FRENCH FRIES 
05 FILLER PIC X(65) VALUE SPACES. 
05 FILLER PIC X (15) VALUE "ICED TEA 
05 FILLER PIC X(65) VALUE SPACES. 
05 FILLER PIC X (15) VALUE "ICE CREAM 
05 FILLER PIC X(65) VALUE SPACES. 

01 ENTREE-TABLE REDEFINES ENTREES. 

" 

II 

" 

II 

" 

Example 0-7. Coding PERFORM Program with the VARYING UNTIL Option 

8600 0296-000 0-11 



Examples 

D-12 

05 ENTREE PIC X(80) OCCURS 6 TIMES. 

PROCEDURE DIVISION. 
OPEN-REMOTE. 

OPEN 1-0 RMTE. 
MOVE SPACES TO OCCURS-RECORD. 
MOVE II LUNCH MENU: liTO FIRST-PART. 
PERFORM WRITE-REMOTE VARYING Z FROM 1 BY 1 UNTIL Z > 6. 
CLOSE RMTE. 
STOP RUN. 

WRITE-REMOTE. 
MOVE ENTREE{Z) TO SECOND-PART{Z). 
WRITE OCCURS-RECORD. 

END-OF-JOB. 

Example 0-7. Coding PERFORM Program with the VARYING UNTIL Option (cont.) 

Example 8 

Example D-8 shows coding of a remote file. 

IDENTIFICATION DIVISION. 
PROGRAM-ID. 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. 
OBJECT-COMPUTER. 
INPUT-OUTPUT SECTION. 
FI LE-CONTROL. 

SELECT RMTE 

DATA DIVISION. 
FILE SECTION. 
FD RMTE 

VARI-METHOD2. 

B7900. 
B7900. 

ASSIGN TO REMOTE. 

RECORD CONTAINS 240 CHARACTERS. 
01 RMTE-RECORD. 

05 ACTUAL-RECORD-AREA PIC X(240). 

WORKING-STORAGE SECTION. 
01 MESSAGE-IN. 

05 MESSAGE-ENTERED 
05 MESSAGE-AREA 

PIC X(14) VALUE lIyOU ENTERED: II 
PIC X(226) VALUE SPACES. 

01 MESSAGE-OUT. 
05 GOOD-MORNING PIC X(14) 

VALUE IIGOOD MORNING II 
05 USER-NAME PIC X(17). 
05 INSTRUCT PIC X(209) 

VALUE II CLEAR HOME AND ENTER ANY MESSAGE. THEN XMIT.II. 

Example 0-8. Coding Remote Files 

8600 0296-000 



* 
* 
* 
* 

PROCEDURE DIVISION. 
OPEN-REMOTE. 

OPEN 1-0 RMTE. 
READ-AND-WRITE. 

THE USER IS PROMPTED TO ENTER A MESSAGE. THE MESSAGE 
ENTERED WILL BE DISPLAYED BACK ON THE TERMINAL (THE MESSAGE 
SHOULD NOT BE MORE THAN 209 CHARACTERS LONG), AND THE 
PROGRAM WILL END. 
MOVE ATTRIBUTE USERCODE OF MYSELF TO USER-NAME. 
MOVE MESSAGE-OUT TO ACTUAL-RECORD-AREA. 
WRITE RMTE-RECORD. 
READ RMTE AT END GO TO CLOSE-FILE. 
MOVE ACTUAL-RECORD.-AREA TO MESSAGE-AREA. 
MOVE MESSAGE-IN TO ACTUAL-RECORD-AREA. 
WRITE RMTE-RECORD. 

CLOSE-FILE. 
CLOSE RMTE. 
STOP RUN. 

Example 0-8. Coding Remote Files (cont.) 

8600 0296-000 

Examples 

0-13 



0-14 8600 0296-000 



Glossary 

In this glossary, definitions taken from outside sources are preceded by an abbreviation enclosed 
in parentheses. Definitions from Dictionary of Computing are preceded by DOC. Definitions from 
American National Dictionary for Information Processing Systems are preceded by ANDIPS. 

A 
abbreviated combined relation condition 

The combined condition that results from the explicit omission of a common subject or a 
common relational operator in a sequence of relation conditions. 

access mode 
The manlier in which records are to be operated on within a file. The two possible access 
modes are random and sequential. 

actual decimal point 
The physical representation of the decimal point position in a data item, using either of 
the decimal point characters: the period (.) or the comma (,). 

actual key 
A key whose contents identify a logical record in a sequential file. 

ADDS 
See Advanced Data Dictionary System. 

Advanced Data Dictionary System (ADDS) 

ALGOL 

A software product that allows for the centralized definition, storage, and retrieval of 
data descriptions. 

\ 

Algorithmic language. A structured, high-level programming language that provides 
the basis for the stack architecture of the Unisys A Series systems. ALGOL was the 
first block-structured language developed in the 1960s and served as a basis for such 
languages as Pascal and Ada. It is still used extensively on A Series systems, primarily 
for systems programming. 

alphabet-name 
A user-defined word, in the SPECIAL-NAMES paragraph of the ENVIRONMENT 
DMSION of a program, that assigns a name to a specific character set or collating 
sequence, or both. 

alphabetic character 
A character that belongs to the following set of letters in either uppercase or lowercase: 
A, B, C, D,E, F, G, H, I, J, K, L, M; N, O,P, Q, R, S, T, U, V, W, X, Y,Z, and the space 
(blank). 

alphanumeric character 
Any character in the computer's character set. 

86000296-000 Glossary-l 



Glossary 

alternate record key 
A key, other than a prime record key, whose contents identify a record of an indexed file. 

arithmetic expression 
An expression containing any of the following: a numeric variable, a numeric elementary 
item, a numeric literal, identifiers and literals separated by arithmetic operators, two 
arithmetic expressions separated by an arithmetic operator, or an arithmetic expression 
enclosed in parentheses. 

arithmetic operator 
(1) (DOC) An operator that specifies an operation with numeric inputs and outputs; 
for example, ADD, SUBTRACT, or DIVIDE. (2) A single character or a fixed 
2-character combination belonging to the following set: + (addition), - (subtraction), 
* (multiplication), / (division), or ** (exponentiation). 

ascending key 

ASCII 

A key that has values on which data are ordered, starting with the lowest value of the 
key up to the highest value of the key, in accordance with the ru1es for comparing data 
items. 

American Standard Code for Information Interchange. A standard 7-bit or 8-bit 
information code used to represent alphanumeric characters, control characters, and 
graphic characters on a computer system. 

assumed decimal point 
A decimal point position that does not require the existence of an actual character 
in a data item. The assumed decimal point has logical meaning but no physical 
representation. 

At End condition 

B 
binding 

block 

Glossary-2 

A condition caused during one of the following: the execution of a READ statement for a 
sequentially accessed file when no next logical record exists; the execution of a RETURN 
statement when no next logical record exists for the associated sort or merge files; or 
the execution of a SEARCH statement when the search operation terminates without 
satisfying the condition specified in any of the associated WHEN phrases. 

The process of combining one or more separately compiled subprogram object code files 
with a host object code file to produce a single object code file. This process is performed 
by the Binder program. 

(1) A group of physically adjacent records that can be transferred to or from a physical 
device as a group. (2) A program, or a part of a program, that is treated by the processor 
as a discrete unit. Examples are a procedure in ALGOL, a procedure or function in 
Pascal, a subroutine or function in FORTRAN, or a complete COBOL program. 

86000296-000 



Glossary 

body group 

c 

In COBOL74, the generic name for a report group of type DETAIL, CONTROL 
HEADING, or CONTROL FOOTING. 

called program 
A program that is the object of a CALL statement and is combined at object time with 
the calling program to produce a run unit. 

calling program 
A program that executes a CALL statement to another program. 

CANDE 
See Command and Edit. 

CCR 
See compiler control record. 

CD-name 
A user-defined word that name3 a message control system (MCS) interface area. 

character 
The actual or coded representation of a digit, letter, or special symbol in display form. 

character position 
The amount of physical storage required to store a single standard data format character 
whose usage is described as DISPLAY. Further characteristics of the physical storage are 
defined by the implementor. 

character set 
(ANDIPS) A finite set of different characters upon which agreement has been 
reached and that is considered complete for some purpose. For example, in COBOL 
programming, the character set contains 52 specific characters. 

class condition 

clause 

COBOL 

The proposition, for which a truth value can be determined, that the content of an item 
is wholly alphabetic or wholly numeric. 

An ordered set of consecutive character strings that specifies an attribute of an entry. 

Common Business-Oriented Language. A widely used, procedure-oriented language 
intended for use in solving problems in business data processing. The m~ 
characteristics of COBOL are the easy readability of programs and a considerable degree 
of machine independence. COBOL is the most widely used procedure-oriented language. 

COBOL74 
A version of the COBOL language that is compatible with the ANSI X3.23-1974 
standard. 

86000296-000 Glossary-3 



Glossary 

collating sequence 

column 

(DOC) A set of rules establishing the order in which items will be arranged in a set. 
Common collating sequences are "alphabetic order" and "numerical order" with, often, 
additional rules for dealing with symbols, punctuation, and spaces. 

A character position in a print line. The column numbers are incremented by 1, starting 
from 1 at the leftmost character position of the print line and extending to the rightmost 
position of the print line. 

combined condition 
A condition that reswts from connecting two or more conditions with the AND or the OR 
logical operator. 

Command and Edit (CANDE) 
A time-sharing message control system (MCS) that enables a user to create and edit 
files, and to develop, test, and execute programs, interactively. 

comment line 
A line in a source program used only for documentation purposes. 

comment-entry 
An entry in the IDENTIFICATION DIVISION that can be any combination of 
characters from the computer character set. 

communication description entry 
An entry that is composed of the level-indicator communication description (CD), a 
CD-name, and a set of clauses as required. The communication description entry 
describes the interface between the message control system (MCS) and the program. 

communication device 
A mechanism (hardware, or hardware and software) capable of sending data to a queue 
and/or receiving data from a queue. This mechanism can be a computer or a peripheral 
device. One or more programs containing communication description (CD) entries and 
residing within the same computer define one or more of these mechanisms. 

COMMUNICATION·SECTION 
The section of the DATA DIVISION that describes the interface areas between 
the message control system (MCS) and the program, composed of one or more 
communication description entries. 

Communications Management System (COMS) 
A general message control system (MeS) that controls online environments on A Series 
systems. COMS can support the processing of multiprogram transactions, single-station 
remote files, and multistation remote files. 

compile time 

G I ossa ry-4 

The time during which a compiler analyzes program text and generates an object code 
file. 

8600 0296-000 



compiler 

Glossary 

A computer program that translates instructions written in a source language, such as 
COBOL or ALGOL, into machine-executable object code. 

compiler control record (CCR) 
A record in a source program that begins with a dollar sign ($) and contains one or 
more options that control various compiler functions. These specifications can appear 
anywhere in the source program unless otherwise specified. 

compiler-directing statement 
A statement beginning with a compiler-directing verb that causes the compiler to take a 
specific action during compilation. 

complex condition 
A combination of two or more simple conditions, combined conditions, or other complex 
conditions with logical connectors. 

computer-name 

COMS 

A system-name that identifies the computer on which the program is to be compiled or 
run. 

See Communications Management System. 

condition 
A status for which a truth value can be determined at execution time. The term 
condition (condition-1, condition-2, and so forth) implies a conditional expression 
consisting of either a simple condition optionally enclosed in parentheses or a combined 
condition consisting of a combination of simple conditions, logical operators, and 
parentheses, for which a truth value can be determined. 

condition-name 
A user-defined word assigned to a specific value or range of values within the complete 
set of values that a conditional variable can have. A condition-name can also be a 
user-defined word assigned to a status of a switch or device. 

condition-name condition 
The proposition, for which a truth value can be determined, that the value of 
a conditional variable is equal to one of the values attributed to an associated 
condition-name. 

conditional expression 
A simple or complex condition specified in an IF, PERFORM, or SEARCH statement. 

conditional statement 
(1) A structured statement including a Boolean condition (explicit or implied) that 
determines whether a subcomponent statement is to be executed. (2) A statement 
specifying that the truth value of a condition is to be determined and that the 
subsequent action of the object program depends on this truth value. 

conditional variable 
A data item for which at least one value has a condition-name assigned to it. 

8600 0296-000 Glossary-5 



Glossary 

CONFIGURATION SECTION 
A section of the ENVIRONMENT DIVISION that describes overall specifications of the 
source and object computers. -

connective 
A reserved word used to do one of the following: associate a data-name, 
paragraph-name, condition-name, or text-name with its qualifier; link two or more 
consecutive operands; or form conditions. 

contiguous items 
Items that are described by consecutive entries in the DATA DIVISION and that have a 
hierarchical relationship to each other. 

control break 
A change in the value of a data item that is used to control the hierarchical structure of a 
report. 

control break level 
The relative position within a control hierarchy at which the most major control break 
occurred. 

control data-name 
A data-name that appears in a CONTROL clause and refers to a control data item. 

CONTROL FOOTING 
A report group presented at the end of the control group of which it is a member. 

control group 
A set of body groups presented for a given value of a control data item or of FINAL. 
Each control group can begin with a CONTROL HEADING,end with a CONTROL 
FOOTING, and contain DETAIL report groups. 

CONTROL HEADING 
A report group presented at the beginning of the control group of which it is a member. 

control hierarchy 

counter 

CP 2000 

A designated sequence of report subdivisions defined by the positional order of FINAL 
and the data-names within a CONTROL clause. 

A data item used for storing numbers or number representations in a manner that 
permits these numbers to be increased or decreased by the value of another number, or 
to be set to 0 or to an arbitrary positive or negative value. 

See CP 2000 communications processor. 

CP 2000 communications processor 

Glossary-6 

A data communications processor (DCP) that provides communications interfaces to local 
area networks (LANs) and wide area networks (WANs), including BNA Version 2 and 
Transmission Control Protocol/Internet Protocol (TCP lIP) networks. The CP 2000 also 
provides connections to terminals controlled by BNA Version 2 software. 

8600 0296--000 



Glossary 

currency sign 
In the COBOL character set, tl1e character $. 

~urrency symbol 
The character defined by the CURRENCY SIGN clause in the SPECIAL-NAMES 
paragraph. If no CURRENCY SIGN clause is present, the currency symbol is identical to 
the currency sign ($). 

current record 
The record that is available in the record area associated with a file. 

current record pointer 
A conceptual entity used to select the next record. 

D 

data clause 
A clause that appears in a data-description entry in the DATA DMSION and provides 
information describing a particular attribute of a data item. 

data communications interface (DCI) library 
A library that serves as the direct programmatic interface to the Communications 
Management System (CaMS). Application programs must communicate with CaMS 
through the DCI library to use agendas, processing items, routing by trancode, and 
synchronizedrecove~. 

data item 
In COBOL, a character or a set of contiguous characters (excluding, in either case, 
literals) defined as a unit of data by the COBOL program. 

Data Management System II (DMSII) 
A specialized system software package used to describe a database and maintain the 
relationships among the data elements in the database. 

data-description entry 
An entry in the DATA DMSION that is composed of a level-number followed by a 
data-name, if required, and a set of data clauses, as required. 

data-name 
A user-defined word that identifies a data item described in a data-description ent~ in 
the DATA DMSION. When used in the general formats, a data-name represents a word 
that cannot be subscripted, indexed, or qualified unless specifically permitted by the 
rules for that format. 

DCllibrary 
See data communications interface (DCI) library. 

debugging line 
Any line with a D in the indicator area of the line. 

86000296-000 Glossary-7 



Glossary 

debugging section 
A section that contains a USE FOR DEBUGGING statement. 

declarative-sentence 
A compiler-directing sentence consisting of a single USE statement terminated by the 
separator period. 

DECLARATIVES 

delimiter 

A set of one or more special-purpose sections, written at the beginning of 
the PROCEDURE DIVISION, the first of which is preceded by the keyword 
DECLARATIVES and the last of which is followed by the keywords END 
DECLARATIVES. A declarative is composed of a section header, followed by a USE 
compiler-directing sentence, followed by zero or more associated paragraphs. 

A character or sequence of contiguous characters that identifies the end of a string 
of characters and separates that string of characters from the following string of 
characters. 

descending key 
A key that has values on which data are ordered, starting with the highest value of the 
key down to the lowest value of the key, in accordance.with the rules for comparing data 
items. 

destination 
The symbolic identification of the receiver of a transmission from a queue. 

digit portion 
The low order, or least significant, 4 bits in a byte. Contrast with zone portion. 

digit position 
The amount of physical storage required to store a single digit. This amount can 
vary depending on the usage of the data item describing the digit position. Further 
characteristics of the physical storage are defined by the implementor. 

distributed systems service (DSS) 

division 

One of a collection of services provided on Unisys hosts to support communications 
across multihost networks. DSSs can be services such as file handling, station transfer, 
and mail transfer. 

A set of zero or more sections of paragraphs, called the division body, that is formed and 
combined according to established rules. The four divisions in a COBOL program are the 
IDENTIFICATION DIVISION, ENVIRONMENT DIVISION, DATA DIVISION, and 
PROCEDURE DIVISION. 

division header 

Glossary-8 

A combination of words followed by a period and a space indicating the beginning of a 
division. The division headers are IDENTIFICATION DIVISION, ENVIRONMENT 
DIVISION, DATA DIVISION, and PROCEDURE DIVISION. 

8600 0296-000 



Glossary 

DMSII 
See Data Management System II. 

DSS 
See distributed systems service. 

dynamic access 

E 
EBCDIC 

An access mode in which specific logical records can be obtained from or placed into a 
mass storage file in a nonsequential manner and obtained from a file in a sequential 
manner during the scope of the same OPEN statement. 

Extended Binary Coded Decimal Interchange Code. An 8-bit code representing 256 
graphic and control characters that are the native character set of most mainframe 
systems. 

editing character 
A character used to edit numeric fields. 

Editor 
A U nisys utility program designed to create and modify program source and data files. 

EDO 
See end-of-double-octet character. 

EGI 
See end-of-group indicator. 

elementary item 
A data.item described as not being further logically subdivided. 

EMl 
See end-of-message indicator. 

end of PROCEDURE DMSION 
The physical position in a source program after which no further procedures appear. 

end of task (EOT) 
The termination of processing of a task. 

end-of-double-octet" (EDO) character 
A character that signals the end of a double-octet character string. 

end-of-group indicator (EGI) 
An option indicator that specifies the end of a group of data in a data communications 
message. 

end-of-message indicator (EMI) 
An option indicator that specifies the end of a data communications message. 

8600 0296-000 Glossary-9 



Glossary 

end-of-segment indicator (ESI) 

entry 

(1) In data communications, an option indicator that specifies the end of a segment of 
data in a message. (2) In COBOL74, an option indicator in the SEND statement that 
specifies the end of a segment of data in a message to be sent. 

In a source program, any descriptive set of consecutive clauses terminated by a period 
and written in the IDENTIFICATION DIVISION, ENVIRONMENT DIVISION, or 
DATA DIVISION. 

entry point 
A procedure or function that is a library object. 

environment clause 
A clause that appears as part of an ENVIRONMENT DIVISION entry. 

EOT 
See end of task. 

ESI 
See end-of-segment indicator. 

event-identifier 
An event variable, event-valued file attribute, or event-valued task attribute. 

event-identifier condition 
An event-identifier used as a condition to return the value TRUE if the event has been 
caused and not reset, and to return the value FALSE if the event is reset. 

execution time 
The time during which an object code file is executed. Synonym for run time and, in 
COBOL, object time. 

extend mode 

F 

In COBOL74, the state ofa file after execution of an OPEN statement with the 
EXTEND phrase specified for that file, and before the execution of a CLOSE statement 
for that file. 

family substitution 

FD 

A method for redirecting references to files on a disk family to avoid entering the 
actual family name in commands or file-names. For example, if a user enters FAMILY 
DISK = PACK OTHERWISE DISK, that user's file requests are checked on disk packs 
named PACK and DISK. 

See File Description (FD) entry. 

figurative constant 
. A compiler-generated value referenced by using certain reserved words. 

. Glossary-IO 8600 0296-000 



Glossary 

file 
A named group of related records. See logical file, physical file. 

file clause 
A clause that appears as part of any of the following DATA DMSION entries: file 
description (FD), sort merge description (SD), and communication description (CD). 

File Description (FD) entry 

file name 

An entry in the FILE SECTION of the DATA DMSION that is composed of the 
level-indicator FD, a file-name, and a set of file clauses as required. 

A user-defined word that names a file described in a file description entry or a 
sort-merge description entry within the FILE SECTION of the DATA DMSION. 

file organization 
The permanent logical file structure established when a file is created. 

FILE SECTION 
The section of the DATA DIVISION that contains file description entries and sort-merge 
file description (SD) entries with their associated record descriptions. 

FILE-CONTROL 
The name of an ENVIRONMENT DMSION paragraph in which the data files for a 
given source program are declared. 

floating-point literal 

format 

The value of a literal shown with the decimal part of a number multiplied by the power of 
10 and used as an alternative for a standard numeric literal. 

(1) The organization of an array of storage points in memory. Formats, and other 
memory structures, make it possible for the Master Control Program (MCP) to identify 
and move areas of memory. (2) The specific arrangement of a set of data. 

FORTRAN 

G 

Formula Translation. A high-level, structured programming language intended primarily 
for scientific use. 

group item 

H 

In Data Management System II (DMSII), a collection of data items that can be viewed as 
a single data item. 

hexadecimal literal 
A character string bounded by at signs (@). The string of characters must consist of one 
or more characters chosen from the set of hexadecimal characters. 

8600 0296--000 Glossary-II 



.Glossary 

high-order end 

1-0 mode 

The leftmost character of a character string. 

The state of a file after execution of an open operation, whether implicit or explicit, with 
the I -0 phrase specified. The file remains in I -0 mode until the execution of a close 
operation for that file. 

I-O-CONTROL 

I/O 

The name of an ENVIRONMENT DIVISION paragraph in which the following are 
specified: object program requirements for specific I/O techniques, rerun points, sharing 
of same areas by several data files, and mUltiple file storage on a single I/O device. 

Input/output. An operation in which the system reads data from. or writes data to a file 
on a peripheral device such as a disk drive. 

identifier (ID) 
A data-name followed by the required combination of qualifiers, subscripts, and indexes 
necessary to make unique reference to a data item. 

imperative statement 
A statement that begins with an imperative verb and specifies an unconditional action to 
be taken. An imperative statement can consist of a sequence of imperative statements. 

implementor-name 

index 

A system-name that refers to a particular featUre available on the computing system of 
that implementor. 

(1) A value used to specify a particular element of an array variable. (2) A computer 
storage location, the contents of which identify a particular element in a table. 

index data item 
A data item in which the value associated with an index-name can be stored ina form 
specified by the implementor. 

index-name 
A user-defined word that identifies an index associated with a specific table. 

indexed data-name 
An identifier composed of a data-name followed by one or more index-names enclosed in 
parentheses. 

indexed file 
A file whose records are accessed by a key, which is a field in each record. An entry 
containing the key value and physical address of each record is stored in an index 
associated with the file. The index entries are ordered by key value. Access to an 
indexed file is eitlier sequential or random. 

GJossary-12 8600 0296-000 



Glossary 

indexed organization 

input file 

The permanent, logical file structure in which each record is identified by the value of 
one or more keys within that record. 

A file opened in the input mode. 

input mode 
The state of a file after execution of an OPEN statement with the INPUT phrase 
specified for that file. The file remains in input mode until the execution of a CLOSE 
statement for that file. 

input procedure 
In sorting, a group of statements executed before each record is released to be sorted. 

Input-Output file 
A file opened in the 1-0 mode. 

INPUT-OUTPUT SECTION 

integer 

The section of the ENVIRONMENT DMSION that names the files and the external 
media required by an object program, and that provides information required for 
transmission and handling of data during execution of the object program. 

A numeric literal or a numeric data item that does not include any character positions to 
the right of the assumed decimal point. 

Inter-Program Communication (lPC) 
In COBOL74, a module that allows a program to communicate with one or more 
programs in order to share date items and transfer control within a run unit. 

intermediate data item 
A signed numeric data item provided by the implementor that contains the results 
developed in the course of an arithmetic operation before the final result is moved to the 
resultant identifier, if any. 

INVALID KEY condition 

IPC 

K 
Kanji 

A condition, at object time, caused when a specific value of the key associated with an 
indexed or relative file is determined to be invalid. 

See Inter~ Program Communication. 

The standard Japanese character set for information exchange. Each Kanji character is 
2 bytes (16 bits) in length and takes two positions on a form image. 

86000296--000 Glossary-13 



Glossary 

Kanji character literal 

key 

A character string bounded on the left by the separator NC" and on the right by a 
quotation mark ("). The string contains Kanji characters between the beginning and 
ending quotation marks. 

A data item that identifies the location of a record, or a group of data items that 
identifies the ordering of data. 

key of reference 

keyword 

L 
LAN 

The prime or alternate key currently being used to access records within an indexed file." 

A reserved word that must be present when the format in which the word appears is 
used in a source program. 

See local area network. 

language-name 
A system-name that specifies a particular programming language. 

level-indicator 
Two alphabetic characters (DB, CD, FD, LD, QD, RD, and SD) that identify a specific 
type of file or a position in a hierarchy. 

level-number 
A user-defined word that indicates the position of a data item in the hierarchical 
structure of a logical record or that indicates special properties of a data-description 
entry. A level-number is expressed as a 1- or 2-digit number. 

library object 
An object that is shared by a library and one or more user programs. 

library text 
A sequence of character strings, a sequence of separators, or a sequence of both 
character strings and separators in a library. 

library-name 

line 

A user-defined word that identifies a library that is to be used by the compiler for a given 
source program compilation. 

(1) A row of text in a printout. (2) A data transmission link between two computers or 
between a computer and its associated terminals. 

line number 
An integer that denotes the vertical position of a report line on a page. 

Glossary-14 8600 0296-000 



Glossary 

LINKAGE SECTION 

literal 

The section in the DATA DIVISION of a called program that describes data items 
available from the calling program. Both the calling and the called program can refer to 
these data items. 

A character string whose value is implied by the ordered set of characters that compose 
the string. 

local area network (LAN) 
A network that enables high-speed communications among various devices within a 
relatively small area. 

logical file 
A file variable declared in a program, which represents the file and its structure to the 
program. A logical file has no properties of its own until it is described by file attributes 
or associated with a physical file. 

logical operator 
An operator that corresponds to the logical (Boolean) operation of AND, OR, or NOT. 

logical record 
The most inclusive data item. The level-number for a logical record is 01. 

low-order end 
The rightmost character of a character string. 

M 
mass storage 

A storage medium on which data can be organized and maintained in both a sequential 
and nonsequential manner. 

mass storage file 
A collection of records assigned to a mass storage medium. 

master control program (MCP) 
The central program of the A Series operating system. The term applies to any master 
control program that U nisys may release for A Series systems. 

MCP 
See master control program. 

MCS 
See message control system. 

merge file 
A collection of records to be merged. 

message 
Data associated with an end-of-message indicator or an end-of-group indicator. 

86000296-000 Glossary-l5 



Glossary 

message control system (MeS) 
A program that controls the flow of messages between terminals, application programs, 
and the operating system. MCS functions can include message routing, access control, 
audit and recovery, system management, and message formatting. 

message count 
The number of complete messages in the designated message queue. 

message indicator 
An indicator that notifies the message control system (MCS) that a specific condition 
exists. The indicators are end-of-group indicator (EGI), end-of-message indicator (EMI), 
and end-of-segment indicator (ESI). An EGI is conceptually equivalent to an ESI, EMI, 
and EGI. An EMI is conceptually equivalent to an ESI and EM!. Thus, a segment can be 
terminated by an ESI, EMI, or EGI, and a message can be terminated by an EM! or EGI. 

message segment 
A subdivision of a message. A segment is normally associated with an end-of-segment 
indicator. 

mnemonic-name 

N 

A user-defined word that is associated in the ENVIRONMENT DIVISION with a 
specified implementor-name. 

native character set 
The implementor-defined character set associated with the computer for which object 
code is generated. 

native collating sequence 
The implementor-defined collating sequence associated with the native character set. 

negated combined condition 
A conditioIl: that results from a NOT logical operator immediately followed by a combined 
condition enclosed in parentheses; 

negated simple condition 
A condition that results from a NOT logical operator immediately followed by a simple 
condition. 

next executable sentence 
The sentence to which control is transferred after execution of the current statement is 
complete. 

next executable statement 
The statement to which control is transferred after execution of the current statement is 
complete. 

next record 
The record that logically follows the current record of a file. 

Glossary-I 6 8600 0296-000 



Glossary 

noncontiguous items 
Elementary data items in the WORKING-STORAGE and LINKAGE SECTIONs that 
have no hierarchical relationship to other data items. 

nonnumeric item 
A data item whose contents can be composed of any combination of characters taken 
from the character set of the computer. Certain categories of nonnumeric items can be 
formed from more restricted character sets. 

nonnumeric literal 
A character string bounded by quotation marks ("). The string can include any character 
in the character set of the computer. To represent a single quotation mark character 
within a nonnumeric literal, two contiguous quotation marks must be used. 

numeric character 
A character in the set of digits 0 through 9. 

numeric item 
In Data Management System II (DMSII), a data item whose description restricts its 
contents to a value represented by numeric characters. 

numeric literal 

o 

A literal composed of one or more numeric characters that can also contain either a 
decimal point, an algebraic sign, or both. The decimal point must not be the rightmost 
character. The algebraic sign, if present, must be the leftmost character. 

object code file 
A file produced by a compiler when a program is compiled successfully. The file contains 
instructions in machine-executable object code. 

object of entry 
In a DATA DIVISION entry in COBOL, a set of operands and reserved words that 
immediately follows the subject of the entry. 

object program 
A set or group of executable machine-language instructions and other material designed 
to interact with data to provide problem solutions. An object program is generally the 
machine-language result of the operation ofa high-level language compiler on a source 
program. See also object code file, compiler. 

object time 
The time during which an object program is executed. Synonym for run time, execution 
time. 

OBJECT-COMPUTER 
A paragraph in the ENVIRONMENT DIVISION that describes the computer 
environment in which the object program is to be executed. 

8600 0296-000 Glossary-17 



Glossary 

ODT 
See operator display terminal. 

open mode 

operand 

The state of a file after execution of an OPEN statement for that file and before the 
execution of a CLOSE statement for that file. The particular open mode is specified in 
the OPEN statement with either an INPUT, OUTPUT, 1-0, or EXTEND phrase. 

Any lowercase word that appears in a statement or entry format. 

operational sign 
An algebraic sign, associated with a numeric data item or a numeric literal, that indicates 
whether the value is positive or negative. 

operator display terminal (ODT) 
A terminal or other device that is connected to the system in such a way that it can 
communicate directly with the operating system. The ODT allows operations personnel 
to accomplish system operations functions through either of two operating modes: 
system command mode or datacomm mode. 

optional word 
A reserved word included in a programming language to improve the readability of a 
source statement. The user can include or omit an optional word. 

ordering sequence value (OSV) 

OSV 

An integer value between 1 and 255 that is assigned to each code position in a coded 
character set and represents a relative ordering value. An ordering value of 0 signifies 
the lowest ranking in the coded character set and an ordering value that is greater than 
all other ordering values signifies the "highest ranking. More than one code position can 
be assigned the same ordering value. 

See ordering sequence value. 

output file 
A file opened in either output mode or extend mode. 

output mode 
The state of a file after execution of an OPEN statement, with the OUTPUT or 
EXTEND phrase specified for that file. The file remains in output mode until execution 
of a CLOSE statement forthat file. 

output procedure 
A set of statements to which control is given during execution of a SORT statement after 
the sort function is completed, or during execution of a MERGE statement after the 
merge function has selected the next record in merged order. 

Glossary-I 8 8600 0296-000 



p 

page 

Glossary 

A vertical division of a report representing a physical separation" of report data. The 
separation is based on internal reporting requirements and/or external characteristics of 
the reporting medium. 

page body 
That part of the logical page in which lines can' be written and spaced. 

page footing 
A report group presented at the end of a report page as determined by the Report 
Writer Control System (RWCS). 

page heading 
A report group presented at the beginning of a report page as determined by the Report 
Writer Control System (RWCS). 

paragraph 
An identifiable group of entries (in the IDENTIFICATION DIVISION and the 
ENVIRONMENT DIVISION) or sentences (in the PROCEDURE DIVISION). A 
paragraph in the IDENTIFICATION DIVISION and the ENVIRONMENT DIVISION 
is identified by a paragraph header. A paragraph in the PROCEDURE DIVISION is 
identified by a paragraph-name. 

paragraph header 
A reserved word followed by a period and a space that indicates the beginning of a 
paragraph in the IDENTIFICATION DIVISION and the ENVIRONMENT DIVISION. 

paragraph-name 

phrase 

A user-defined word that identifies and begins a paragraph in the PROCEDURE 
DIVISION. 

An ordered set of one or more consecutive COBOL character strings that forms a portion 
of a COBOL procedural statement or of a COBOL clause. 

physical file 
A file as it is stored on a particular recording medium such as a disk or a tape. 

physical record 

port file 

A physical unit of data that is normally composed of one or more logical records. A 
physical record is also called a block. For mass storage files, a block can contain a portion 
of a logical record. The size of a block has no direct relationship to the size of the file 
within which the block is contained or to the size of the logical record or records that are 
either continued within the block or that overlap the block. See also block. 

A type of file, composed of one or more subfiles, for which I/O operations occur between 
two processes rather than between a logical file and a physical device. 

8600 0296-000 Glossa ry-19 



Glossary 

prime record key 
A key with contents that identify a record in an indexed file. 

printable group 
A report group that contains at least one print line. 

printable item 
A data item, the extent and contents of which are specified by an elementary report 
entry. This elementary report entry contains a COLUMN NUMBER clause, a PICTURE 
clause, and a SOURCE, SUM, or VALUE clause. 

priority sequence value (PSV) 
An integer value between 1 and 15 that is assigned to each code position in a coded 
character set and represents a relative priority within an ordering sequence value 
(OSY). Each code position that has a unique ordering value is assigned a priority value of 
1. For code positions with the same OSv, a priority value of 1 signifies the lowest ranking 
in the OSv, and a priority value which is greater than all other priority values ~ignifies 
the highest ranking. 

procedure 
A paragraph or group of logically successive paragraphs, or a section or group of logically 
successive sections, within the PROCEDURE DIVISION. 

procedure-name 
A user-defined word that names a paragraph or section in the PROCEDURE DIVISION. 
The procedure-name consists of a paragraph~name (which can be qualified) or a 
section-name. 

program-name 
A user-defined word that identifies a COBOL source program. 

pseudotext 
A sequence of text-words or comments in a source program or COBOL library bounded 
by, but not including, pseudotext delimiters. 

pseudotext delimiter 
Two contiguous equal sign ( = ) characters used to delimit pseudotext. 

PSV 
See priority sequence value. 

punctuation character 
A character that separates and organizes the elements of a command or input statement. 
These characters are usually characters that are neither alphabetic nor numeric. Each 
programming language and software product has its own conventions for interpreting 
punctuation characters. 

Glossary-20 8600 0296-000 



Glossary 

Q 

qualified data-name 

qualifier 

queue 

An identifier composed of a data-name followed by one or more sets of either of the 
connectives OF or IN followed by a data-name qualifier. 

Any of the following items: a data-name used in a reference together with another 
data-name at a lower level in the same hierarchy; a section-name used in a reference 
together with a paragraph-name specified in that section; or a library-name used in a 
reference together with a text-name associated with that library. 

A data structure used for storing objects; the objects are removed in the same order they 
are stored. 

queue name 

R 

A symbolic name that indicates to the message control system (MCS) the 10gica1 path by 
which a message or a portion of a completed message is accessible in a queue. 

random access 

record 

An access technique that permits the storage and retrieva1 of a single data element 
without reference to other preceding data elements. If the data is stored in files, the 
technique permits a single record of a file to be accessed by specifying one or more keys 
associated with that record, without first having to access all the records that precede 
the record. Contrast with sequentia1 access. 

(1) A group of logically related items of data in a file that are treated as a unit. (2) The 
data read from or written to a file in one execution of a read or write statement in a 
program. 

record area 
A storage area a1located for the purpose of processing the record described in a 
record-description entry in the FILE SECTION. 

record description 
See record-description entry. 

record key 
A key, either the prime record key or an alternate record key, with contents that identify 
a record within an indexed file. 

record-description entry 
The total set of data-description entries associated with a particular record. 

record-name 
A user-defined word that names a record described in a record-description entry in the 
DATA DIVISION. 

8600 0296-000 Glossa ry-21 



Glossary 

reference format 
A format that provides a standard method for describing COBOL source programs. 

relation 
See relational operator. 

relation condition 
A proposition, {or which a truth value can be determined, in which the value ofan 
arithmetic expression or data item has a specific relationship to the value of another 
arithmetic expression or data item. 

relational character 
A character that signifies a relationship between the values of two operands. The 
three relational characters are the following symbols: > (greater than), < (less than), 
and = (equal to). 

relational operator 
A reserved word, a relational character, a group of consecutive reserved words, or a 
group of consecutive reserved words and relational characters used in the construction of 
a relation condition. 

relative file 
In an indexed file management system, a file with relative organization. 

relative key 
In an indexed file management system, a key with contents that identify a logical record 
in a relative file. 

relative organization 
In an indexed file management system, the permanent, logical file structure in which 
each record is uniquely identified by an integer value greater than zero that specifies the 
logical ordinal position of the record in the file. 

report clause 
A clause in the REPORT SECTION of the DATA DIVISION that appears in a 
report-description entry or a report-group description entry. 

report file 
An output file with a description entry that contains a REPORT clause. The contents 
of a report file consist of records that are written under control of the Report Writer 
Control System (RWCS). 

report footing 
A report group that is presented only at the end of a report. 

report group 
An Ol-level-number entry and its subordinate entries in the REPORT SECTION of the 
DATA DIVISION. 

report heading 
A report group that is presented only at the beginning of a report. 

GJossary-22 8600 0296-000 



Glossary 

report line 
A division of a page representing one row of horizontal character positions. Each 
character position of a report line is aligned vertically beneath the corresponding 
character position of the report line above it. Report lines are incremented by 1, starting 
with the number 1 at the top of the page. 

REPORT SECTION 
The section of the DATA DMSION that contains one or more report-description entries 
and their associated report-group description entries. 

Report Writer Control System (RWCS) 
An object-time (run-time) control system, provided by the implementor, that constructs 
reports. 

Report Writer logical record 
A record that consists of the COBOL Report Writer Control System (RWCS) print line 
and associated control information necessary for selection and vertical positioning of the 
record. 

report-description entry 
An entry in the REPORT SECTION of the DATA DIVISION that is composed of the 
level-indicator RD, the report name, and a set of report clauses. . 

report-group description entry 
An entry in the REPORT SECTION of the DATA DIVISION that is composed of the 
level-number 01, the optional data-name, a TYPE clause, and an optional set of report 
clauses. 

report-name 
A user-defined word that names a report described in a report-description entry within 
the REPORT SECTION of the DATA DIVISION. 

reserved word 
A word that has special meaning within a programming language and that generally 
cannot be redefined or redeclared by the programmer. 

resultant identifier 
A user-defined data item that contains the result of an arithmetic expression. 

routine-name 

run time' 

run unit 

A user-defined word that identifies a procedure written in a language other than 
COBOL. 

The time during which an object code file or user interface system (DIS) is executed. 
Synonym for execution time and, in COBOL, object time. 

A set of one or more object programs that functions, at object time, as a unit to provide 
problem solutions. 

8600 0296-000 Glossary-23 



Glossary 

RWCS 
See Report Writer Control System. 

s 
Screen Design Facility (SDF) 

The InterPro product used for creating forms for online, transaction-based application 
systems. 

Screen Design Facility Plus (SDF Plus) 

SD 

SDF 

SDF Plus 

SDO 

section 

A Unisys product used for creating user interface systems (UISs) for online, 
transaction-based application systems. 

See Sort-Merge File-Description (SD) entry. 

See Screen Design Facility. 

See Screen Design Facility Plus. 

See start-of-double-octet character. 

A set of zero or more paragraphs or entries, called a section body, the first of which is 
preceded by a sectiol1 header. Each section consists of the section header and the section 
body. 

section header 
A combination of words followed by a period and a space that indicates the beginning of 
a section in the ENVIRONMENT DIVISION, DATA DIVISION, and PROCEDURE 
DIVISION. In the ENVIRONMENT DMSION and DATA DIVISION, a section header 
is cqmposed of reserved words followed by a period and a space. In the PROCEDURE 
DIVISION, a section header is composed of a section-name, followed by the reserved 
word SECTION, followed by a segment-number (optional), followed by a period and a 
space. 

section-name 
A user-defined word that names a section in the PROCEDURE DIVISION. 

segment-number 
A user-defined number that classifies sections in the PROCEDURE DIVISION for 
purposes of segmentation. Segment-numbers can contain only the digits 0 through 9. A 
segment-number can be expressed as a 1-, 2-, 3-, or 4-digit number. 

< Glossary-24 8600 0296-000 



Glossary 

Semantic Information Manager (SIM) 

sentence 

The basis of the InfoExec™ environment. 81M is a database management system used 
to describe and maintain associations among data by means of subclass-superclass 
relationships and linking attributes. 

A sequence of one or more statements, the last of which is terminated by a period 
followed by a space. 

separator 
A punctuation character used to delimit character strings. 

sequential access 
An access technique in which logical records are obtained from or placed into a file in a 
consecutive sequence determined by the order of the records in the file. Contrast with 
random access. 

sequential file 
A data file in which records are organized according to the order in which they are stored 
in the file. A sequential file is read consecutively. 

sequential organization 

session 

The permanent logical file structure in which a record is identified by a 
predecessor-to-successor relationship established when the record is placed into the file. 

The interactions between a user and a message control system (MC8) during a particular 
period of time that is assigned an identifying session number. Logging on initiates a new 
session; logging off terminates a session. Each Menu-Assisted Resource Control (MARC) 
or Command and Edit language (CANDE) dialogue at a terminal accesses a different 
session. 

sign condition 

SIM 

The proposition that the algebraic value of a data item or an arithmetic expression is less 
than, greater than, or equal to 0 (zero). A truth condition can be determined for a sign 
condition. 

See Semantic Information Manager. 

simple condition 

SOK 

Any single condition chosen from the following set: relation condition, class condition, 
condition-name condition, switch-status condition, sign condition, and a simple condition 
enclosed in parentheses. 

See start of Kanji. 

InfoExec is a trademark of Unisys Corporation. 

86000296--000 Glossary-25 



Glossary 

sort file 
A collection of records to be sorted by a SORT statement.. The sort file is created and 
can be used by the sort function only. 

Sort-Merge File-Description (SD) entry 

source 

An entry in the FILE SECTION of the DATADMSION that is composed of the 
level-indicator SD, a file-name, and a set of file clauses as required. 

The symbolic identification of the originator of a transmission to a queue. 

source item 
An identifier designated by a SOURCE clause that provides the value of a printable jtem. 

source program 
A program coded in a language that must be translated into machine language before 
execution. The translator program is usually a compiler. 

SOURCE-COMPUTER 
The name of an ENVIRONMENT DMSION paragraph describing the computer 
environment within which the source program is compiled. 

special character 
(AND IPS) A graphic character in a character set that is not a letter, not a digit, and not a 
space character. 

special registers 
Compiler-generated storage areas whose primary use is to store values for specific 
COBOL features. 

special-character word 
A reserved word that is an arithmetic operator or a relational character. 

SPECIAL-NAMES 
The name of an ENVIRONMENT DMSION paragraph in which implementor-names 
are related to user-specified mnemonic-names. . 

standard data format 
The concept used to describe the characteristics of data in a DATA DIVISION. The data 
characteristics are expressed in a format oriented to the appearance of the data on a 
printed page, rather than a format oriented to the manner in which data are stored 
internally in the computer or on a particular external medium. 

start of Kanji (SOK) character 
A character that signals the beginning of a Kanji character string. Synonym for 
start-of-double-octet (SDO) character. 

start-of-double-octet (SDO) character 
A character that signals the beginning of a double-octet character string. Synonym for 
start of Kanji (SOK) character. 

Glossary-26 8600 0296-000 



Glossary 

statement 

subfile 

A syntactically valid combination of words and symbols written in the PROCEDURE 
DIVISION and beginning with a verb. 

A logical, hierarchical division of a file. 

subject of entry 
An operand or reserved word that appears immediately after the level indicator or the 
level-number in a DATA DIVISION entry. 

subprogram 
See called program. 

subqueue 
A logical, hierarchical division of a queue. 

subscript 
An integer whose value identifies a particular element in a table. 

subscripted data-name 
An identifier composed of a data-name followed by one or more subscripts enclosed in 
parentheses. 

sum counter 
A signed numeric data item established by a SUM clause in the REPORT SECTION of 
the DATA DIVISION. The sum counter is used by the Report Writer Control Sys~em 
(RWCS) to contain the result of designated sununing operations that take place during 
report production. 

switch-status condition 
The proposition, for which a truth value can be determined, that an implementor-defined 
switch has been set to an ON or OFF status. 

system-name 

T 
table 

A word used to communicate with the operating environment. 

A one-dimensional or multidimensional structure in which like data items are stored. 
Each data item can be uniquely identified and accessed by means of its location in the 
table; identification and access procedures vary according to the language or product. 

table element 
A data item that belongs to the set of repeated items that make up a table. 

TADS 
See Test and Debug System. 

8600 0296-000 Glossa ry-2 7 



Glossary 

TCPIIP 

terminal 

See Transmission Control Protoco1/Internet Protocol. 

The originator of a transmission to a queue or the receiver of a transmission from a 
queue. 

Test and Debug System (TADS) 
A Unisys interactive tool for testing and debugging programs and libraries. TADS 
enables the programmer to monitor and control the execution of the software under 
testing and examine the data at any given point during program execution. 

text-name 
A user-defined word that identifies library text. 

text-word 

TPS 

A character or a sequence of contiguous characters in a library, source, or program, or in 
pseudotext. A text-word can be a separator (other than a space), a pseudotext 'delimiter, 
or an opening or closing delimiter for a nonnumeric literal. The right parenthesis and 
left parenthesis characters are always considered text-words. A text-word can also be a 
literal or any other sequence of contiguous COBOL characters except comments and the 
word COPY, bounded by separators, that is neither a separator nor a literal. 

See transaction processing system. 

transaction processing system (TPS) 
A Unisys system that provides methods fo.r processing a high volume of transactions, 
keeps track of all input transactions that access the database, enables the user to batch 
data for later processing, and enables transactions to be processed on a database that 
resides on a rembte system. 

Transmission Control Protocolllnternet Protocol (TCPIIP) 
A family of protocols that were originally developed for use in a Department of Defense 
network, and which have been widely adopted as standard protocols for multivendor 
networks. The applications protocols typically supported by TCP /IP are File Transfer 
Protocol (FTP), Simple Mail Transfer Protocol (SMTP), and Telnet. 

truth value 
The representation of the evaluation results of a condition in terms of one of two values: 
TRUE or FALSE. 

u 
unary operator 

unit 

A plus sign ( + ) or a minus sign (-) preceding a variable or a left parenthesis in an 
arithmetic expression and that has the effect of multiplying the expression by + 1 or -1, 
respectively. 

A module of mass storage, the dimensions of which are determined by each implementor. ' 

G I ossa ry-28 8600 0296-000 



Glossary 

user-defined word 
A word that must be supplied by the user to satisfy the format of a clause or statement. 

v 
variable 

An object in a program whose value can be changed during program execution. 

verb 
A word that express·es an action to be taken by a COBOL compiler or object program. 

w 
WAN 

See wide area network. 

WFL 
See Work Flow Language. 

wide area network (WAN) 
A network that enables communications among various devices spread over a large area 
(for example, devices located in different cities). 

Work Flow Language (WFL) 
A Unisys language used for constructing jobs that compile or run programs on A Series 
systems. WFL includes variables, expressions, and flow-of-control statements that offer 
the programmer a wide range of capabilities with regard to task control. 

WORKING-STORAGE SECTION 

z 

The section of the DATA DIVISION that describes working-storage data items, either 
noncontiguous items or working-storage records, or both. 

zone portion 
The high order, or most significant, 4 bits of a byte. Contrast with digit portion. 

7 
77-level description entry 

A data-description entry that describes a noncontiguous data item with the level-number 
77. 

8600 0296-000 Glossary-29 



Glossa ry-30 8600 0296-000 



Bibliography 

A Series ALGOL Programming Reference Manual, Volume 1: Basic Implementation 
(form 8600 0098). Unisys Corporation. 

A Series Binder Programming Reference Manual (form 86000304). Unisys 
Corporation. 

A Series CANDE Configuration Reference Manual (form 86001344). Unisys 
Corporation. 

A Series CANDE Operations Reference Manual (form 8600 1500). Unisys 
Corporation. 

A Series COBOLANSI-74 Programming Reference Manual, Volume 2: Product 
Interfaces (form 86000130). Unisys Corporation. 

A Series COBOLANSI-74 Test and Debug System (TADS) Programming Guide 
(form 1169901) .. Unisys Corporation. 

A Series Distributed Systems Service (DSS) Operations Guide (form 8600 0122). Unisys 
Corporation. 

A Series Editor Operations Guide (form 86000551). Unisys Corporation. 

A Series File Attributes Programming Reference Manual (form 86000064). Unisys 
Corporation. Formerly A Series 110 Subsystem Programming Reference 
Manual. 

A Series I/O Subsystem Programming Guide (form 86000056). Unisys Corporation. 
Formerly A Series I/O Subsystem Programming Reference Manual. 

A Series MultiLingual System (MLS) Administration, Operations, and Programming 
Guide (form 86000288). Unisys Corporation. 

A Series System Commands Operations Reference Manual (form 86000395). Unisys 
Corporation . 

. A Series System Software Support Reference Manual (form 86000478). Unisys 
Corporation. 

A Series System Software Utilities Operations Reference Manual (form 86000460). 
Unisys Corporation. 

A Series Task Attributes Programming Reference Manual (form 8600 0502). Unisys 
Corporation. Formerly A Series Work Flow Administration and Programming 
Guide. 

8600 0296-000 Bibliography-l 



Bi bl iogra phy 

A Series Task Management Programming Guide (form 8600 0494). Unisys 
Corporation. 

A Series Transmission Control Protocol/Internet Protocol (TCP/IP) Implementation 
Guide (form 1221328). Unisys Corporation. 

A Series Work Flow Language (WFL) Programming Reference Manual 
(form 86001047). Unisys Corporation. . 

A Series X25 MCS Operations and Programming Reference Manual (form 86000577). 
U nisys Corporation. 

American National Dictionary/or Information Processing Systems (technical report). 
American National Standards Committee X3, Information Processing Systems. 
Washington, DC: Computer and Business Equipment Manufacturers Association 
(CBEMA),1982. 

Dictionary of Computing. FrankJ. Galland (ed.). New York: John Wiley & Sons, 
1982. 

Bibliography-2 8600 0290-.000 



Index 

A 

A, edit character in PICTURE clause, 6-16, 
6-17,6-18,6-19 

A Series libraries, 15-1 
abbreviated combined relation conditions, 

8-23 
abnormal termination 

method of investigation, 17-27 
SIZE ERROR phrase, 8-25 
subscript out of range, 6-13 
table element out of range, 7-27 
with SET statement, 9-117,9-119 

ACCEPT MESSAGE COUNT statement, 
14-19 

ACCEPT statement, 9-1 
and SPECIAL-NAMES paragraph, 5-7 
in communication module, 14-1 " 

ACCEPT-CLOSE phrase, in RESPOND 
statement, 9-103 

ACCEPT-OPEN phrase, in RESPOND 
statement, 9-103 

ACCEPTEVENT task attribute, 9-159 
access, (See file access) 
ACCESS MODE clause, 5-13 

indexed I/O, 5-22 
relative I/O, 5-19 
sequential I/O, 5-15 

ACTUAL KEY clause 
for specifying a ~ubfile index, 3-2 
in AWAIT-OPEN statement, 9-10 
in CLOSE statement, 9-32,9-34,9-106 
in OPEN statement, 9-82 
in READ statement, 9-95, 9-96 
in RESPOND statement, 9-104 
in SEEK statement, 9-116 
in SELECT clause, 5-13 
sequential I/O, 5-15 

ADD statement, 9-3, (See also addition) 
storing results in multiple fields, 8-27 
with SIZE ERROR and 

CO~SPONDING phrases, 8-26 
addition, 8-6 

8600 0296-000 

arithmetic symbol for, 8-6 
cumulative totals with GIVING phrase, 

9-3 
reserved word for, 2-10 

ADDS, vi 
Advanced Data Dictionary System (ADDS), vi 
ADVANCING phrase 

in SEND statement, 14-28 
in WRITE statement, 9-162 

AFTER ADVANCING phrase 
in SEND statement, 14-26 
in WRITE statement, 9-167 

AFTER phrase 
in INSPECT statement, 9-60 
in SEND statement, 14-29 
in USE statement, 9-152 
in WRITE statement, 9-161 

ALGOL parameters 
for passing arrays, 7-23 
for tasking calls (table), 9-14 
using RECEIVED clause with, 7-34 

ALGOL typed procedure, 15-8 
alignment 

of data, 6-9 
rules for VALUE clause, 7-48 
when moving data, 9-69 
with JUSTIFIED clause, 7-22 
with USAGE IS INDEX clause, 7-45 

of decimal point 
in division, 9-47 
in editing, 6-18 
with ROUNDED phrase, 8-25 

of display characters, 7-44 
of elementary items 

with SYNCHRONIZED clause, 7-39 
of group items, 6-2 

ALL figurative constant, (See figurative 
constants) 

Index-l 



Index 

in MOVE ALL literal construct (example), 
2-7 

with undigit literals, 2-18 
ALL phrase 

in INSPECT statement, 9-54 
in USE FOR DEBUGGING statement 

PROCEDURES phrase, 11-2 
REFERENCES phrase, 11-2 

ALLOW statement, 9-5 
with ATTACH statement, 9-41 
with DETACH statement, 9-41 

alphabet-name 
as a user-defined word, 2-12 
in SPECIAL-NAMES paragraph, 5-7 

alphabetic data items 
in PICTURE clause, 7-30 
types of, 6-5 

ALPHABETIC identifier, ~18 
alphabetic truthset, 16-7, 16-17 
alphanumeric 

characters, translating, 16-6 
data items 

in PICTURE clause, 7-30 
types of, 6-5 

file-attribute identifiers, 3-4 
hexadecimal characters, 2-17 
literal 

in Symbolic ID compiler control option, 
17-40 

using quotation marks with (example), 
2-14 

alphanumeric-edited data items 
rules for, 7-30 
types of, 6-5 

ALSO phrase, 5-9 
ALTER statement, 9-7 

in GO TO statement, 9-51 
alternate keys, 5-23 

when reading records, 9-94 
when replacing records, 9-109 
when writing records, 9-166 

ALTERNATE RECORD KEY clause 
in SELECT clause, 5-15 . 
indexed I/O, 5-23 

AND logical operator 
in abbreviated combined conditions, 8-23 
meaning of, 8-21 

ANSI-74 
compatibility, 1-1 
evaluating compliance with, 17-22 

application-specific keywords, B-6 
area A in source program, 1-6 

Index-2 

area B in source program, 1-6 
areas, use of file attributes to account for 

number of, 3-4 
arithmetic 

expressions 
assigning results to identifier, 9-34 
combinations (table), 8-7 
comparing numeric operands, 8-16 
order of precedence, 8-7 
types of, 8-6 

functions, 8-8 
operands 

data descriptions for, 8-27 
operators 

reserved word for, 2-10 
types of, 8-6 

statements 
overview, 8-26 
storing results in multiple fields, 8-27 

arithmetic-expression option foJ," port files, 
3...:.3 

arrays, (See tables) 
in CALL statement, 9-15 
in communication module, 14-3 
passing parameters, lower-bound, 7-23 

AS GLOBAL PROCEDURE phrase, in USE 
statement, 9-155 

ASCENDING KEY phrase, in OCCURS 
clause, 7-25 

ASCENDING phrase 
in MERGE statement, 9-66 
in SORT statement, 9-123 

AS CIT 
and EBCDIC character sets, C-1 
in SPECIAL-NAMES paragraph, 5-7 

ASCIT-to-EBCDIC translation table, 5-8 
ASSIGN clause, 5-13 

indexed I/O, 5-22 
relative I/O, 5-18 
sequential I/O, 5-15 
sort-merge, 5-24 

ASSOCIATED-DATA phrase 
in CLOSE statement, 9-32 
in OPEN statement, 9-81 
in RESPOND statement, 9-103 

ASSOCIATED-DATA-LENGTH phrase 
in CLOSE statement, 9-31 
in OPEN statement, 9-81 
in RESPOND statement, 9-103 

asterisk (*), edit character in PICTURE 
clause, 6-18 

asynchronous processes 

8600 0296--000 



acquiring a lock, 9-62 
after task detachment, 9-41 
communicating by using CAUSE 

statement, 9-19 
priority handling, 9-63 
releasing aJock, ~-139 
starting 

with PROCESS statement, 9-92 
with RUN statement, 9-110 

task-attribute identifiers in, 3-6 
At End condition, 5-27 

for indexed I/O, 5-32 
for relative 110, 5-30 
for sequential I/O, 5-27 

AT END phrase 
in READ statement, 9-94, 9-95, 9-99 
in RETURN statement, 9-106 
in SEARCH statement, 9-111 

at sign (@) 
as a separator, 2-2 
for undigit literals, 2-17 

ATTACH statement, 9-7 
with DETACH statement, 9-41 
with interrupts, 9-6 

ATTRIBUTE clause, general format for 
file-attribute identifiers, 3-3 -
task-attribute identifiers, 3-6 

attributes 
of files, 3-2 

assigning initial values, 7-10 
dynamically changing for port files, 7-12 

of libraries, 15-12 
of tasks, 3-6 

OPTION, 3-9 
STATUS, 9-41 

out-of-range errors with, 9-22 
audit considerations, 9-164 
AUTHOR paragraph, 4-1 
automatic file allocation, 7-8 
AUTORM. (autoremove) system option, 9-29 

in relative and indexed files, 9-30 
AVAILABLE EXTEND phrase in OPEN 

statement, 9-75, 9-76 
AVAILABLE phrase 

in AWAIT-OPEN statement, 9-9 
in OPEN statement, 9-75, 9-76, 9-77, 

9-80 
AWAIT-OPEN statement 

examples, 9-11 
syntax, 9-9 

8600 0296-000 

Index 

B 

B, edit character in PICTURE clause, 6-16 
backup files 

CODE clause, 12-3 
when printing with PB (Printer Backup) 

WFL statement, 12-5 
with sequential file organization, 5-13 

base nwnber system, affected by USAGE 
clause, 7-46 

BDREPORT clause, in Report Writer, 12-4 
BEFORE ADVANCING phrase 

in SEND statement, 14-26 
in WRITE statement, 9-167 

BEFORE phrase 
in INSPECT statement, 9-60 
in SEND statement, 14-29 
in WRITE statement, 9-161 

BINARY phrase 
in data-description entry, 7-18 
in USAGE clause, 7-42 

b~search,9-115 
BINARY TRUNCATED phrase 

in data-description entry, 7-18 
in USAGE clause, 7-42 

BINARYCOMP compiler control option, 
17~18 

Binder, (See bound procedures) 
BINDINFO compiler control option, 17-18 
binding 

declaring lower-bound formal parameter 
for, 7-23 

identifying program to be bound, 9-156 
placing information for binding in a code 

file, 17-18 
programs as procedures, 9-16 

bit manipulation, 9-72 
blank lines in a source program, 1-13 
BLANK WHEN ZERO clause 

in data-description entry, 7-20 
in Report Writer, 12-22 
overview, 7-20 
with initialization process, 7-48 
with zero-suppression symbol, 7-29 

BLOCK CONTAINS clause 
. general format of, 7-6 
in file-description (FD) entry, 7-6 

blocking factor, 7-6 
blocks 

Short Block condition 
for indexed 110, 5-32 
for relative 110, 5-30 

Index-3 



Index 

for sequential I/O, 5-29 
specifying size of, 7-6 
using file attributes to account for number 

of, 3-4 
Boolean 

compiler control options, 17-8 
file-attribute identifiers, 3-5 
task attributes, 9-22, 9-121 

BOTTOM margin in file-description (FD) 
entry, 7-14 

bottom margin in LINAGE clause, 7-15 
bound procedures, 17-41 

naming identifiers received, &-1 
passing lower-bound parameters, 7-23 
using EXIT statement for returning from, 

9-49 
using GLOBAL clause, 7-21 
using programs as, 7-35 
using RECEIVED clause, 7-34 
using VALUE clause, 7-49 

bound program, parameters for (table), 9-16 
Boundary Violation condition 

for indexed I/O, 5-32 
for relative I/O, 5-30 

braces in format notation (example), A-3 
brackets 

in format notation (example), A-3 
in partial words, 9-72 

branching logic 
changing a GO TO statement, 9-7 
overview, 8-13 
with GO TO statement, 9-51 
with IF statement, 9-52 

Break On Output condition 
for indexed I/O, 5-32 
for relative I/O, 5-31 
for sequential I/O, 5-29 

Broadcast Write error, 5-29 
broadcast write operation, 9-167 
buffers 

I/O error condition, 5-29 
in closing files, 9-29 
in communication module, 14-2 
when writing records to port files, 9-169 

byte boundaries 
with display data items, 7-44 
with REDEFINES clause, 7-36 
with SYNCHRONIZED clause, 7-39 

Index-4 

c 
CALL statement, 9-12, (See also libraries) 

and CONTINUE statement, 9-35 
effect on library attributes, 15-13 
execution of, 9-13 
in Inter-Program Communication (IPC), 

13-4 
in libraries, 15-5 
relationship to PROCEDURE DIVISION 

parameters, 8-1 . 
restriction, 7-35 
with DETACH statement, 9-41 
with EXIT PROGRAM statement, 9-50 
with USAGE clause, 7-45 

CALL SYSTEM DUMP statement, 9-18 
CALL SYSTEM WFL statement, 9-18 
called program, 13-4 
calling program, 13-4 
CANCEL statement 

in Inter-Program Communication (!PC), 
13-5 

in libraries, 15-5, 15-10 
CANDE, (See Command and Edit 

(CANDE)) 
CARD file, used by compiler, 17-13 
CAUSE statement, 9-19 
CCR, (See compiler control record (CCR)) 
CCS, (See coded character set) 
CCSTOCCS _TRANS _TEXT procedure, 

16-6, 16-31 
ccsversion, 16-1 

designating, 16-16 
escapement rules for rearranging text, 

16-102 
name, obtaining, 16-28, 16-95 
names and numbers, obtaining list of, 

16-34 
number,obtaining,16-93 
system default, definition, 16-5 
system default, obtaining name and 

~umber of, 16-37 . 
CCSVERSION clause, 16-7 
CCSVSN_NAMES_NUMS procedure, 16-34 
CD, (See communication-description (CD) 

entry) 
CD-name, as user-defined word, 2-12 
CENTRALSTATUS procedure, 16-37 
CENTRALSUPPORT library, 16-2 

calls to 
status of, 16-30, 16-116 

input parameters, 16-28 

8600 0296-000 



level of, 16-37 
nllr.Wrrrizingcallsto, 16-81 
procedures, 16-20 

calling, 16-27 
CENTRALSUPPORT library procedures 

ftlllctions of (table), 16-21, 16-23 
CF phrase, (See CONTROL FOOTING 

phrase, in Report Writer) 
CH phrase, (See CONTROL HEADING 

phrase, in Report Writer) 
CHANGE ATTRIBUTE statement, changing 

library attribute value, 15-13 
CHANGE statement, 9-20 

when opening subfiles, 7-12 
with optional word VALUE, 9-21, 9-22 

channel number 
naming in SPECIAL-NAMES paragraph, 

5-7 
specifying in WRITE statement, 9-162, 

9-168 
character 

basic Unit of COBOL, 2-1 
for editing, 7-31 
manipulation, 9-72 

character advance direction, 16-102 
character code set 

defining, 5-7 
from external device, 7-16 

character escapement direction, 16-102 
character set, 16-1, 16-4 

ASCII and EBCDIC, C-1 
for comments, 2-1 
for nonnumeric literals, 2-1 
standard, 2-1 

character string 
definition, 2--3 
valid characters for, 2-1 

characters per line 
in convention, determining, 16-61 

CHARACTERS phrase, in INSPECT 
statement, 9-54 

check-protect asterisk (*) 
edit character in PICTURE clause, 6-19 
in zero-protection editing, 6-22 

checkpoints, (See rerun points) 
class condition 

precedence of, 8-24 
simple, 8-18 

CLEAR compiler control option, 17-19 
close file disposition, 9-27 
close reel disposition, 9-28, 9-29 

8600 0296-000 

Index 

CLOSE statement, 9-22, (See also closing a 
file) 

executing, for sequential files, 9-27 . 
for port files (examples), 9-32 
for relative and indexed I/O, 9-30 
when status values are updated 

for indexed I/O, 5-31 
for relative I/O, 5-30 
for sequential 1/0,5-27 

with multiple-file tapes, 5-26 
withnonreelfile, 9-23 
with port files, 3-2 
with sequential files in READ and WRITE 

statements, 9-28 
CLOSE-DISPOSITION ABORT phrase, 9-31 
CLOSE-DISPOSITION ORDERLY phrase, 

9-31 
closing a file, 9-22, (See also CLOSE 

statement) 
automatically when merging files, 9--65 

CMP phrase, (See COMPUTATIONAL 
phrase) 

CNV _ CURRENCYEDIT _COB procedure, ' 
16-44 

CNV _ CURRENCYEDrrTMP _COB 
procedure, 1,6-41 

CNV _ DISPLAYMODEL _COB procedure, 
16-47 

CNV _FORMATDATE _COB procedure, 
16-53 

CNV _ FORMATDATETMP _COB procedure, 
16-50 

CNV _FORMATTIME _COB procedure, 
16-58 

CNV _ FORMATTIMETMP _COB procedure, 
16-56 

CNV _ FORMSIZE procedure, 16-61 
CNV _NAMES procedure, 16-64 
CNV _SYMBOLS procedure, 16-67 
CNV _ SYSTEMDATETIME _COB procedure, 

16-78 
CNV_SYSTEMDATET~TMP_COB 

procedure, 16-75 
CNV _TEMPLATE_COB procedure, 16-81 
CNV _ V ALIDATENAME procedure, 16-84 
COBOL68 

parameters 
for tasking calls (table), 9-14 
using RECEIVED clause with, 7-34 

COBOL74 
compatibility with ANSI standard, vii 

CODE clause 

Index-5 



Index 

for identifying the line of a file, 12-3 
in report-description (RD) entry, 12-3 

CODE compiler control option, 17-19 
during compilation, 17-15 

CODE file, used by compiler, 17-15 
CODE SEGMENT-LIMIT clause, 5-4 
code segmentation, printing information 

about, 17-15 
CODE-SET clause 

function, 7-16 
syntax in file-description (FD) entry, 7-16 
with SIGN clause, 7-38 

coded character set, 16-4 
name, obtaining, 16-95 
names and numbers, obtaining list of, 

16-34 
number, obtaining, 16-93 
translating from one to another, 16-6, 

16-31 
coding for readability (example), 1-9 
coding form 

areaA, 1-6 
areaB, 1-6 
sequence number area, 1-6 

collating sequence, 16-2 
assignment of, 5-4 
associating with alphabet-name, 16-16 
comparing key data 
, in MERGE statement, 9-66 

in SORT statement, 9-124 
figurative constants in, 2-6 
rules for explicitly setting, 5-7 
system-wide, designating, 16-16 
use in comparing nonnumeric operands, 

8-16 
COLLATING SEQUENCE phrase 

in MERGE statement, 9-64 
in SORT statement, 9-122 

colon, in partial words,' 9-72 
COLUMN NUMBER clause, in Report 

Writer, 12-22, 12-23 
combining files, (See merging files) 
comma (,) 

as edit character in PICTURE clause, 6-18 
as separator, 2-2 
in format notation, A-2 
in place of decimal point, 5-7 

Command and Edit (CANDE) 
continuing a program, 9-132 
LIST compiler control option default, 

17-15 
starting compilation from, 17-14 

Index-6 

using ERRORLIST compiler control 
option, 17-21 

comment line 
in COpy statement, 9-39 
with COpy statement in compilation 

listing, 9-39 
comments 

character set for, 2-1 
coding (example), 1-10 
in format notation, A-2 
in source program, 1-10 
punctuation for, 2-3 

comments-entry, in DATA-COMPILED 
paragraph, 4-3 

communication module, 14-1 
accepting messages in a queue, 14-19 
communication-description (CD) entry, 

14-6 
DATA DIVISION, 14-6 
data-description entries, 14-8 
DCILIBRARY, 14-1 
DCILIBRARY entry point (example), 14-4 
enabling two terminals (example), 14-17 
getting information about data in a queue, 

14-22 
inhibiting data transfer, 14-20 
PROCEDURE DMSION, 14-19 
sample program, 14-17 
specifying device type, 14-3 
status key condition 

01-level (figure), 14-11 
02-level (figure), 14-16 

transferring data to or from a queue, 
14-21 

writing to a queue, 14-25 
COMMUNICATION SECTION, 14-6 

defining initial value, 7-46 
overview, 7-1 
rules for using VALUE clause in, 7-49 

communication-description (CD) entry, 14-6 
Communications Management System 

(COMS), vi 
COMP phrase, (See COMPUTATIONAL 

phrase) 
comparing operands, 8-16 
comparing text 

in localized applications, 16-98 
COMPARISON clause, 5-22 
comparisons, using relation conditions, 8-15 

. compile-time 
switch, in debug module, 11-1 
warnings with table errors, 6-13 

8600 0296-000 



compiler 
attributes for, 7-10 
byte alignment by, 6-2 
controlling with compiler control options, 

17-7 
files 

attributes for, 17-13 
input, 17-13 
output, 17-15 
overview, 17-12 

overview, 1-1 
role in merging files, ~67 
task attributes supplied by, 3-7 
unexpected results with use of file 

attributes, 7-10 
compiler control options, 17-7 

. action indicators, 17-10 
activation of; 17-10 
BINARYCOMp, 17-18 
BINDINFO, 17-18 
Boolean, 17-8 
CLEAR, 17-19 
CODE, 17-15, 17-19 
COMPILERDEBUG, 17-19 
DEBUG,17-19 
DELETE, 17-20 
DOUBLE, 17-20 
ERRORLIMIT, 17-21 
ERRORLIST, 17-21 
FEDLEVEL, 4-2,15-1,17-22 
for libraries, 15-14 
F~E, 11-1,17-22 
GLOBAL, 17-23 

using (example), 7-21 
GLOBALTEMP, 17-24 
immediate, 17-9 
in source program, 1-13 
INFO, 17-25 
LEVEL, 5-14, 17-26 
Lm$ or LIBDOLLAR, 17-26 
LINEINFO, 17-26, 17-27 
LIST, 17-27 
LIST$ or LISTDOLLAR, 17-27 
LISTDELETED, 17-28 
LISTOMITTED, 17-28 
LISTp, 17-28 
LIST 1, 17-28 
MAKEHOST, 17-29 
MAP, 17-15, 17-29 
MERGE, 17-30 
NEW, 17-15, 17-30 
NEWID, 17-31 

8600 0296-000 

NOXREFLIST, 17-31 
OMIT, 17-32 
OPT or OPTIMIZE, 17-32 
OWN,17-33 

relation to OWN clause, 7-28 
OWNTEMP, 17-34 
PAGE, 17-34 
placement of, 9-39, 17-10 
SEPCOMp, 17-35 
SEQ or SEQUENCE, 17-36 
SEQ CHECK, 17-35 
Sequence Base, 17-37 
Sequence Increment, 17-37 
SHARING, 17-38 
SPEC, 17-39 
STATISTICS, 17-39 
SUMMARY, 17-40 
Symbolic Id, 17-40 
syntax, 17-9 
TADS, 17-40 
TARGET, 17-42 
TEMPORARY, 17-43 
USER, 17-44 
value, 17-8 
VOID, 17-44 
WARNFATAL, 17-45 
WARNSUPR, 17-45 
XDECS, 17-45 
XREF, 17-46 
XREFFILES, 17-46 
XREFS, 17-47 

compiler control record (CCR), 17-7 

Index 

< compiler control record>, 17-9 
compiler-directing sentences, 8-5 
COMPILERDEBUG compiler control option, 

17-19 
compiling 

atlexicograp~clevel3 
for using global variables, 7-21 
to use local variables, 7-23 

code customized for a machine, 17-42 
input and output during (figure), 17-12 
separate compilation method, 17-4 
setting the error limit for, 17-21 
using COpy statement for text 

replacement, 9-36 
complex conditions, 8-20 

abbreviated combined relation, 8-23 
combined and negated combined, 8-21 
condition evaluation rules, 8-24 
negated simple, 8-21 

COMPUTA~IONAL phrase 

Index-7 



Index 

in data-description 'entry, 7-18 
in USAGE clause, 7-42 
with group-items, 7-43 

COMPUTE statement, 9-34 
storing results in multiple fields, 8-27 
using extended functions with, 8-9 

computer-name, definition, 2-12 
COMS (Communications Management 

System), vi 
concatenation of data, 9-133 
condition evaluation rules, 8-24 
condition-name, 7-51 

as a user-defined word, 2-12 
coding of (example), 7-52 
condition, 8-19 

precedence of, 8-24 
defining, 2-12 
initial value, 7-46 
qualification of, 6-7 
rules for using VALUE clause with, 7-52 

conditional expressions, 8-13 
comparing 

FUanjioperands, 8-17 
nonnumeric operands, 8-16 

complex, 8-20 
abbreviated combined relations, 8-23 
combined and negated combined, 8-21 
negated simple, 8-21 

in PERFORM statement, 9-84, 9-85 
simple, 8-14 

class, 8-18 
condition-name, 8-19 
event-identifier, 8-20 
relation, 8-14 
sign, 8-19 

with index-names, 8-17 
with SEARCH statement, 9-112 

conditional sentences and statements, 8-4 
conditional statements, with IF statement, 

9-52 
conditional variable 

defining,2-12 
testing condition of, 8-19 
using FILLER keyword with, 7-20 

conditions 
comple~, 8-20 

abbreviated combined relations, 8-23 
combinations (table), 8-22 
combined and negated combined, 8-21 
negated simple, 8-21 

simple, 8-14 
class, 8-18 

Index-8 

comparing numeric operands, 8-17 
condition-name, 8-19 
event-identifier, 8-20 
relation, 8-14 
sign, 8-19 

CONFIGURATION SECTION, 5-2 
CONNECT-TIME-LIMIT phrase, in OPEN 

statement, 9-81 
connectives, 2-4 
constants 

defining value of, 7-46 
in WORKING-STORAGE SECTION, 7-53 
using as data, 7-1 

CONTENT phrase, in data-description entry, 
7-18 

context-sensitive keywords, B-6 
continuation line 

coding (example), 1-11 
in source program, 1-10 

CONTINUE statement, 9-35 
execution of, by calling program, 9-13 
with EXIT PROGRAM statement, 9-50 

continuing a program from CANDE, 9-132 
control breaks in Report Writer, 12-6 
CONTROL clause, in report-description (RD) 

entry, 12-3, 12-5 
CONTROL FOOTING phrase, in Report 

. Writer, 12-13, 12-16, 12-18 
CONTROL HEADING phrase, in Report 

Writer, 12-13, 12-16, 12-17 
control-point items, 9-14 
CONTROL-POINT phrase 

as synonym for USAGE IS TASK clause, 
7-43 

in data-description entry, 7-18 
in USAGE clause, 7-42 

convention, 16-1 
characters per line, 16-61 
creating, 16-11 
lines per page, 16-61 
provided by Unisys, 16-1'! 
system default, obtaining name of, 16-37 
total number on system, 16-64 
verifying presence of, 16-84 

convention names 
listing, 16-64 
obtainil'lg, 16-28 

CONVENTION phrase, 7-39 
CONVENTION task attribute, 16-4 
conventions 

business and cultural, 16-11 
for localization, establishing, 16-4 

8600 0296-000 



formatting data items for, 16-16 
CONVERSATION AREA clause, 14-7,14-13 
conversion of data 

editing symbol, 6-16 
when moving, 9-69 

copy descriptors, for OWN variables, 7-28 
COPY library files, used by compiler, 17-14 
COpy statement, 6-9, 9-36 

affected by compiler control option 
placement, 17-10 

as compiler-directing verb, 8-5 
coding of (example), 9-40 
comment lines in, 9-39 
cross-referencing information for, 17-4 
during compilation, 17-14 
replacing text in object program, 9-38 

coroutine, with EXIT stateinent, 9-49 
CORR phrase, (See CORRESPONDING 

phrase) 
CORRESPONDING phrase, 8-26 

in ADD statement, 9-4 
in MOVE statement, 9-72 
in SUBTRACT statement, 9-138 

COUNT phrase, in UNSTRING statement, 
9-140 

counters, sum, 12-25 
CP phrase, (See CONTROL-POINT phrase) 
CR, sign-control symbol for editing, 6-18 
critical block exit, 9-92 
cross-reference 

NOXREFLIST compiler control option, 
17-31 

using cross-reference files, 17-1 
XDECS compiler control option, 17-45 
XREF compiler control option, 17-46 
XREFFILES compiler control option, 

17-46 
XREFS compiler control option, 17-47 

crunch file disposition, 9-28 
CRUNCH phrase 

in CLOSE statement for nonreel files, 9-24 
in MERGE statement, 9-64 
in SORT statement, 9-122 

currency display, international formatting, 
16-14 

CURRENCY SIGN clause 
"in SPECIAL-NAMES paragraph, 5-9 

CURRENCY SIGN clause, in 
SPECIAL-NAMES paragraph, 5-9 

current-record pointer, 3-6 " 
effect on record deletion, 9-40 
when writing to a file, 9-160 

8600 0296-000 

D 

Index 

with sequential file access, upon reading, 
9-94 

data 
alignment of, 6-9 
categories of, 7-1 
classification of, 6-5 
concepts, vii 
contiguous, creating multiple fields from, 

9-139 
conversion, 9-69 
defining 

file structure, 7-3 
hierarchy with level-number, 6-4 

ensuring integrity of in libraries, 17-26 
initializing, 7-46 
joining, 9-133 
translating from one coded character set to 

anqther, 16-31 
data classes, 16-6 
data communications interface (DCI), 14-1 
data communications protocols, international, 

16-1 
data descriptors, task items, 7-43 
DATADMSION 

localization syntax, 16-16 
overview, 1-2 
REPORT SECTION of, 12-1 
subdivisions of, 7-1 
syntax, 7-2 

Data Error condition 
for indexed I/O, 5-32 
for relative I/O, 5-30 
for sequential I/O, 5-29 

data items 
as conditional variables, 2-12 
considerations for handling, 6-5 
defining 

as alphabetic, 7-30 
as alphanumeric, 7-30 
as alphanumeric-edited, 7-30 
as Kanji, 7-31 
as Kanji-edited, 7-31 
as numeric, 7-30 
as numeric-edited, 7~30 

in Inter-Program Communication (!PC), 
13-2 

intermediate, in arithmetic operations, 
8-27 

Index-9 



Index 

internal representation of, 7-44 
maximum size of, 7-19 
moving system date or time to, 16-17 
relationship of class and category (table), 

6-6 
using USAGE clause to specify format of, 

7-41 
Data Management System II (DMSII), vi 
DATA RECORDS clause 

coding of (example), 7-13 
function, 7-13 
in file-description (FD) entry, 7-13 

DATA-BASE SECTION, 7-1 
data-description entry 

content of, 6-1 
creating multiple fields for, 9-139 
for communication module, 14-8 
format of level numbers in, A-2 
function, 7-17 
redescribing a memory area, 7-35 

data-name 
as a user-defined word, 2-12 
qualification of, 6-7 

data-name clause, 7-19 
date 

formatting by convention and language, 
16-53 

formatting by template, 16-50 
international formatting, 16-12 
numeric, display model, 16-47 
system-provided 

formatting by convention, 16-78 
formatting by template and language, 

16-75 
template, creating or modifying, 16-50 

DATE special register, 2-9 
in ACCEPT FROM statement, 9-2 

DATE-COMPILED paragraph, 4-1, 4-3 
DATE-WRITTEN paragraph, 4-1 
day boundary, 16-75 
day name, 2-10 
DAY special register, 2-9 

in ACCEPT FROM statement, 9-2 
day-of-week value, 2-10 
DB, sign-control symbol for editing, 6-18 
DCI (Data Communications Interface), 14-1 
DCIENTRYPOINT, entry point for the 

DCILmRARY, 14-1 
DCILmRARy, 14-1 
DE phrase, (See DETAIL phrase) 
DEBUG compiler control option, 17-19 
debug module, 11-1 

Index-I 0 

DEBUG-CONTENTS, 11-6 
DEBUG-ITEM, 2-9, 11-5 
DEBUG-LINE, 11-6 
DEBUG-NAME, 11-6 
DEBUG-SUB-1, 11-6 

. DEBUG-SUB-2, 11-6 
DEBUG-SUB-3, 11-6 

DEBUG-ITEM 
in debug module, 11-5 
special register, 2-9 

debugging , 
with cross-reference files, 17-4, 17-46 
with debug module, 11-1 
with Test and Debug System (TADS), 

17-40 
. debugging line 

coding example, 1-11 
in COPY statement, 9-39 
symbol for, 11-9 

DEBUGGING MODE option 
in SOURCE-COMPUTER paragraph, 5-2 

DEBUGGING MODE option, in 
SOURCE-COMPUTER paragraph, 
11-2 

decimal point 
defining,5-10 
editing symbol for, 6-17 
when aligning data, 6-9 
with floating insertion editing, 6-21 
with special insertion editing, 6-20 

DECIMAL-POINT IS COMMA clause, in 
SPECIAL-NAMES paragraph, 5-10 

DECLARATIVES SECTION 
coding of (example), 8-3 
in Report Writer, 12-33 
locat~on in source program, 1-6 
restrictions for libraries, 15-2 
syntax, 8-2 
USE AS INTERRUPT clause 

in DETACH statement, 9-41 
in DISALLOW statement, 9-42 

used as an interrupt procedure, 9-157 
with ALLOW statement, 9-6 

default 
block size, 7-6 
ccsversion, 16-5 
disk area for sorting files, 9-125 
file organization, 5-15 
in format notation, A-2 
memory allocation for sorting files, 9-124 
number of I/O areas, 5-15 
number of tapes for sorting, 5-24 

8600 0296-000 



object-code segment size, 5-4 
pararnetertype, 7-34 
settings for localization, 16-2, 16-3 
USAGE clause, 7-44 

DEFAULT DISPLAY phrase, in 
SPECIAL-NAMES paragraph,. 5-10 

default settings 
for internationalization, 16-3 

DEFAULT SIGN clause, 5-10 
DELETE compiler control option, 17-20 
DELETE statement, 9-40 

open modes, 9-79 
when status values are updated 

for indexed I/O, 5-31 
for relative I/O, 5-30 

DELIMITED BY phrase 
in STRING statement, 9-134 
in UNSTRING statement, 9-140 

DELIMITER phrase, in UNSTRING 
statement, 9-140, 9-143 

dependent processes, (See processes) 
dependent tasks, (See tasks) 
DEPENDING ON phrase, in OCCURS 

clause, 7-26 
DESCENDING KEY phrase, in OCCURS 

clause, 7-25 
DESCENDING phrase 

in MERGE statement, 9-66 
in SORT statement, 9-124 

DESTINATION COUNT phrase, 14-12, 
14-13 

DESTINATION TABLE OCCURS phrase, 
14-12 

DETACH statement, 9-41 
using ATTACH statement with, 9-41 

DETAIL phrase 
in Report Writer 

relation to GENERATE statement, 
12-17,12-30 

syntax, 12-13 
syntax for TYPE clause, 12-16 

devices 
assigning 

in indexed file organization, 5-21 
in relative file organization, 5-18 
in sequential file organization, 5-15 

external 
specifying character code set, 7-16 

releasing, 9-29 
types of 

for sequential files, 5-15 
in communication module, 14-3 

8600 0296-000 

Index 

DISABLE statement 
in communication module, 14-1, 14-20 
with undigit literals, 2-18 

DISALLOW statement, 9-42 
with ALLOW statement, 9-5 
with ATTACH statement, 9-7 
with DETACH statement, 9-41 

disk files 
closing, 9-23 
for printer backup, 12-4 
for sorting or merging, 5-24 
with sequential file organization, 5-15 
with variable-length records, 7-8 

DISK SIZE clause 
in MERGE statement, 9-64 
in OBJECT-COMPUTER paragraph, 5-3 
in SORT statement, 9-122, 9-125 

DISPLAY phrase 
in data-description entry, 7-18 
in Report Writer, 12-13 
in USAGE clause 

character alignment of, 7-44 
syntax, 7-42 

DISPLAY statement 
and SPECIAL-NAMES paragraph, 5-7 
syntax, 9-43 
with POINTER task attributes, 3-8 
with undigit literals, 2-18 

DIV function, 8-8 
divide by zero, SIZE ERROR phrase, 8-25 
DIVIDE statement, 9-44, (See also division) 

storing results in multiple fields, 8-27 
with BY phrase, 9-46 
with edited items, 9-47 
with GIVING phrase, 9-45 
with INTO phrase, 9-46 
with REMAINDER phrase, 9-46 

division, 8-6 
arithmetic symbol for, 8-6, (See also 

DIVIDE statement) 
reserved word for, 2-10 
using DIV function for integer division, .8-8 
when Size Error condition occurs, 8-25 

division headers, location in source program, 
1-6 

DMSII (Data Management System II), vi 
dollar currency symbol ($) 

defining,5-9 
. edit character in PICTURE clause, 6-19 

with fixed insertion editing, 6-20 
dollar options, (See compiler control options) 

Index-11 



Index 

dollar sign ($), edit character in PICTURE 
clause, 6-19 

DONT-PARTICIPATE phrase, 9-10 
DOUBLE compiler control option, 17-20 
DOUBLE phrase 

as indication of internal floating-point 
format, 7-44 

in USAGE clause, 7-42 
double spacing of printed output, 17-20 
double-precision numeric format 

floating-point literals, 2-16 
in exponentiation, 8-7 
of DOUBLE data item, 7-44 
partial words, 9-111 . 
using USAGE IS DOUBLE clause, 7-44 

DOWN BY phrase 
in CHANGE statement, 9-21 
in SET statement, 9-118, 9-119 

DUMP statement, 9-18 
DUMPANALYZER utility, 17-18 
duplicate keys, 5-23 

condition 
for indexed I/O, 5-32 

results with SEARCH statement, 9-115 
Duplicate Keys 

condition 
for relative I/O, 5-30 

DUPLICATES phrase in indexed I/O, 5-23 
dynamic file access, 5-22, (See also file 

E 

access) 
in indexed file organization, 5-22 
in relative file organization, 5-19 
open modes, 9-79 

EBCDIC 
and ASCII character sets, C-1 
converting to or from, with CODE-SET 

clause, 7-16 
in SPECIAL-NAMES paragraph, 5-7 

EBCDIC-to-ASCII translation table, 5-8 
editing 

alignment of numeric-edited data, 6-10 
characters for sign-control, 6-18 
coding of (examples), 6-24 
fixed insertion (example), 6-20 
floating insertion, 6-21 
in division, 9-47 
in PICTURE clause, 7-30, 7-31 
meaning of symbols for, 6-16 

Index-12 

methods and data types (table), 6-23 
precedence rules for, 7-32 
results of sign-control symbol (table), 6-21 
rules for performing, 6-19 
rules for VALUE clause, 7-48 
simple insertion (example), 6-19 
size considerations for, 6-16 
special insertion, 6-20 
using BLANK WHEN ZERO clause with 

numeric data, 7-20 
with RENAMES clause, 7-51 
zero-suppression, 6-22 

efficiency considerations in libraries, 15-7, 
15-11 

EGI, (See end-of-group indicator (EGI)) 
ejecting a page 

with PAGE compiler control option, 17-34 
with slash (f) character, 1-10 

elementary items 
alignment in memory 

with SYNCHRONIZED clause, 7-39 . 
as subdivision of record, 6-2 
coding of (example), 6-3 
declaring as 

alphabetic, 7-30 
alphanumeric, 7-30 
alphanumeric-edited, 7-30 
Kanji, 7-31 
Kanji-edited, 7-31 
numeric, 7-30 
numeric-edited, 7-30 

definition, 6-2 
in arithmetic expressions, 8-6 
justification of, 7-22 
PICTURE clause for, (See PICTURE 

clause) 
redefirllng in records 

with RENAMES clause, 7-50 
searching and replacing, 9-54, 9-55, 9-57 
size of, 7-31 
symbols used in editing, 7-31 

ellipses, in format notation (example), A-3 
~LSE phrase, with IF statement, 9-52 
EMI, (See end-of-message indicator (EM!)) 
ENABLE statement 

in communication module, 14-1, 14-21 
with undigit literals, 2-18 

END KEY phrase, in communication
description (CD) entry, 
14-7 

end of program, 8-3 
end-of-file (EOF) indicator, 7-8 

8600 0296-000 



end-of-group indicator (EGI) 
transmission indicator schedule, 14-28 

end-of-message indicator (EMI) 
in SEND statement, 14-26 
transmission indicator schedule, 14-28 

END-OF-PAGE phrase 
explanation of end-of-page condition, 

9-162 
in WRITE statement, 9-161 

end-of-reel indicator 
when not end-of-file (EOF), 9-94 

end-of-segment indicator (ESI) 
in SEND statement, 14-26 
transmission indicator schedule, 14-28 

end-of-task (EOT) indicator occurring with 
EXIT statement, 9-49 

. entry points 
D CIENTRYP OINT, 14-1 
entry-point-name, 4-2, 15-6 
overview, 15-1 
using CALL statement with, 9~ 15 

ENVIRONMENT DMSION, 5-1 
coding of (example), 5-33 
in the debug module, 11-2 
localization syntax, 16-16 
overview, 1-2 

EOF, (See end-of-file (EOF) indicator) 
EOP phrase, (See END-OF-PAGE phrase) 
equal sign ( = ) . 

in format notation, A-3 
in relation condition, 8-15 
reserved word for, 2-10 

ERROR KEY clause in communication
description (CD) entry, 
14-13 

ERROR phrase 
in MERGE statement, 9-65 
in SORT statement, 9-123 
in USE statement, 9-152 

error values 
for internationalization (table), 16-118 

ERRORFILE file, used by compiler, 17-16 
ERRORLIMIT compiler control option, 17-21 
ERRORLIST compiler control option, 17-21 
errors, (See abnormal termination, status 

reporting) 
critical block exit, 9-92 
data type incompatible, 8-28 
in communication module, 14-11 
Invalid Key condition 

in REWRITE statement, 9-110 
when deleting records, 9-40 

8600 0296-000 

parity 
when merging files, 9-65 
when sorting files, 9-123 

rounding, 9-35 

Index 

rules that apply to, in division, 9-47 
run-time, with CALL statement, 9-14 
STACK OVERFLOW fault, 9-85 
syntax 

for attribute out of range, 9-22 
printing of, 17-15 
when writing to error file, 17-21 
with SET statement, 9-121 

values returned by CENTRALSUPPORT 
library calls, 16-116 

when using SIZE ERROR phrase, 8-25 
with indexed I/O, 5-32 
with relative 1/0, 5-30 
with sequential 1/0, 5-28 

ERRORS file, used by compiler, 17-16 
escapement rules in ccsversion, 16-102 
ESI, (See end-of-segment indicator (ESI» 
evaluation rules, for arithmetic expressions, 

8-7 
EVENT identifiers 

for file attributes, 3-5 
for task attributes, 3-8 

EVENT item, dissociating a procedure from, 
9-41 

EVENT phrase 
in data-description entry, 7-18 
in USAGE clause 

syntax, 7-42 
to interlock processes, 7-44 

. event-identifier condition, 8-20 
events 

disallowing an interrupt, 9-42 
in Interrupt condition 

with ALLOW statement, 9-6 
with ATTACH statement, 9-8 

initiating with CAUSE statement, 9-19 
resetting after caused, 9-158 
testing for, 8-20 

. testing or turning off, with RESET 
statement, 9-102 

example program for 
comment lines coding, 1-11 
communication module, 14-17 
condition-name coding, 7-52 
continuation lines coding, 1-11 
controlling family substitution in libraries, 

15-17 

Index-13 



Index 

DCI library entry point with eight 
par8Eneters, 1~ 

debugging line coding, 1-12 
elementary and group items coding, 6-3 
ENVIRONMENT DIVISION coding, 5-33 
FD and DATA RECORDS clause coding, 

7-13 
formatting a record, 6-5 
IDENTIFICATION DIVISION coding, 4-2 
library calls, 15-16 
one-dimensional table coding, 6-11 
readability, coding for, 1-9 
record layouts coding, 6-5 . 
three-dimensional table coding, 6-12 
UNSTRING statement, 9-149 
using declaratives, 8-3 
using FORMATTED-SIZE function, 8-9 
using Report Writer, 12-33 
VALUE OF clause coding, 7-12 
WORKING-STORAGE SECTION coding, 

7-54 
exception handling, 9-152 
EXCEPTION phrase, in USE statement, 

9-152 
EXCEPTIONEVENT task attribute, 9-159 
EXECUTE statement, (See RUN 

statement) 
execution status 

for indexed I/O, 5-24 
for relative I/O, 5-19 
for sequential I/O, 5-16 

execution time 
assigning a device at, 9-29 
warning message, 15-11 

EXIT PERFORM statement, 9-50 
EXIT PROCEDURE statement, 9-49 
EXIT PROGRAM statement, 9-49 

and CONTINUE statement, 9-35 
execution of, in called progr8En, 9-13 
in COBOL74 libraries, 15-4 
in Inter-Program Communication (!PC), 

13-6 
in libraries, 15-4 

EXIT statement, 9-49 
exponent, definition, 2-16 
exponentiation 

arithmetic symbol for, 8-6 
in arithmetic expressions, 8-7 
reserved word for, 2-10 

expressions 
arithmetic, 8-6 

use with port files, 3-3 

Index-14 

conditional, 8-13 
formation and evaluation rules, 8-7 

EXTEND phrase 
in OPEN statement, 9-75, 9-76 
in USE statement, 9-152 

extended function 
DIY, 8-8 
FORMATTED-SIZE, 8-9 
MOD, 8-10 
OFFSET, 8-12 
REM, 8-12 

external devices, specifying character code 
set, 7-16 

EXTERNAL phrase, in USE statement, 
9-155 

external switches, 5~ 7 

F 

family substitution, linking libraries correctly, 
15-17 

familY-naEne, as a user-defined word, 2-12 
FD, (See file-description (FD) entry) 
FEDLEVEL compiler control option, 17-22 

in libraries, 15-1 
value of, 4-2 

fields, (See data-description entry) 
figurative constants, 2-4 

collating sequence 
character associated with, 2-6 
highest ordinal position of, 5-8 
lowest ordinal position of, 5-8 

comparing alphanumeric with numeric, 2-7 
definition, 2-5 
Kanji data items 

actual character used, 2-8 
when comparing with, 7-45 

moving, 9-69 
overview, 2-4 
replacing or tallying characters, 9-54, 9-57 
rules for strings, 2-5 
using 

in DISPLAY statement, 9-44 
in STOP statement, 9-132 
in STRING statement, 9-134 
in UNSTRING statement, 9-140 

with VALUE clause, for initializing data, 
7-47 

file, 1-6, 3-1, (See also file organization) 
assigned as REMOTE, 3-2 
creating, sequential, 5-15 

8600029~OO 



crunching, 9-28 
declaring, 7-3 
deleting records from, 9-40 
inserting in source program, with COpy 

statement, 9-37 
logical records of, 3-1 
merging, 5-24 
passed as parameter, with CALL 

statement, 9-13 
physical aspects, 3-1 
port, 3-2 
printer backup, 12-4 
sorting, 5-24 
starting processing, 9-75 
used by compiler, 17-12 

CARD, 17-13 
CODE, 17-15 
COPY library, 17-14 
ERRORS or ERRORFILE, 17-16 
input, 17-13 
LINE, 17-15 
NEWSOURCE, 17-15 
output, 17-15 
SOURCE, 17-14 
XREFFILE, 17-16 

file access, 3-5 
dynamic 

in indexed file organization, 5-22 
in relative file organization, 5-19 

for deleting records, 9-40 
for writing records, 9-165 
in sequential file organization, 5-15 
indexed, 3-6 
random, 3-5 

in indexed file organization, 5-22 
in relative file organization, 5-19 
READ statement, 9-93 

replacing records with REWRITE 
statement, 9-109 

sequential 
concepts, 3-5 
for reading, 9-95 
for seeking, 9-116 
for starting, 9-130 
in relative file organization, 5-19 

file attributes' 
as event-identifiers, for CAUSE statement, 

9-19 
assigning initial vatues for, 7-10 
at close-file time, 9-28 
coding VALUE OF clause (example), 7-12 
compiler file equation, 17-13 

8600029~OO 

equating value of, 7-10 
for subfiles, 3-3 
identifiers, 3-3 
modifying 

with CHANGE statement, 9-20 
with SET statement, 9-116 

name of 
STATIONLIST, 9-21 
SYNCHRONIZE, 9-164 

. overview, 3-2 
testing, 8-20 
types of 

alphanumeric, 3-4 
Boolean, 3-5 
event, 3-5 
mnemonic, 3-4 
numeric, 3-4 

values during compilation, 17-13 

Index 

File Not Open condition for sequential I/O, 
5-28 

file organization, 3-5, (See also file) 
default, 5-15 
indexed, 3-6, (See also indexed file 

organization) 
relative, 3-5, (See also relative file 

organization) 
sequential, 3-5, (See also sequential file 

organization) 
FILE SECTION 

function, 7-3 
in Report Writer, 12-1 
overview, 7-1 
rules for using VALUE clause with, 7-49 

FILE STATUS clause, (See status 
reporting) 

indexed I/O, 5-24 
relative I/O, 5-19 
sequential, 5-27 
sequential I/O, 5-16 

FILE-CONTROL paragraph, 5-12 
file-description (FD) entry, 7-3 

location in source program, 1-6 
file-~e, as a user-defined word, 2-12 
FILLER keyword, 7-19 

implicit with SYNCHRONIZED clause, 
7-39 

FIRST DETAIL phrase 
in PAGE clause, 12-7 
in report-description (RD) entry, 12-3 

fixed insertion editing, (See editing) 
floating insertion editing, (See editing) 
floating-point format 

Index-15 



Index 

internal, with real or double data items, 
7-44 

floating-point literals, 2-16, (See also 
literals) 

exponent of, 2-16 
mantissa of, 2-16 
value of, 2-16 

footing 
in LINAGE clause, 7-15 
in Report Writer, 12-18 

FOOTING phrase 
in file-description (FD) entry, 7-14 
in PAGE clause, 12-7 
in report-description (RD) entry, 12-3 

Form Not Found condition, for sequential I/O, 
5-29 

formal parameters, passing lower-bound, 
7-23 

format 
of source program, 1-5 

format notation, A-I 
braces (example), A-3 
brackets (example), A-3 
comma,A-2 
ellipses (example), A-3 
general, A-1 
letters appended to terms, A-2 
level-numbers in, A-2 
numbered, A-1 
period, A~2 
repeated items, A-2 
semicolon, A-2 
space, A~2 

format record, 9-168 
format template 

obtaining from convention, 16-81 
formation rules, for arithmetic expressions, 

8-7 
formats 

of records (example), 6-5 
of statements, 8-26 

FORMATrED-SIZE function, 8-9 
formlibrary 

data-description entry for, 7-19 
status values for, 5-29 

FORTRAN, passing array parameters, 7-23 
FREE compiler control option, 17-22 

debugging line considerations, 11-1 
function 

nIv, 8-8 
extended, 8-8 
FORMATTED-SIZE, 8-9 

Index-16 

in DCILIBRARY, 14-1 
MOD, 8-10 
numeric, 8-8, 
OFFSET, 8-12 
RANDOM in GENERALSUPPORT 

system library, 15-17 
REM, 8-12 

function-name, in libraries, 15-7 

G 

general format notation, (See format 
notation) 

GENERALSUPPORT system library, using 
RANDOM function in, 15-17 

GENERATE statement 
in Report Writer, 12-30 
saving of control data, 12-6 

GET _ CS _ MSG procedure, 16-86 
GMNGphrase 

calling libraries, 15-6 
in ADD statement, 9-4 
in CALL statement, 15-8 
in DMDE statement, 9-45 
in MULTIPLY statement, 9-74 
in SUBTRACT statement, 9-136 
in WAIT statement, 9-158 

global arrays, 7-21 
GLOBAL clause 

definition, 7-21 
in data-description entry, 7-21 
indexed I/O, 5-21 
relative 1/0,5-18,5-21 
sequential I/O, 5-14 

GLOBAL compiler control option, 17-23 
and GLOBAL clause, 5-14 
using (example), 7-21 

global parameters, declaring 
for indexed files, 5-21 
for relative files, 5-18 
for sequential files, 5-14 

global variables, 7-21 
overriding OWN variables, 7-28 

GLOBALTEMP compiler control option, 
17-24 

GO TO statement 
altering a label location, 9-7 
syntax, 9-51 
with PERFORM statement, 9-85 

greater than or equal to sign, 8-15 
greater than sign (> ) 

8600 0296-000 



in format notation, A-3 
in relation condition, 8-15 
reserved word for, 2-10 

GROUP INDICATE clause 
in Report Writer, 12-24 

GROUP INDICATE clause, in Report Writer, 
12-22 

group item 
coding of (example), 6-3 
definition, 6-2 
in tables, 7-24 
initializing with VALUE clause, 7-48 
searching and replacing, 9-54, 9-55, 9-57 

groups 

H 

of elementary items, 6-2 
using level-numbers, 6-3 

HEADING phrase 
in PAGE clause, 12-7 
in report-description (RD) entry, 12-3 

hexadecimal digits, 2-17 
mGH -VALUE figurative constants, 2-6, 

(See also figurative constants) 
host file, 17-35 

using GLOBAL clause, 5-14 
host program 

identifying program to be bound into, 
9-156 

parameters for (table), 9-16 
using GLOBAL clause, 7.;...21 

hyphen (-) 
for continuation line, 1-10 
in system-name, 2-12 

1-0 phrase 
in OPEN statement, 9-75, 9-76 
in USE statement, 9-152 

I-O-CONTROL paragraph, 5-25 
I/O areas 

in indexed file organization, 5-22 
in relative file organization, 5-18 
in sequential file organization, 5-15 

I/O exception handling, 9-152 
I/O files, closing, 9-29 
I/O status, 5-27, (See also status reporting) 

8600 0296-000 

indexed I/O, 5-31 
relative I/O, 5-30 
sequential I/O, 5-27 

I/O subsystem 
adjusting size of physical record, 7-7 
replacing records, 9-109 

Index 

role in writing records with sequential 
access, 9-165 

ID DIVISION, (See IDENTIFICATION 
DIVISION) 

identification area of area B, 1-6 
IDENTIFICATION DIVISION, 4-1 

coding (example), 4-2 
in libraries, 15-1 
overview, 1-2 

identifiers 
file attributes, 3-2 
in arithmetic expressions, 8-6 
in tasking or bound-procedure 

environment, 8-1 
multiple, assigning single value to, 9-35 
of table elements, 6-13 
resultant, 8-25 
rules for uniqueness, 6-7 

IF statement, 9-52 
as conditional expression, 8-13 
with undigit literals, 2-17 

immediate compiler control options, 17-9 
imperative statements and sentences, 8-5 

with IF statement, 9-52 
implementor-name 

definition, 2-12 
in SPECIAL-NAMES paragraph, 5-10 

indentation of source program, 1-6 
independent processes, creating, 9-111 
index data item 

comparing with index-name, 8-17 
definition, 7-45 
in RENAMES clause, 7-50 
in Report Writer, 12-6 
in SEARCH statement, 9-112 
in SET statement, 9-118 
in table handling, 6-15 
in USAGE clause, 7-44 

INDEX phrase 
in data-description entry, 7-18 
in USAGE clause, 7-42, 7-45 

index-names 
as a user-defined word, 2-12 
comparing, 8-17 

INDEXED BY clause 
with SEARCH statement, 9-112, 9-114 

Index-I 7 



Index 

with SET statement, 9-119. 
indexed file organization, 5-21 

concepts, 3-6 
creating localized, 16-9 
declaring, 5-21 
deleting records, 9-40 
loca1ized, creating, 16-16 
random access for, 9-96 
starting sequential access with, 9-130 
writing records with, 9-166 

indexed I/O, 3-6 
close file actions, 9-30 
current-record pointer, 3-6 
I/O status, 5-31 
of the FILE-CONTROL paragraph, 5-21 
when opening a file, 9-75 

INDEXED phrase 
in communication-description (CD) entry, 

14-12 
in OCCURS clause, 7-25 

indexing, of tables, 6-14 
indicator area, in source program, 1-6 
INERROR parameter of SEQCHECK 

compiler control option, 17-35 
INFO compiler control option, 17-25 
INITIAL clause, in COMMUNICATION 

SECTION, 14-7 
INITIAL INPUT clause, 14-7 
initial state of a library, 15-8 
initializing data items with VALUE clause, 

7-46 
INITIATE statement 

in Report Writer, 12-29 
PAGE-COUNTER special register, 12-11 

input files 
. closing, 9-29 
OPTIONAL phrase with, 5-15 
used by compiler 

CARD,17-13 
COpy library, 17-14 
SOURCE, 17-14 

INPUT phrase 
in communication-description (CD) entry, 

14-7 
in OPEN statement, 9-75 
in USE statement, 9-152· 

INPUT PROCEDURE, in SORT statement, 
9-122 

INPUT TERMINAL phrase 
in DISABLE statement, 14-20 
in ENABLE statement, 14-21 

input text 

Index-IS 

collating, 16-105 
obtaining ordering information for, 16-105 

INPUT-OUTPUT SECTION, 5-11 
overriding file attribute values of, 7-10 

inserting files in source program with COpy 
statement, 9-37 

insertion editing, (See editing) 
INSPECT statement, 9-53 

ru1es for replacing characters, 9-55 
ru1es for tallying, 9-54 
using (examples), 9-60 
with undigit literals, 2-18 

INSTALLATION paragraph, 4-1 
INTEGER phrase, for calling libraries, 15-6 
Inter-Program Communication (IPC), 9-18, 

13-1 
ending called program, 13-6 
ending run unit, 13-7 
EXIT PROGRAM statement, 13-6 
initializing called program, 13-5 
mechEcrllsm, 9-132 
naming parameters, 13-3 
required data clauses, 13-3 
restriction, 7-35 
scope of data items, 13-2 
subset of libraries, 15-1 
syntax of 

CALL statement, 13-4 
DATA DIVISION, 13-1 
EXIT PROGRAM statement, 13-6 
LINKAGE SECTION, 13-1 
PROCEDURE DMSION, 13-3 
STOP statement, 13-7 

transferring control in run unit, 13-4 
internal representation of data items, 7-44 

when moving, 9-69 
internationalization, 16-1 

ACCEPT statement, 9-2 
CCSVERSION phrase, 5-8 
CENTRALSUPPORT library procedures 

functions of (table), 16-21, 16-23 
COMPARISON clause, 5-22 
CONVENTION phrase, 7-39 
defau1tsettings,changEng, 16-3 
hierarchy, 16-3 
KEY-LENGTH clause, 5-23 
LANGUAGE phrase, 7-39 
move rules, 9-70 
PROGRAM COLLATING SEQUENCE 

clause, 5-4 
TYPE clause, 7-39 

interrupt 

8600 0296-000 



with ALLOW statement, 9-5 
with ATTACH statement, 9-7 
with CAUSE statement, 9-19 
with DETACH statement, 9-41 
with DISALLOW statement, 9-42 
with USE statement, 9-157 
with WAIT statement, 9-160 

INVALID INDEX error 
with CALL statement, 9-14 
with PERFORM statement, 9-85 
with SORT statement, 9-125, 9-127 
with tables, 6-13 

Invalid Key condition, 5-27 . 
for indexed I/O, 5-32 
for relative I/O, 5-30 
for sequential I/O, 5-27 
in DELETE statement, 9-40 
in READ statement, 9-96 
in REWRITE statement, 9-108, 9-110 
in START statement, 9-131 
in WRITE statement, 9-163, 9-166 
when deleting records, 9-40 

lPC, (See Inter-Program Communication 
(IPC» 

iteration, (See PERFORM statement) 

J 

JUST clause, (See JUSTIFIED clause) 
justification 

of elementary items, 7-22 
when moving data, 9-70 
with data alignment, 6-10 
with RENAMES clause, 7-51 
with SYNCHRONIZED clause, 7-39 

JUSTIFIED clause 
general format, 7-22 

K 

in data-description entry, 7-22 
in Report Writer, 12-22 
with initialization process, 7-48 

Kanji 
characters, figurative constants with, 2-8 
data alignment, 6-10 
data items 

defining, 7-31 
figurative constants with, 7-45 

8600 0296-000 

internal representation of, 7-45 
moving, 9-69 
types of, 6-5 
with VALUE clause, 7-48 
writing of, 9-167 

FORMATTED-SIZE function, 8-9 
literals, definition, 2-18 
operands,comparing,8-17 

KANJI phrase in USAGE clause, 7-42 
Kanji-edited data items 

defining, 7-31 
types of, 6-5 

KEY IS phrase, 7-26, 7-27 
KEY phrase 

in DISABLE statement, 14-20 
in ENABLE statement, 14-21 
in START ·statement, 9-130 

KEY-LENGTH clause, 5-23 

Index 

KEYEDIOII, creating localized indexed file, 
16-16 

keys 
for file access in indexed I/O 

with alternate keys, 5-23 
with duplicate keys, 5-23 
with primary key, 5-22 

for writing records, 9-165 
in indexed files, 3-6 
in tables 

for data in ascending or descending 
order, 7-26, 7-27 

rules for when merging files, 9-66 
sorting on, 9-123 
using START statement with, 9-131 

keywords 
overview, 2-8 
types of, 2-8 

L 

usmg (example), 2-9 
when required, A-2 

LABEL clause, in file-description (FD) entry, 
7-8 

LABEL RECORDS clause, 7-8 
language, 16-1 

name, obtaining, 16-28 
run-time, establishing, 16-4 
system default, obtaining name of, 16-37 

language elements, 2-1 
LANGUAGE phrase, 7-39 
LANGUAGE task attribute, 16-4 

Index-19 



Index 

languages 
available, obtaining names of, 16-90 
bound, obtaining names of, 16-90 

. LAST DETAIL phrase 
in PAGE clause, 12-7 
in report-description (RD) entry, 12-3 

LD, (See local-storage description (LD) 
entry) 

LEADING phrase, in INSPECT statement, 
9-54 

less than or equal to sign, 8-15 
less than sign ( < ) 

in format notation, A-3 
in relation condition, 8-15 
reserved word for, 2-10 

LEVEL compiler control option, 17-26 
level indicators (FD, SD), 1-6, (See also 

file-description (FD) entry, sort 
merge description (SD) entry) 

for record descriptions, 7-17 
location in source program, 1-6 

level-number, 7-19 
as a user-defined word, 2-12 
in format notation, A-2 
in record description (example), 6-5 
indentation of, 1-9 
numbering of, 6-3 
organization as a system, 6-2 
rules for LEVEL-NUMBER clause, 6-4 
uniqueness of, 2-12 

level-number 01, definition, 6-4 
level-number 66, definition, 6-4 
level-number 77, definition, 6-4 
level-number 88, definition, 6-4 
lexicographic 

level 3 
for EXIT PROCEDURE statement, 

9-49 
to use global variables, 7-21 
to use local variables, 7-23 

setting levels, 17-26 
02-level 

for creating independent processes, 
.9-111 

Lm$ compiler control option, 17-26 
LffiDOLLAR compiler control option, 17-26 
LffiERATE function of operating system 

with LOCK statement, 9-63 
with UNLOCK statement, 9-139 

libraries,15-1, (See also COpy statement) 
attributes 

changing, 15-13 

Index-20 

types of, 15-12 
calling ALGOL typed procedure, 15-8 
compiler control options 

LIBRARYLOCK, 15-14 
permanent, 15-15 
sharing, 15-5, 17-38 
SHARING, 15-14 
TEMPORARY, 15-15 

creating, 15-1 
data integrity, 15-5 

ensuring with LIBRARYLOCK option, 
17-26 

DCILIBRARY, 14-1 
ending 

by transferring control to calling 
program, 15-4 

library and calling program, 15-4 
with CANCEL statement, 15-10 

function-name, 15-7 
initial state, 15-8 
initializing called program, 15-10 
parameters, 15-3 

for library calls, 15"':7 
performance considerations, 15-7, 15-11 
permanent, initial state of, 15-9 
program 

controlling family assignment in, 15-17 
creating temporary, 15-15 
creating temporary or permanent, 

17-43 
ending with STOP RUN statement, 

9-132 
returning from calling program, 15-4 
returning with EXIT PROGRAM 

statement, 9-35 . 
recursive calls, 15-5 
restriction, 7-35 
syntax of 

CALL statement, 15-6 
CANCEL statement, 13-5, 15-10 
CHANGE ATTRIBUTE statement, 

15-13 
EXIT PROGRAM statement, 15-4 
PROCEDURE DMSION statement, 

15-1 
temporary, initial state of, 15-9 
using 

calling (examples), 15-16 
calling entry points, 9-15 
compiler control records in, 17-26 
declaration, 15-6 
declaration qualification, 6-9 

8600 0296-000 



matching parameters when calling, 15-6 
syntax for calling, 15-5 

written in other languages, 15-8 
library-name, as a user-defined word, 2-12 
library-title, 15-7 
LmRARYLOCK compiler control option, 

17-26 
LINAGE clause, 7-14 

in file-description (FD) entry, 7-14 
when writing to files, 9-162 

LINAGE-COUNTER, 7-15 
special register for LINAGE clause, 2-9 

LINE compiler control option 
use during compilation, 17-15 

LINE file, used by compiler, 17-15 
line layout, 1-5 
LINE NUMBER clause, in Report Writer, 

12-13,12-14 
LINE-COUNTER 

function in Report Writer, 12-12 
register for Report Writer, 2-9 

LINEINFO compiler control option, 17-27 
LINES AT BOTTOM phrase, in 

file-description (FD) entry, 7-14 
LINES AT TOP phrase, in file-description 

(FD) entry, 7-14 
LINES clause, in file-description (FD) entry, 

7-4 
lines per page 

in convention, determining, 16-61 
specifying with LINAGE clause, 7-14 

linkage records in Inter-Program. 
Communication (!PC), 13-3 

LINKAGE SECTION 
for defining PROCEDURE DMSION 

parameters, 8-1 
in Inter-Program Communication (!PC), 

13-1 
overview, 7-1 
rules for using VALUE clause in, 7-49 

linkage storage, noncontiguous in IPC, 13-2 
LIST compiler control option, 17-27 
LIST$ or LISTDOLLAR compiler control 

option, 17-27 
LISTDELETED compiler control option, 

17-28 
LISTOMITTED compiler control option, 

17-28 
LISTP compiler control option, 17-28 
LIST1 compiler control option, 17-28 
literals 

as character strings, 2-3 

8600 0296-000 

definition, 2-14 
floating-point (examples), 2-17 
in arithmetic expressions, 8-6 
in format notation, A-2 
in relation conditions, 8-14 
Kanji, 2-18 
moving, 9-69 
nonnumeric 

character set for, 2-1 
definition, 2-14 
punctuation for, 2-3 

numeric (examples), 2-14 
rules with VALUE clause, 7-47 
undigit, 2-17 
use in changing attributes, 9-21 
with figurative constants, 2-7 

LOCAL clause 
in data-description entry, 7-23 
indexed I/O, 5-21 
relative I/O, 5-18 
sequential I/O, 5-14 
syntax, 7-23 

local parameters, declaring 
for indexed files, 5-21 
for relative file'S, 5-18 
for sequential files, 5-14 

local variables 
definition, 7-23 

Index 

overriding OWN variables, 7-28 
local-storage description (LD) entry, 7-54 
LOCAL-STORAGE SECTION 

overview, 7-1 
syntax, 7-54 

localization, 16-1 
establishing conventions for, 16-4 
procedures, 16-30 

lock file disposition, sequential I/O, 9-28 
LOCK phrase 

in CLOSE statement 
for multiple-reel tapes, 9-26 
for nonreel files, 9-24 
for relative or indexed I/O, 9-30 
for single-reel files, 9-25 

in data-description entry, 7-18 
in MERGE statement, 9-64 
in OPEN statement, 9-77 
in SORT statement, 9-122 
in USAGE clause, 7-42 

LOCK statement, 9-62 
logic of program, (See program logic) 
logical connectives, 2-5 
logical operators, 8-21 

Index-21 



Index 

combinations of (table), 8-22 
logical page size, definition, 7-14 
logical records, 3-1, (See also records) 

errors 
with indexed I/O, 5-32 
with relative I/O, 5-30 
with sequential I/O, 5-28 

implicitly redefining, 9-93 
of variable length, 7-8 
reading, 9-93 
relationship to physical records, 7-6 
rules for when merging files, 9-65 
rules when sorting files, 9-126 
using OFFSET function, 8-12 
writing, 9-160 

LONG-DATE type, 16-16 
LONG-TIME type, 16-16 
looping, with PERFORM statement, 9-83 
LOW-VALUE figurative constants, 2-6, (See 

also figurative constants) 
LOW-VALUES figurative constants, 2-6, 

(See also figurative constants) 
LOWER-BOUNDS clause 

coding of (example), 7-24 
in COBOL68 parameter mapping, 9-14 

. in data-description entry, 7-23 
. in linkage records, 13-3 
syntax, 7-23 

M 

MAKEHOST compiler control option, 17-29 
mantissa, definition, 2-16 
MAP compiler control option, 17-29 

during compilation, 17-15 
mapping of parameters for tasking calls, 9-14 
mapping table, 16-6 

using to modify text, 16-113 
margins, in file-description (FD) entry, 7-14 
Master Control Program (MCP), (See 

operating system) 
mathematics, (See arithmetic) 
maximum number 

of characters allowed in PICTURE 
character string, 7-29 

of errors before compilation ends, 17-21 
of nesting levels for procedures, 9-85 

maximum size 
of arithmetic operands, 8-26 
of dimensions in table, 6-11 
of record description, 6-1 

Index-22 

of record when using RECORD 
CONTAINS .. DEPENDING ON 
clause, 7-8 

of segment, 10-1 
of table subscript value, 6-13 

MCP _BOUND_LANGUAGES procedure, 
16-90 

MCS (message control system), 14-1 
memory 

allocation of, when sorting files, 9-124 
occupied by . 

binary data items, 7-42 
double data items, 7-44 
real data items, 7-44 

redefining, 7-35 
with multiple 01-level entries, 7-19 

releasing for libraries, 15-10 
sharing 

in sequential 1/0,3-5 
specifying, 5-25 

MEMORY SIZE clause, 5-3 
in MERGE statement, 9-64 
in OBJECT-COMPUTER paragraph, 5-3 
in SORT statement, 9-122, 9-124 

MERGE compiler control option, 17-30 
use during compilation, 17-14 

MERGE phrase, in SELECT clause, 5-24 
MERGE statement 

closing, 9-27 
ending of, 9-67 
function and syntax, 9-64 
in localized application, 16-17 
placement in source, 9-65 
rules for keys, 9-66 
when equating file attributes, 7-11 

merging files, 9-64 
. effect of coded character set, 16-9 

identifying in FILE-CONTROL paragraph, 
5-24 

using RETURN statement to obtain 
records, 9-106 

message control system (MCS), 14-1 
MESSAGE COUNT phrase, 14-7 
MESSAGE DATE phrase, in 

communication-description (CD) 
entry, 14-7 

MESSAGE phrase, in RECEIVE statement, 
14-23,14-24 

MESSAGE TIME phrase, in 
communication-description (CD) 
entry, 14-7 

8600 0296-000 



Message Translation Utility (MSGTRANS), 
16-10 

messages 
creating in MLS environment, 16-10 
displaying in different languages, 16-86 
FILLER ADDED, 6-2 
input, 16-10 
obtaining text associated with number, 

16-86 
output, 16-10 
routing, (See message control system 

(MCS» 
warnings 

suppressing printing of, 17-39, 17-45 
treating like syntax errors, 17-45 

minus sign (-) 
for editing sign-control, 6-18 
in arithmetic expression, 8-6 
in format notation, A-3 
with fixed insertion editing, 6-20 

MLS (MultiLingual System), 16-1 
mnemonic 

attributes in CHANGE statement, 9-21, 
9-22 

file-attribute identifiers, 3-4 
task-attribute identifiers, 3-8 

mnemonic-name 
as implementor-name, 2-13 
as user-defined word, 2-14 

MOD function, 8-10 
modulus, using MOD function for modulus 

division, 8-10 
monetary symbols in convention, listing, 

16-67 
monetary value 

formatting, 16-41 
formatting to edited monetary value, 

16-44 
MOVE ALL construct, using (example), 2-7 
MOVE statement 

elementary moves, 9-68 
file attributes in, 3-4 
for partial words (examples), 9-72 
implicit in READ statement, 9-95, 9-97, 

9-98,9-100 
in localized applications, 16-17 
nonelementary moves, 9-70 
syntax and function, 9-68 
types of (table), 9-71 
using numeric functions with, 8-8 
using task attributes with, 3-8 
with CORRESPONDING phrase, 8-26 

8600 0296-000 

Index 

with undigit literals, 2-17 
with USAGE clause, 7-45 

MSGTRANS, (See Message Translation 
Utility (MSGTRANS» 

MultiLingual System (MLS), 16-1 
multiple fields, creating from contiguous data, 

9-139 
MULTIPLE FILE clause, 5-26 
MULTIPLE FILE TAPE CONTAINS clause, 

in I -O-CONTROL paragraph, 5-26 
multiple-file reel 

location of files on,' 5-25 
reading and writing to, 5-26 
when merging files, 9-65 

multiple-file tape, closing, 9-25 
multiple-reel tapes, closing, 9-26 
multiplication, 2-10 

arithmetic symbol for, 8-6 
MULTIPLY statement, 9-73, (See also 

multiplication) 
storing results in multiple fields, 8-27 

MYJOB reserved word 
in SET statement, 9-120 
task item, 3-7 

:MYSELF reserved word 

N 

in SET statement, 9-120 
task item, 3-7 

NATIVE clause, in SPECIAL-NAMES 
paragraph, 5-7 

natura11anguage, 16-1, 16-10 
formatting data items for, 16-16 

negated simple conditions, 8-21 
negative value 

operational sign for, 7-38 
truth test for, 8-20 

nesting of procedures, 9-85 
NETWORK option of RESERVE clause, 5-10 
NEW compiler control option, 17-30 

use during compilation, 17-15 
NEWID compiler control option, 17-31 
NEWSOURCE file, used by compiler, 17-15 
NEXT GROUP clause, in Report Writer, 

12-13,12-15 
NEXT PAGE clause, in NEXT GROUP 

clause, 12-15 
NEXT SENTENCE phrase 

with IF statement, 9-52 
with LOCK statement, 9-62 

Index-23 



Index 

with SEARCH statement, 9-111 
no buffer condition, with sequential I/O, 5-29 
no data condition, with sequential I/O, 5-29 
NO DATA phrase, in RECEIVE statement, 

14-23 
No Record Found condition 

for indexed I/O, 5-32 
for relative I/O, 5-30 

no rewind of current reel disposition, 9-28 
NO REWIND phrase 

in CLOSE statement 
for mwtiple-reel tapes, 9-26 
for single-reel files, 9-25 

.in MERGE statement, 9-64 
in OPEN statement, 9-75, 9-76, 9-77 
in SORT statement, 9-122 

NO WAIT phrase 
in AWAIT-OPEN statement, 9-9 
in CLOSE statement, 9-31 
in OPEN statement, 9-76, 9-77, 9-80 
in READ statement, 9-94 
in WRITE statement, 9-163 

noncontiguous working-storage items, 7-53 
nonnegative value, operation sign for, 7-38 
nonnumeric literals 

character set for, 2-1, (See also literals) 
definition, 2-14 
in continuation line, 1-11 
punctuation for, 2-3 
using quotation marks (example), 2-14 

nonnumeric operands, comparing, 8-16 
nonreelfile, 9-23 
nonserial search operation, 9-115 
normal termination, 9-132 
NOT logical operator 

in abbreviated combined conditions, 8-23 
in relation condition, 8-15 
meaning of, 8-21 

notation used in general formats, (See 
format notation) 

NOXREFLIST compiler control option, 17-31 
numbered format notation, A-I 
numeric 

data 
defining as, 7-30 
types of, 6-5 
using SIGN clause with, 7-37 

display, international formatting, 16-14 
file-attribute identifier, 3-4 
function, 8-8 
hexadecimal digits, 2-17 
literal 

Index-24 

in arithmetic expressions, 8-6 
rules for, 2-15 

operands, comparing, 8-16 
symbols in convention, listing, 16-67 

NUMERIC identifier, 8-18 
NUMERIC-DATE type, 16-16 
numeric-edited data items 

rules for, 7-30 
types of, 6-5 

NUMERIC-TIME type, 16-16 

o 
object code, listing of, 17-19 
object files, 17-12 
object of condition, 8-15 
object program 

stopping, 9-132 
suspending, 9-157 
using COpy statement to replace source 

text in, 9-38 
OBJECT-COMPUTER paragraph, 5-3 
object-time switch, in debug module, 11-1 
OC clause, (See OCCURS clause) 
OCCURS clause, 3-7 

in data-description entry, 7-24 
overview of tables, 6-11 
tables, 7-25 
task attributes with, 3-7 
with ASCENDING KEY phrase, 7-25 
with CORRESPONDING phrase, 8-26 
with DEPENDING ON phrase, 7-26 
with DESCENDING KEY phrase, 7-25 
with SEARCH statement, 9-112, 9-114 

ODT (operator display terminal), 5-7 
ODT commands, (See system commands) 
ODT-INPUT-PRESENT phrase, in WAIT 

statement, 9-158 
OFF STATUS clause, in SPECIAL-NAMES 

paragraph, 5-7 
OFFER phrase, in OPEN statement, 9-76, 

9-77,9-80 
OFFSET (data-name) function, 8-12 
OMIT compiler control option, 17-32 
ON DISK phrase, in I-O-CONTROL 

paragraph, 5-25 
ON ERROR phrase 

in MERGE statement, 9-64, 9-65 
in SORT statement, 9-122, 9-123 

ON NEXT PAGE phrase, in Report Writer, 
12-21 

8600 0296-000 



ON OVERFLOW phrase 
calling libraries, 15-6 
in STRING statement, 9-133,9-136 
in UNSTRING statement, 9-140, 9-143, 

9-146 
ON SIZE ERROR phrase 

in ADD statement, 9-3 
in COMPUTE statement, 9-34 
in DMDE statement, 9-45, 9-47 
in MULTIPLY statement, 9-74 
in SUBTRACT statement, 9-136 

ON STATUS clause, in SPECIAL-NAMES 
paragraph, 5-7 

open modes, 9-78 
OPEN statement, 9-75, (See also opening a 

file) 
after crunching a file, 9-28 
current-record pointer, 3-6 
function and syntax, 9-75 
reopening of a file, 9-77 
specifying number of line on logical page, 

7-14 
when deleting records, 9-40 
when equating file attributes, 7-11 
when status values are updated 

for indexed I/O, 5-31 
for relative I/O, 5-30 
for sequential I/O, 5-27 

when using port files, 3-2,,7-12 
with mult~ple-file tapes, 5-26 

opening a file, 7-14 
automatically when merging files, 9-65 
status errors, 5-27 
with more than one file on a reel, 5-26 

operands 
comparing, 8-16 
overlapping, 9-5 
validity in SET statement, 9-118 

operating system 
automatic file allocation, 7-8 
controlling sharing of libraries, 17-38 
dump, 9-18 
passing control to, 9-18 
PROCURE and LIBERATE functions, 

9-63 
role in DISPLAY statement, 9-44 
role in passing lower-boUnd parameters, 

7-23 
status of execution 

for indexed files, 5-24 
for relative files, 5-19 
for sequential files, 5-16 

8600 0296-000 

Index 

operator display terminal (ODT) 
and SPECIAL-NAMES paragraph, 5-7 
transferring data to, 9-43 
using ACCEPT statement, 9-1 
using AX. (accept) command, 9-159 
using SL (Support Library) command for 

library linking, 15-17 
operators 

arithmetic 
combining, 8-7 
definition, 8-6 
reserved words for, 2-10 
separating identifiers in expressions, 

8-6 
logical 

combining, 8-21 
definition, 8-20 

relational 
definition, 8-15 
reserved words for, 2-10 
with Kanji operands, 8-17 

OPT or OPTIMIZE compiler control option, 
17-32 

optimizing code for a machine, 17-42 
option action indicators, 17-10 
OPTION task attribute, 11-1 

(example),3-9 
optional file, closing, 9-28 
OPTIONAL phrase, 5-15 

in SELECT clause, 5-13 
optional words 

definition, 2-8 
overview, 2-8 

options, 1-5 
OR logical operator 

in abbreviated combined conditions, 8-23 
meaning of, 8-21 

ordering of input text, 16-105 
ORGANIZATION clause 

indexed I/O, 5-22 
relative I/O, 5-19 
sequential I/O, 5-15 

ORGANIZATION IS INDEXED phrase, in 
SELECT clause, 5-15 

ORGANIZATION IS RELATIVE phrase, in 
SELECT clause, 5-17 

ORGANIZATION IS SEQUENTIAL phrase, 
in SELECT clause, 5-13 

OUTERROR parameter of SEQCHECK 
compiler control option, 17-35 

output files 
closing, 9-29 

Index-25 



Index 

from merge process, 9-64 
from sort process, 9-121 
logical page size of, 7-14 
specifying lines per page 

with LINAGE clause, 7-14 
used by compiler 

CODE, 17-15 
ERRORS, 17-16 
ERRORS or ERRORFILE, 17-16 
LINE, 17-15 
NEWSOURCE, 17-15 

output message array, use in localization, 
16-10 

output mode 
no current-record pointer with, 3-6 
writing a file in, 9-165 

OUTPUT phrase 
in communication-description (CD) entry, 

14-12 
in OPEN statement, 9-75 
in USE statement, 9-152 

OUTPUT PROCEDURE 
in SORT statement, 9-122,9-126 
when merging files, 9-67 

output record, 9-168 
synchronized, 9-164 

OUTPUT TERMINAL phrase 
in DISABLE statement, 14-20 
in ENABLE statement, 14-21, 14-22 

OVERFLOW phrase 
in STRING statement, 9-133, 9-136 
in UNSTRING statement, 9-140, 9-143, 

9-146 
with SYNCHRONIZED clause, 7-39 

overlapping operands 
ADD statement, 9-5 
COMPUTE statement, 9-35 
DIVIDE statement, 9-47 
INSPECT statement, 9-53 
MOVE statement, 9-68 
MULTIPLY statement, 9-75 
SET statement, 9-117 
STRING statement, 9-134 
SUBTRACT statement, 9-138 
UNSTRING statement, 9-139 

OWN clause, general format of, 7-28 
OWN compiler control option, 17-33 

relation to OWN clause, 7-28 
OWNTEMP compiler control option, 17-34 

Index-26 

p 

P, edit character in PICTURE clause, 6-16 
with ROUNDED phrase, 8-25 

page advance 
control with WRITE statement, 9-162 
LINAGE-COUNTER value, 7-15 

page body, definition, 7-14 
PAGE clause 

in report-description (RD) entry, 12-3, 
12-7, 12-10 

in SEND statement, 14-29 
in WRITE statement, 9-162 

PAGE compiler control option, 17-34 
page ejection, of source listing, 1-10 
PAGE FOOTING phrase, in Report Writer, 

12-13, 12-16 
defining, 12-9 
function of, 12-18 

page format control 
with LINAGE clause, 7-14 
with Report Writer, 12-10 

PAGE HEADING phrase, in Report Writer 
defining, 12-8 
function, 12-17 
in TYPE clause, 12-16 
syntax, 12-13 

page overflow, when executing WRITE 
statement, 9-163 

PAGE-COUNTER 
function in Report Writer, 12-11 
register for Report Writer, 2-10 

page, defining logical page size of, 7-14 
page, defining logical size of, 7-14 
paragraph headers, in source program, 1-6 
paragraph-name 

as user-defined word, 2-13,2-14 
qualification of, 6-7 

paragraphs,1-3,8-3 
parameters 

by-content 
specifying, .7-34 

by-reference 
in relative file organization, 5-18 
in sequential file organization, 5-14 
specifying, 7-34 

by-value 
specifying, 7-34 
using,7-24 

for bound and host programs, 9-16 
for libraries, 15-3 

8600 0296-000 



formal, when starting independent 
processes, 9-110 

global, declaring 
for indexed files, 5-21 
for relative files, 5-18 
for sequential files, 5-14 
using, 7-21 

in communication module, 14-1 
local, declaring 

for indexed files, 5-21 
for relative files, 5-18 
for sequential files, 5-14 
using, 7-23 

mapping for tasking calls, 9-14 
matching between languages (table), 9-14 
matching when calling libraries, 15-6 
passing lower-bound parameter (example), 

7-23 
receiving lower-bound parameter, 15-4 
to called libraries, 15~ 7 
types of, for CALL statement, 9-13 
using local-storage description (LD) entry, 

7-54 
parentheses 

as separator, 2-2 
for precedence 

in arithmetic expressions, 8-7 
in conditional expressions, 8-22 

parity errors 
,for ind~xed I/O, 5-32 
for relative I/O, 5-30 
for sequential I/O, 5-27~ 5-28 
when merging files, 9-65 
when sorting files, 9-123 

partial words 
excluded in pseudotext, 9-38 
manipulating with MOVE statement, 9-72 

PARTICIPATE phrase, in AWAIT-OPEN 
statement, 9-9 

password, in co~unication module, 14-3 
pausing, with STOP statement, 9-132 . 
PB (printer Backup) WFL statement, 12-5 
PC clause, (See PICTURE clause) 
PERFORM statement 

analysis with OPTIMIZE compiler control 
option, 17-33 

as conditional expression, 8-13 
exiting from, 9-50 
function and syntax, 9-83 
PERFORM ... TIMES form, 9-86 
PERFORM ... UNTIL form, 9-87 
PERFORM ... VARYING form, 9-88 

8600 0296-000 

Index 

simple form, 9-84 
with undigit literals, 2-17 

performance considerations in libraries, 15-7, 
15-11 

period (.) 
as edit character in PICTURE clause, (See 

decimal point) 
as separator, 2-2 
using 

in CHANGE statement, 9-21 
in compiler-directing statements, 8-5 
in COPY statement, 9-37 
in format notation, A-2 
in paragraphs and sentences, 1-3, 8-3 

peripherals, changing, 14-1 
permanent error condition, 5-27 
Permanent Error condition 

for indexed I/O, 5-32 
for relative I/O, 5-30 
for sequential I/O, 5-27 

permanent files 
closing, with sequential file organization, 

9-28 
in save file with remove disposition, 9-29 

permanent libraries, 15-15 
, initial state of, 15-9 

PF phrase, (See PAGE FOOTING phrase, in 
Report Writer) 

PH phrase, (See PAGE HEADING phrase, 
in Report Writer) 

physical files, during compilation, 17-13 
physical records, 6-1, (See also records) 

containing variable-length logical records, 
7-6 

specifying size, 7-6 
PIC clause, (See PICTURE clause) 
PICTURE character string 

in format notation, A-2 
separator in, 2-3 

PICTURE clause,. 7-29, (See also elementary 
items) 

categories of data, 7-29 
edit characters used in, 7-31 
in Report Writer, 12-22 
relation to USAGE IS BINARY 

TRUNCATED clause, 7-43 
relation to VALUE clause, 7-47 

plus sign ( + ) 
for editing sign-control, 6-18 
in arithmetic expression, 8-6 
in format notation, A-3 
with fixed insertion editing, 6-20 

Index-27 



Index 

POINTER phrase 
in STRING statement, 9-133, 9-135 
in UNSTRING statement, 9-139, 9-143, 

9-145 
POINTER task attribute, 3-8 
POP option action indicator, 17-11 
port files 

closing, 9-31 
with ACTUAL KEY clause specified, 

9-33,9-106 
definition, 3-2 
file attributes for, 3-3 
format of variable-length records in, 7-8 
opening, 9-79 
opening a subfile, 7-12 
reading, 9-94, 9-96 
selecting subfile index of, 5-15 
specifying a subfile, 3-3 
status errors for sequential 1/0, 5-27 
suspending program, 9-158 
with AWAIT-OPEN statement, 9-9 
with sequential file organization, 5-15 
writing records to, 9-163, 9-169 

positive value, truth test for, 8-20 
precedence rules 

for arithmetic expressions, 8-7 
for comparing key data in MERGE 

statement, 9-66 
for editing, 7-32 
for evaluating conditions, . 8-24 

previous reels unaffected, disposition, 9-29 
primary keys, 5-22 

when replacing records, 9-109 
printer b~kup files 

printing of, in Report Writer, 12-5 
title of, when CODE clause is specified, 

12-4 
with sequential file organization, 5-13 

printer files 
closing, 9-23 
writing to, 9-168 

printing 
LINAGE-COUNTER register, 2-9 
of comment in COpy statement in 

compilation listing, 9-39 
reports 

with LINAGE clause, 7-14 
with Report Writer, 12-2 

suppression of warning messages, 17-45 
PROCEDURE DMSION, 8-1 

in Inter-Program Communication (IPC), 
13-3 

Index-28 

in libraries, 15-1, 15-2 
in Report Writer, 12-29 

deemphasis of, 12-1 
in the debug module, 11-2 
localization syntax, 16-17 
overview, 1-2 

PROCEDURE DMSION header 
SELECT clause with, 5-14, 5-18, 5-21 

procedure-name 
definition, 8-3 
qualification of, 6-7 

PROCEDUREDMSION entry point, 15-1 
procedures 

altering location of label, with ALTER 
statement, 9-7 

bound 
identifying global procedures used in, 

9-156 
passing lower-bound parameters for, 

7-23 
coroutine, with EXIT statement, 9-49 
definition, 8-3 
dissociating from task items or EVENT 

items, 9-41 
file as formal parameter for, 5-14, 5-17 
for localizing applications, 16-30 
global variables in, 7-21 
interrupt 

with ALLOW statement, 9-6 
with CAUSE statement, 9-19 

local variables in, 7-23 
local-storage description (LD) entry, 7-54 
nesting, 9-85 
OWN clause in, 7-28 
specifying parameters for, 7-34 
transferring control to 

with CALL statement, 9-12 
with PERFORM statement, 9-83 

PROCESS statement 
relationship to PROCEDURE DIVISION 

parameters, 8-1 
syntax and function, 9-92 
with DETACH statement, 9-41 

processes. 
asynchronous 

releasing a lock, 9-139 
starting, 9-92 
using CAUSE statement with, 9-19 

communication between, 3-2 
correlating activities, with USAGE clause, 

7-44 
independent, starting, 9-110 

8600 0296-000 



interrupt procedures for, 9-157 
resuming execution of, 9-35 
synchronous, transferring control to, 9-35 
task attributes of, 3-6 

PROCURE function of operating system, 
9-63 

PROGRAM COLLATING SEQUENCE 
clause 

accessing alphabetic truthset, 16-7 
in OBJECT-COMPUTER paragraph, 5-3 
in START statement, 9-131 

program control, (See branching logic) 
program example) (See example program 

for) 
program logic 

branching, 8-13 
using GO TO statement, 9-51 
using IF statement, 9-52 

looping, with PERFORM statement, 9-83 
testing 

for condition-name, 8-19 
for events, 8-20 
for negated condition, 8-21 
for numeric or alphabetic, 8-18 
for sign, 8-19 

transferring control to a task or a 
procedure, 9-12 

PROGRAM-ID clause, in libraries, 15-1 
PROGRAM-ID paragraph, 4-2 
program-name 

as user-defined word, 2-14 
for identifying source program, 4-2 

PROGRAMDUMP utility, 17-18 
programs 

bound as procedures, 9-16 
interrupt driven, 9-160 

protocols, data communications, 
international, 16-1 

pseudotext 
definition, 9-38 
delimiters for, 2-2 

punch files, closing, 9-23 
punctuation 

character, (See separator) 
in format notation, A-2 

purge file disposition 
relative and indexed files, 9-30 
sequential I/O, 9-:-29 

PURGE parameter of SEQCHECK compiler 
control option, 17-35 

PURGE phrase 
in CLOSE statement 

8600 0296-000 

Q 

for multiple-reel tapes, 9-27 
for nonreel files, 9-24 
for relative or indexed I/O, 9-30 
for single-reel files, 9-25 

in MERGE statement, 9-65 
in SORT statement, 9-123 

qualification, 6-7 
format of, 6-8 
of Kanji data-name, 8-9 

Index 

of key names when merging files, 9-66 
rules for, 6-8 

qualifier connectives, 2-5 
queue 

in communication module, 14-2 
of ACCEPT messages, 9-159 
when interrupt not allowed, 9-42 

QUEUE phrase, in communication
description (CD) entry, 
14-7 

quotation marks 
as separator, 2-2 
with literals (examples), 2-14 

QUOTE figurative constants, 2-6, (See also 
figurative constants) 

QUOTES figurative constants, 2-6, (See also 
figurative· constants) 

R 

random file access, 3-5, (See also file access) 
in indexed file organization, 5-22 
in relative file organization, 5-19 
in sequential file organization,. 5-15 
open modes, 9-79 

RANDOM function in GENERALSUPPORT 
system library, 15-17 

RD, (See report-description (RD) entry, in 
Report Writer) 

READ statement, 3-2 
after START statement, 9-132 
and deleting records, 9-40 
current-record pointer, 3-6 
effectofseeking,9-116 
function and syntax, 9-93 . 
in closing sequential files, ~28 
indexed I/O, 9-98 

Index-29 



Index 

open modes, 9-79 
random access for indexed files, 9-96 
reading next record, 9-96 
record size when using RECORD 

CONTAINS .. DEPENDING ON 
clause, 7-8 

relative I/O, 9-96 
sequential I/O, 9-94 
unsuccessful operation of, 9-96 
using WITH NO WAIT clause with, 5-29 
when status values are updated 

for indexed I/O, 5-31 
for relative I/O, 5-30 
for sequential I/O, 5-27 

when unsuccessful, 9-99 
with port files, 3-2 
with sequential access, 9-95 

READ-OK phrase, in WAIT statement, 9-158 
read-only storage areas, (See special 

registers) 
reader files, closing, 9-23 
reading a record, (See READ statement) 
REAL phrase 

as indication of internal floating-point 
format, 7-44 

in USAGE clause, 7-42 
RECEIVE MESSAGE phrase, 14-10 
RECEIVE SEGMENT phrase, 14-10 
RECEIVE statement, in communication 

module, 14-1, 14-22 
RECEIVED BY phrase 

for indexed I/O, 5~21 
for relative I/O, 5-18 
for sequential I/O, 5-14 
in data-description entry, 7-34 

RECEIVED clause, 7-34 
receiving messages, (See message control 

system (MCS)) 
record area, ~22 
RECORD CONTAINS clause 

errors 
with indexed I/O, 5-32 
with relative I/O, 5-30 
with sequential I/O, 5-29 

for specifying size of data records, 7-7 
in file-description (FD) entry, 7-7 
when deleting records, 9-40 

record description 
contents of, 6-1 
in communication module, 14-13 

RECORD KEY phrase 
in SELECT clause, 5-15 

Index-30 

indexed I/O, 5-22 
record-name, as user-defined word, 2-14 
records, 6-1, (See also logical records, 

physical records) 
concepts, vii 
deleting, 9-40 
description of, 7-17 
determining size of BINARY items, 7-42 
in WORKING-STORAGE SECTION, 7-53 
layout of (example), 6-5 
level-numbers of, 7-19 
linkage in Inter-Program Communication 

(IPC),13-3 
replacing with REWRITE statement, 

9-108 
using file attributes to account for number 

of, 3-4 
using OFFSET function, 8-12 
01 level-number in, 6-3 

recovery considerations, 9-164 
REDEFINES clause 

and qualification, 6-8 
syntax, 7-35 
using, 7-35 
using VALUE clause with, 7-48 
with CORRESPONDING phrase, 8-26 

REEL phrase 
and reel removal, 9-29 
in CLOSE statement 

for multiple-reel tapes, 9-26 
REF phrase, (See REFERENCE phrase) 
REFERENCE phrase 

in data-description entry, 7-18 
in SELECT clause, 5-13 
in sequential I/O, 5-14 

registers, (See special registers) 
REJECT-OPEN phrase, in RESPOND 

statement, 9-103 
relation character, reserved word for, 2-10 
relation conditions 

abbreviated combined, 8-23 
definition, 2-12 
of index-names and index data items, 8-17 
of~jioperands,8-17 

overview, 8-14 
precedence of, 8-24 
using file attributes for, format of, 3-4 

relational operators, 8-15 
relative file organization,. 3-5, (See also file 

organization) 
At End condition, reading, 9-95 
declaring, 5-17 

8600029~OO 



deleting records, 9-40 
physical record size, 7-7 
random access for, reading, 9-96 
starting sequential access, 9-130 
writing records with, 9-165 

relative I/O, 3-5 
close file actions, 9-30 
current-record pointer, 3-6 
I/O status, 5-30 
of the FILE-CONTROL paragraph, 5-17 
when opening a file, 9-75 

RELATIVE KEY phrase, in SELECT clause, 
5-17 

relative record numbers 
definition, 3-5 
in relative file organization, 5-19 
when writing records, 9-165 

release device disposition, 9-29 
release file disposition 

in sequential I/O, 9-29 
relative and indexed files, 9-30 

RELEASE phrase 
in CLOSE statement, 9-24 

for multiple-reel tapes, 9..;...27 
for relative or indexed I/O, 9-30 
for single-reel files, 9-25 

in MERGE statement, 9-64 
in SORT statement, 9-122 

RELEASE statement, function and syntax, 
9-101 

REM function, 8-12 
REMAINDER phrase, in DMDE statement, 

9-46 
remainder, C?btaining with REM function, 

8-12 
remote files, 5-15 

closing, 9-23 
modifying attributes, with CHANGE 

statement, 9-21 
selecting a station, 5-15 
suspending program, 9-158 
with sequential file organization, 5-15 
writing to, 9-163 

REMOVE CRUNCH phrase, in CLOSE 
statement, for nonreel files, 9-24 

REMOVE phrase, in CLOSE statement 
for nonreel files, 9-24 
for relative or indexed I/O, 9-30 

remove reel disposition, 9-29 
RENAMES clause 

syntax, 7-50 
with CORRESPONDING phrase, 8-26 

8600 0296-000 

reopening a file, 9-77 
replacing characters, rules for, 9-55 
REPLACING phrase 

in COPY statement, 9-37, 9-38 
in INSPECT statement, 9-55, 9-59 

REPORT clause, in Report Writer, 12-2 
REPORT FOOTING phrase, in Report 

Writer 
defining, 12-9 
syntax, 12-13, 12-16 

REPORT HEADING phrase, in Report 
Writer 

defining, 12-17 
syntax, 12-13, 12-16 

REPORT SECTION 
in Report Writer, 12-2 
overview, 7-1 

Index 

rules for using VALUE clause in, 7-49 
Report Writer 

defining value of printable items, 7-46 
detail report-groups, 12-17, 12-19 
ending with TERMINATE statement, 

12-32 
establishing control breaks with 

CONTROL clause, 12-5 
file description for, 7-3 
FILE SECTION, 12-1 
LINE-COUNTER register, 2:""9, 12-30 
linking with GENERATE statement, 

12-30 
naming reports with REPORT clause of 

FILE SECTION, 12-2 
overview, 12-1 
PAGE clause 

defining page length, footing, heading, 
12-7 

regions established (table), 12-10 
PAGE-COUNTER register, 2-10,12-11, 

12-30 
permissible combinations of RD entries 

(table), 12-27 
printing backup files with PB statement, 

12-5 
producing reports simultaneously with 

CODE clause, 12-3 
program sample, 12-33 
REPORT SECTION, 12-2 
report-group descriptions, 12-12 

COLUMN NUMBER clause, 12-23 
GROUP INDICATE clause, 12-24 
LINE NUMBER clause, 12-14 
NEXT GROUP clause, 12-15 

Index-31 



Index 

SOURCE clause, 12-25 
SUM clause, 12-25 
TYPE clause, 12-16 
USAGE clause, 12-18, 12-21, 12-26 
VALUE clause, 12-26 

starting with INITIATE statement, 12-29 
sum counter, 12-27 
titling backup printer file with 

BDREPORT clause, 12-4 
using DECLARATIVES SECTION, 12-33 

report-description (RD) entry, in Report 
Writer, 12-2, 12-12 

report-name, as user-defined word, 2-14 
reports, producing, (See LINAGE clause, 

Report Writer) 
RERUN clause, in I-O-CONTROL paragraph, 

5-25 
rerun points 

establishing, 5-25 
in sequential I/O, 3-5 

RESERVE clause 
in SELECT clause, 5-13 
in SPECIAL-NAMES paragraph, 5-10 
indexed I/O, 5-22 
relative I/O, 5-18 
sequential I/O, 5-15 

RESERVE phrase, 5-10 
reserved words 

application-specific, B-6 
context-sensitive, B-6 
definition, 2-4 
for arithmetic operators, 2-10 
in format notation, A-2 
lists of, B-1 

RESET ON phrase, in SUM clause, 12-25 
RESET option action indicator, 17-11 
RESET phrase 

in CAUSE statement, 9-19 
in Report Writer, 12-22 
in WAIT statement, 9-158 

RESET statement, function and syntax, 
9-102 

RESPOND ·statement 
examples, 9-105 
function and syntax, 9-102 

RESPONSE-TYPE phrase, in RESPOND 
statement, 9-103 

resultant identifiers, 8-25 
retain file disposition for sequential I/O, 9-29 
RETURN statement 

function and syntax, 9-106 
when merging files, 9-67 

Index-32 

REVERSED phrase, in OPEN statement, 
9-75,9-76,9-77 

rewind reel disposition, 9-29 
REWRITE statement 

function and syntax, 9-108 
open modes, 9-79 
when status values are updated 

for indexed 1/0,5-31 
for relative I/O, 5-30 
for sequential I/O, 5-27 

RF phrase, (See REPORT FOOTING 
phrase, in Report Writer) 

RH phrase, (See REPORT HEADING 
phrase, in Report Writer) 

ROUNDED phrase 
in ADD statement, 9-3 
in COMPUTE statement, 9-34 
in DIVIDE statement, 9-45 
in MULTIPLY statement, 9-74 
in SUBTRACT statement, 9-136 
overview, 8-25 

routine-name, as user-defined word, 2-14 
routing messages, (See message control 

system (MCS)) 
rules 

for arithmetic expressions, 8-7 
for condition evaluation, 8-24 
for statement formats, 8-26 

RUN statement, 8-1 
function and syntax, 9-110 
relationship to PROCEDURE DIVISION 

parameters, 8-1 
with DETACH statement, 9-41 

run time 
naming called program, 9-13 
specifying logical-record length, 7-8 

run unit 

s 

definition, 17-38 
ending, 13-7 

S, edit character in PICTURE clause, 6-17 
using SIGN clause with, 7-37 

SAME clause, 5-26 
SAME RECORD AREA clause, in 

I-O-CONTROL paragraph, 5-25 
sample program, (See example program for) 
save file disposition 

relative and indexed I/O, 9-30 
sequential I/O, 9-29 

8600 0296-000 



save file with remove disposition 
relative and indexed files, 9-31 . 
sequential I/O, 9-29 

SAVE FOR REMOVAL phrase, in CLOSE 
statement 

for multiple-reel tapes, 9-27 
for single-reel files, 9-25 

SAVE phrase 
in CLOSE statement 

for nonreel files, 9-24 
for relative or indexed I/O, 9-30 

in MERGE statement, 9-66, 9-68 
in. SORT statement, 9-126, 9-127 

save unit disposition, with CLOSE statement, 
9-29 

scaling position character, when editing, 6-16 
Screen Design Facility (SDF), vi 
Screen Design Facility Plus (SDF Plus), vi 
SD, (See sort merge description (SD) entry) 
SDF (Screen Design Facility (SDF», vi 
SDF Plus (Screen Design Facility Plus), vi 
SEARCH ALL statement, 9-1.15 
SEARCH statement 

as conditional expression, 8-13 
nons erial search operation, 9-115 
SEARCH ALL statement (binary search), 

9-115 
serial search operation, with two WHEN 

phrases, 9-113 
syntax, 9-111 
with undigit literals, 2-17 
with USAGE clause, 7-45 

section headers, location in source program, 
1-6 

section-name 
as user-defined word, 2-14 
in qualification, 6-9 

sections, 8-2 
overview, 1-2 

SECURITY paragraph, 4-1 
SEEK statement 

current-record pointer, 3-6 
syntax, 9-116 
when status values are updated 

for sequential I/O, 5-27 
SEGMENT phi-ase, in RECEIVE statement, 

14-23, 14-24 
segment size, changing with CODE 

SEGMENT-LIMIT clause, 5-4 
SEGMENT-LIMIT clause 

in OBJECT-COMPUTER paragraph, 5-3 
reasons for ignoring, 10-2 

8600 0296-000 

segment-number 
as user-defined word, 2-14 
uniqueness of, 2-12 

segmentation module, 10-1 
CALL statement with, 13-5 

SELECT clause, 5-13 
for indexed I/O, 5-21 
for relative I/O, 5-17 

Index 

for sequential I/O, 5-14, 5-17, 5-21 
Semantic Information Manager (SIM), vi 
semicolon 

as separator, 2-2 
in COpy statement, 9-39 
in format notation, A-2 

SEND statement 
and SPECIAL-NAMES paragraph, 5-7 
in communication module, 14-1, 14-25 

with integer value, 14-3 
sending messages, (See message control 

system (MCS» 
sentences 

definition, 1-4, 8-3 
types of 

compiler-directing, 8-5 
conditional, 8-4 
imperative, 8-5 

SEPARATE CHARACTER clause 
in data-description entry, 7-18 
in SPECIAL-NAMES paragraph, 5-7 

separate compilation 
changed records, 17-6 
host file creation, 17-5 
restrictions, 17-6 

separator 
definition, 2-2 
in COPY statement, 9-37 
in PICTURE character string, 2-3 

SEPCOMP compiler control option, 17-35 
SEQ or SEQUENCE compiler control option, 

17-36 
SEQCHECK compiler control option, 17-35 
sequence area, in source program, 1-6 
Sequence Base compiler control option, 17-37 
SEQUENCE clause, in OBJECT-

COMPUTER paragraph, 
5-3 

Sequence Error condition, 5-32 
Sequence Increment compiler control option, 

17-37 
sequence number 

checking of 

Index-33 



Index 

with SEQCHECK compiler control 
option, 17-35 

with TADS, 17-41 
in source program, 1-6 

sequential file access, open modes, 9-79 
sequential file organization 

At End condition, reading, 9-94 
concepts, 3-5 
declaring, 5-13 
file access with ACCESS MODE clause, 

5-15 
formats for writing records, 9-161 
writing records with, 9-165 

sequential I/O, 3~5 
close-file actions, 9-28 
current-record pointer, 3-6 
I/O status, 5-27 
of the FILE-CONTROL paragraph, 5-13 
open modes, 9-79 
when opening a file, 9-75 
with CLOSE s~atement, 9-23 

serial search operation, with SEARCH 
statement, 9-112 

SET option action indicator, 17-11 
SET statement, 9-116 

validity of operands (table), 9-118 
with PERFORM statement, 9-89 
with SEARCH statement, 9-116 
with USAGE clause, 7-45 

sets of elementary items, 6-2 
SHARING compiler control option, 17-38 

effect on library availability, 15-14 
effect on library state, 15-9 
in libraries, 15-5 

sharing memory areas, in sequential I/O, 3-5 
Short Block condition 

for indexed I/O, 5-32 
for relative I/O, 5-30 
for sequential I/O, 5-29 

SHORT-DATE type, 16-16 
sign, 7-37 

and PICTURE clause, 7-30 
changing, in arithmetic expressions, 8-6 
conditional expression, 8-19 
control symbols for editing, 6-18 
defining position of, 5-10 
editing symbol, 6-17 
precedence of in conditions, 8-24 
when moving data, 9-70 
with fixed insertion editing, 6-20 
with floating insertion editing, 6-21 
with SYNCHRONIZED clause, 7-39 

Index-34 

with USAGE IS INDEX clause, 7-45 
SIGN clause, 7-37, (See also sign) 
SIM (Semantic Information Manager), vi 
simple conditions, 8-14 

class, 8-18 
combining, 8-20 
comparing numeric operands, 8-17 
condition-name, 8-19 
event-identifier, 8-20 
negated, 8-21 
relation, 8-14 
sign, 8-19 

simple insertion editing, (See editing) 
single-precision numeric format 

CALL statement parameters, 9-15 
floating-point literals, 2-16 
of REAL data item, 7-44 
partial words, 9-72, 9-111 
with USAGE IS REAL clause, 7-44 

single-reel tape file, 9-24 
size considerations 

in comparing relation conditions, 8-17 
of elementary items, 7-31 

SIZE ERROR phrase 
in SUBTRACT statement, 9-136 
overview, 8-25 

size-error determination 
overview, 8-25 
with USAGE IS BINARY TRUNCATED 

clause, 7-43 
SL (Support Library) command role in 

linking libraries, 15-17 
slash (/) character 

for editing in PICTURE clause, 6-18 
for page ejection, 1-10 

sort merge description (SD) entry 
location in source program, 1-6 
records in, 7-6 
syntax, 7-5 

SORT phrase, in SELECT clause, 5-24 
SORT statement, 5-7, (See also sorting 

files) 
automatically moving records to first file, 

9-126 
automatically writing records to new file, 

9-127 
closing, 9-27 
in localized application, 16-17 
inputprocedures,9-125 
output procedures, 9-126 
placement in program, 9-122 
rules for keys, 9-124 

8600 0296-000 



sorting on keys, 9-123 
syntax, 9-121 
when equating file attributes, 7-11 
with RELEASE statement, 9-101 

sorting files, 5-3, (See also SORT 
statement) 

assigning collating sequence, 5-4 
defining collating sequence,. 5-7 
effect of coded character set, 16-9 
identifying in FILE-CONTROL paragraph, 

5-24 
RELEASE and RETURN statement 

restrictions, 9-85 
specifying memory size or disk size, 5-3 
using RETURN statement to obtain 

records, 9-106 
work areas for, 9-123 

SOURCE clause 
in communication-description (CD) entry, 

14-7 
in Report Writer, 12-22, 12-25 

SOURCE file, used by compiler, 17-14 
. source files, 17-12 
source listing, page ejection of, 1-10 
source program 

area A of, 1-6 
area B of, 1-6 
format of, 1-5 
overview, 1-1 
producing a listing, 17-27 
sequence number area of, 1-6 

source record, 9-168 
SOURCE-COMPUTER paragraph, 5-2 

using WITH DEBUGGING MODE clause 
with, 11-2 

space 
as separator, 2-2 
in coding, 2-2 
in format notation, A-2 

SPACE figurative constants, 2-6, (See also 
figurative constants) 

space-fill 
editing symbol for, 6-18 
in JUSTIFIED clause, 7-22 
when aligning data, 6-10 
when moving data, 9-70 

SPACES figurative constants, 2-6, (See also 
figurative constants) 

spacing 
editing symbol for, 6-16 
of logical pages, during printing, 7-14 

SPEC compiler control option, 17-39 

8600 0296-000 

Index 

special characters, in format notation, A-2 
special insertion editing, (See editing) 
special registers 

in ACCEPT statement, 9-2 
overview, 2-8 
used by Report Writer, 12-11, 12-30 

special-character words 
definition, 2-10 
overview, 2-10 

SPECIAL-NAMES paragraph 
for naming called program, 9-13 
overview, 5-5 

. with ACCEPT statement, 9-1 
with DISPLAY statement, 9-44 

spooling, (See backup files) 
stack 

for dependent processes, 9-92 
OWN variables on, 7-28 
using RECEIVED clause with, 7-34 

STACK OVERFLOW fault, 9-85 
STACK SIZE clause, in OBJECT

COMPUTER paragraph, 
5-3 

STACK SIZE option, 5-4 
standard alignment rules, 6-9 
standard data format 

editing considerations, 7-30 
for alphabetic data items, 7-30 
for alphanumeric data items, 7-30 
size considerations, 7-31 
USAGE IS DISPLAY phrase with, 7-44 

STANDARD-1 clause, in SPECIAL-NAMES 
paragraph, 5-7 

START statement, 9-130 
current-record pointer, 3-6 
open modes, 9-79 . 
when status values are updated 

for indexed I/O, 5-31 
for relative I/O, 5-30 

statements 
definition, 1-5, 8-3 
formats of, 8-26 
status of execution 

for indexed files, 5-24 
for relative files, 5-19 
for sequential files, 5-16 

types of 
compiler-directing, 8-5 
conditional, 8-4 
. imperative, 8-5 

station device, 5-15, (See also remote files) 
accessing as RE¥OTE file, 3-2 

Index-35 



Index 

STATIONLIST file or task attribute, 9-21 
STATISTICS compiler control option, 17-39 
STATUS clause, (See FILE STATUS 

clause) 
status condition, in communication module, 

14-11 
STATUS KEY clause 

in communication-description (CD) entry, 
14-13 

STATUS KEY clause, in communication
description (CD) entry, 
14-7 

status key 1 
for indexed I/O, 5-31 
for relative I/O, 5-30 
for sequential I/O, 5-27 

status key 2 
for indexed I/O, 5-32 
for relative I/O, 5-30 
for sequential I/O, 5-27 

STATUS. phrase, in SELECT clause, 5-13 
status reporting, 5-16 

exception handling with USE statement, 
9-152 

for AWAIT-OPEN statement, 9-10 
for indexed I/O 

role of operating system in, 5-24 
status key values, 5-31, 5-32 

for OPEN statement, 9-83 
for relative I/O 

role of operating system in, 5-19 
status key values, 5-30 

for RESPOND statement, 9-105 
for sequential I/O, 5-27 

role of operating system in, 5-16 
status key values, 5-27 
when closing a file, 9-33, 9-105 

when closing a file, 9-34 
when deleting a record, 9-41 
when writing to a file, 9-160 
with START statement, 9-130,9-131 

STATUS task attribute, 9-41 
STOP literal statement 

as part ofIPC run-unit, 9-132 
syntax, 9-132 

STOP RUN statement 
actions taken by, 9-132 
execution of 

in called program, 9-13 
in library program, 15-4 

STOP statement 

Index-36 

in Inter-Program Communication (IPC), 
13-7 

syntax,9-132 
with undigit literals, 2-18 

STRING phrase, for calling libraries, 15-6 
STRING statement 

syntax, 9-133 
with undigit literals, 2-18 

SUB-QUEUE-1 phrase, in communication
description (CD) entry, 
14-7 

SUB-QUEUE-2 phrase, in communication
description (CD) entry, 
14-7 

SUB-QUEUE-3 phrase, in communication
description (CD) entry, 
14-7 

subfiles 
definition, 3-2 
index, 3-3 

subject of condition, 8-15 
subscripts, 6-12 

in conditional expressions, 8-14 
SUBTRACT statement, 9-136, (See also 

subtraction) 
SIZE ERROR and CORRESPONDING 

phrases, 8-26 
storing results in multiple fields, 8-27 

subtraction, 2-10 
arithmetic symbol for, 8-6 
reserved word for, 2-10 

Successful Completion condition, 5-27 
for indexed I/O, 5-32 
for relative I/O, 5-30 
for sequential I/O, 5-27 

SUM clause, in Report Writer, 12-22, 12-25 
sum counter, 12-27 
SUMMARY compiler control option, 17-40 
suspending a program 

with STOP statement, 9-132 
with WAIT statement, 9-158 

SW1 through SW8 external switches, 5-7 
SYMBOLIC clause, in communication

description (CD) entry, 
14-7 

SYMBOLIC DESTINATION clause, 14-12, 
14-13 

Symbolic ID compilerceontrol option, 17-40 
SYNC clause, (See SYNCHRONIZED 

clause) 
SYNCHRONIZED clause 

data-description entry, 7-18 

8600 0296-000 



definition, 7-38 
synchronized output 

in REWRITE statement, 9-108 
in WRITE statement, 9-163 
WRITE statement, 9-164 

synchronous processes 
task-attribute identifiers in, 3-6 
with CONTINUE statement, 9-35 

syntax diagrams, (See format notation) 
system calls, 9-18 
system collating sequence, designating, 16-16 
system commands 

AX (accept), 9-159 
OF (optional file), 9-30 
RM (remove), 9-30 
f?L (support library), 15-17 

system date 
formatting by convention, 16-78 
formatting by template and language, 

16-75 
moving to data item, 16-17 

system default ccsversion, 16-5 
system options, AUTORM (autoremove), 

9-29 
system time 

formatting by convention, 16-78 
formatting by template and language, 

16-75 
moving to data item, 16-17 

system-name, as user-defined word, 2-12 
SYSTEM/CCSFILE, 16-4 
SYSTEM/INTERACTIVEXREF utility, 17-3 
SYSTEM/XREF ANALYZER utility 

T 

failure of; 17-4 
role of, 17-3 
starting, 17-31 

tables, vii, 6-10, (See also OCCURS clause) 
abnormal termination, 7-27 
accessing, 6-12 
concepts, vii 
defining size of, 7-25 
defining with OCCURS clause, 7-24 
errors, 6-13 
establishing index points for table 

handling,9-116 
. global arrays, 7-21 

in ascending key order, 7-26, 7-27 
in descending key order, 7-26, 7-27 

8600 0296-000 

indexing 
by name, 6-14 
by relative number, 6-14 
by subscript, 6-14 

one-dimensional (example), 6-11 

Index 

rules for using VALUE clause in, 7-48 
searching with SEARCH statement, 9-111 
sub~pting,6-12 

three-dimensional (example), 6-12 
using RECEIVED clause with, 7-34 
using REDEFINES clause with, 7-35 
using task attributes with, 3-7 
with RENAMES clause, 7-50 
with SYNCHRONIZED clause, 7-39 
with USAGE IS EVENT clause, 7-41 

TADS (Test and Debug System), 17-40 
TADS compiler control option, 17-40 
TAG-KEY phrase, in SORT statement, 9-122 
TAG-SEARCH phrase, in SORT statement, 

9-122 
TALLYING phrase 

in INSPECT statement, 9-53 
in UNSTRING statement 

execution of, 9-142, 9-145 
function of, 9-148 
syntax, 9-140 

tallying, rules for, 9-54 
tape devices, in closing sequential files, 9-28, 

9-29 
tape files 

closing 
multiple reels, 9-26 
single reel, 9-24 

for sorting or merging, 5-24 
with a single reel, 9-24 
with more than one file on a reel, 5-26 
with sequential file organization, 5-13 
with variable-length records, 7-8 

TARGET compiler control option, 17-42 
target record, 9-168 
task attributes ' 

as event-identifiers for CAUSE statement, 
9-19 

identifiers, 3-6 
interrogating,3-8 
mnemonic, 3-8 
modifying 

with CHANGE statement, 9-20 
with SET statement, 9-116 

name of 
EVENT, 3-8 
OPTION, 3-9, 11-1 

Index-37 



Index 

POINTER, 3-8 
STATIONLIST, 9-21 
STATUS, 9-41 
TASK, 3-8 

setting switches SW1 through SW8, 5-7 
testing, 8-20 

TASK data item, referring to, 7-43 
task item, dissociating a procedure from, 9-41 
TASK phrase 

in data-description entry, 7-18 
in USAGE clause, 7-42 

TASK task attribute, 3-8 
task-attribute identifiers, 3-6 

MYSELF and MYJOB, 3-7 
tasking 

calls 
for parameter mapping, 9-14 
with EXIT PROGRAM statement, 9-50 

concepts, 3-1 
naming identifiers received as parameters 

in,8-1 
tasks 

asynchronous, starting independently, . 
9-110 

CALL statement, for transferring control 
to,9-12 

critical block exit, 9-92 
dependent, passing control to, 9-49 
DETACH statement, for ending of, 9-41 
identifying a program to be used as, 9-152 
parameter passing in, 7-23 
starting, 9-92 
USAGE clause with, 7-43 

TCP lIP (Transmission Control 
Protocol/Intemet Protocol), 9-164 

template 
date, 16-50 
for creating convention, 16-11 
for formatting time 

creating, 16-56 
format 

obtaining from convention, 16-81 
TEMPORARY compiler control optio~ 17-43 
temporary libraries, 15-15 
temporary libraries,initial state of, 15-9 
terminal device, accessing as REMOTE file, 

3-2 
TERMINATE statement, in Report Writer, 

12-32 
termination, normal, 9-132 
Test and Debug System (TADS), generating 

code for, 17-40 . 

Index:"'38 

text 
comparing in localized applications, 16-98 
comparison of, 16-7 
modifying with mapping table, 16-113 
rearranging by ccsversion escapement 

rules, 16-102 
searching for characters specified by 

truthset, 16-109 
TEXT LENGTH clause, in communication

description (CD) entry, 14-7, 
14-13 

text-name 
as user-defined word, 2-14 
in COPY statement, 9-37 
qualification of, 6-7 

THEN phrase, with IF statement, 9-52 
THROUGH phrase 

in alphabet-name clause, 5-9 
in VALUE clause, 7-52 

time . 
formatting by convention and language, 

16-58 
formatting by template, 16-56 
international formatting, 16-12 
numeric, display model, 16-47 
system-provided 

formatting by convention, 16-78 
formatting by template and language, 

16-75 
TIME special register, 2-10 

in ACCEPT FROM statement, 9-2 
timeout condition 

for indexed I/O, 5-32 
Timeout condition 

for relative I/O, 5-31 
for sequential I/O, 5-29 

TIMER special register, 2-10 
in ACCEPT FROM statement, 9-2 

TOD~YS-DATE special register, 2-10 
in ACCEPT FROM statement, 9-2 

TODAYS-NAME special register, 2-10 
in ACCEPT FROM statement, 9-2 

TOP margin 
in file-description (FD) entry, 7-14 
in LINAGE clause, 7-14 

TPS (Transaction Processing System), vi 
transaction functions in DCILmRARy, 14-1 
Transaction Processing System (TPS), vi 
translating data from one coded character set 

to another, 16-31 
translation tables, 5-8 
transliteration table, 16-6 

8600 0296-000 



Transmission Control Protocol/Internet 
Protocol (TCP/IP), 9-164 

transmission errors for sequential I/O, 5-27 
transmission indicator schedule, 14-28 
TRUNCATED phrase 

in data-description entry, 7-18 
in USAGE clause, 7-42 

truncation 
in arithmetic statements, 8-26 
in division, 9-47 
in JUSTIFIED clause, 7-22 
in ROUNDED phrase, 8-25 
in START statement, 9-131 
in SYNCHRONIZED clause, 7-39 
in USAGE IS BINARY TRUNCATED 

clause, 7-43 
of parameters passed in RUN statement, 

9-111 
rules with VALUE clause, 7-47 
when aligning data, 6-9 
when moving data, 9-69 
with exponentiation, 8-7 
with floating insertion editing, 6-22 

truth test, 8-19 
truthset,l6-6 

alphabetic, 16-17 
use in text searches, 16-109 

TYPE clause, 7-39 
in Report Writer, 12-13, 12-16 

type values for CENTRALSUPPORT library 
parameters, 16-28 

u· 
undigit literals, (See literals) 
unexpected I/O error 

for sequential I/O, 5-29 
Unexpected I/O error 

for indexed I/O, 5-32 
for relative I/O, 5-31 

UNIT phrase, in CLOSE statement, 9-26 
UNLOCK statement, 9-139 
UNSTRING statement, 9-139 

before and after (examples), 9-146 
causes ofoverftow condition, 9-143, 9-146 
coding of (example), 9-149 
transferring data with, 9-143, 9-145 
with undigit literals, 2-18 

UP BY phrase 
in CHANGE statement, 9-21 
in SET statement, 9-118, 9-119 

86000296--000 

UPON phrase 
in DISPLAY statement, 9-43 
in SUM clause, 12-25 

Index 

URGENT phrase, in WRITE statement, 
9-163 

USAGE clause 
formatting of data item with, 7-41 
in relation conditions, 8-14 
in Report Writer, 12-18, 12-21, 12-26 
with CORRESPONDING phrase, 8-26 
with variable-length records, 7-8 

USAGE EVENT event-identifier, 3-8 
USAGE IS DISPLAY phrase 

character code set for, 5-8 
for standard data format, 7-44 
in Report Writer, 12-13 
searching and replacing group items, 9-54, 

9-55,9-57 
using extended functions with, 8-9 
using S edit character with, 6-17 
using SIGN clause with, 7-37 
using UNSTRING statement with, 9-141, 

9-144 
using with STRING statement, 9-134 
with CODE-SET clause, 7-16 

USE AS INTERRUPT PROCEDURE 
statement, 9-157 

USE BEFORE REPORTING statement, 
12-33 

USE EXTERNAL statement 
for calling program at run time, 9-13 

USE FOR DEBUGGING statement 
in debug module, 11-2 
with OPTIMIZE compiler control option, 

17-33 
USE statement 

as compiler-directing verb, 8-5 
syntax, 9-152 
using ATTACH statement with, 9-7 
using DETACH statement with, 9-41 

. using in Report Writer, 12-32 
with AFTER phrase, 9-152 

USER clause, 7-17 
USER compiler control option, 17-44 
user program in libraries, 15-1 
user-defined words, 2-12 

alphabet-name, 2-12 
CD-name, 2-12 
condition-name, 2-12 
data-name, 2-12 
family-name, 2~12 
file-name, 2-12 

Index-39 



Index 

index-name, 2-12 
level-number, 2-12 
library-name, 2-12 
mnemonic-name, 2-12, 2-13 
paragraph-name, 2-13, 2-14 
program-name, 2-14 
qualification of, 6-7 
record-name, 2-14 
report-name, 2-14 
routine-name, 2-14 
section-name, 2-14 
segment-name, 2-14 
system-names, 2-12 
text-name, 2-14 

USING phrase 

v 

in CALL statement, 9-14 
with task identifier, 9-13 

in libraries, 15-1 
in SORT statement, 9-126 

V, edit character in PICTURE clause, 6-17 
VAclause, (See VALUE clause) 
V ALIDATE_NAME_ RETURN ~ NUM 

procedure, 16-93 
V ALIDATE_NUM_RETURN _NAME 

procedure, 16-95 
VALUE clause, 7-46 

in CHANGE statement, 9-21, 9-22 
in data-description entry, 7-18 
in file-description (FD) entry, 7-4 
in Report Writer, 12-22, 12-26 
in SET statement, 9-120 
rules with condition-name, 7-52 
with undigit literals, 2-17 

value compiler control options, 17-8 
VALUE OF clause 

coding of (example), 7-12 
in file description (FD) entry, 7-10 
in sort merge description (SD) entry, 7-10 

variable-length records 
errors 

with indexed I/O, 5-32 
with relative 110, 5-30 
with sequential I/O, 5-29 

grouped into one physical record., 7-6 
rules for, 7--8 

variables 
. allocation by compiler, method of 

investigation, 17-29 

Index-40 

declared as type OWN, 7-28 
global, 7-21 
in arithmetic expressions, 8-8 
10c8l, 7-23 

VARYING phrase 
in PERFORM statement 

with one condition, 9-88 
with two conditions, 9-84 
with UNTIL phrase, 9-87 

in SEARCH statement, 9-111 
vectors, (See tables) 
verbs 

as keywords, 2-8 
compiler-directing, 8-5 
imperative, 8-5 

VERSION clause, 7-17 
VOID compiler control option, 17-44 
volume-id, 5-26 
VSNCOMP ARE_TEXT procedure, 16-98 
VSNESCAPEMENT procedure, 16-102 
VSNGETORDERINGFOR_ONE_TEXT 

procedure,16-105 
VSNINSPECT _TEXT procedure, 16-7, 

16-109 
VSNTRANS_TEXT procedure, 16-6, 16-113 

w 
WAIT phrase 

in AWAIT-OPEN statement, 9-9 
in CLOSE statement, 9-31 
in OPEN statement, 9-81 

WAIT statement 
syntax, 9-157 
with CAUSE statement, 9-19 

W ARNF AT AL compiler control option, 17-45 
warning messages 

in libraries, 15-11 
suppressing printing of, 17-39, 17-45 
treating like syntax errors, 17-45 

W ARNSUPR compiler control option, 17-45 
WFL, (See Work Flow Language (WFL» 
WHEN phrase, in SEARCH statement, 9-111 
WITH DEBUGGING MODE phrase 

as compile-time switch in debug module, 
.11-1 

in SOURCE-COMPUTER paragraph, 5-2 
WITH FOOTING phrase, in file-description 

(FD) entry, 7-14 . 
WITH NO WAIT phrase 

in OPEN statement, 9-9, 9-76, 9-77 

8600 0296-000 



in READ statement, 9-94 
in WRITE statement, 9-163 

WITH POINTER phrase 
in STRING statement, 9-133 
in UNSTRING statement, 9-140 

WITH URGENT phrase, in WRITE 
statement, 9-163 

word boundaries 
for real and double data items, 7-44 
with binary data items, 7-42 
with SYNCHRONIZED clause, 7~39 

words 
allowed use in program, 2-4 
in character string, 2-3 
lowercase, A-2 
maximum length of, 2-4 
optional, A-2 
required, A-2 
reserved, 2-4, B-1 
underlined, A-2 
uppercase, A-2 
user-defined, 2-12 

work areas, for sorting, 9-123 
Work Flow Language (WFL) 

calling program from, 7-35 
family assignment effect on library linking, 

15-17 
parameters (table), 9-16 
printing backup disk files with, 12-4 
setting external switches with, 5-7 
starting compilation from, 17-14 
with CALL SYSTEM statement, 9-18 

working-storage 
data, 7-1 
defining initial values, 7-46 
noncontiguous, 7-53 
rules for using VALUE clause in, 7-49 

WORKING-STORAGE SECTION 
coding of (example), 7-54 
description of data in, 7-53 
overview, 7-1 

WRITE DELIMITED statement, 9-167 
WRITE FORM statement, 9-160 
WRITE statement 

and SPECIAL-NAMES paragraph, 5-7 
Broadcast Write error, 5-29 
defining logical page size of, 7-14 
effect of seeking, 9-116 
in closing sequential files, 9-28 
open modes, 9-79 
syntax, 9-160 
when status values are updated 

8600 0296-000 

for indexed I/O, 5-31 
for relative I/O, 5-30 
for sequential I/O, 5-27 

with indexed 1/0,9-166 
with port files, 3-2 
with relative I/O, 9-165 
with sequential file access, 3-5 
with sequential I/O, 9-165 
writing a file, 7-14 
writing a record, 5-27 

Index 

writing a file, (See WRITE statement) 
writing a record, (See WRITE statement) 

x 
X, edit character in PICTURE clause, 6-17 
XDECS compiler control option, 17-45 
XREF compiler control option, 17-46 
XREFFILE file, used by compiler, 17-16 
XREFFILES compiler control option, 17-46 
XREFS compiler control option, 17-47 . 

z 
Z, edit character in PICTURE clause, 6-18 
zero (0), edit character in PICTURE clause, 

6-18 
ZERO figurative constants, 2-6, (See also 

figurative constants) 
ZERO keyword, 8-20 
zero value 

division by, 8-25 
in comparing numeric operands, 8-16 
returned by functions, 8-11 
truth test for, 8-20 

zero-fill 
when aligning data, 6-9 
when moving data, 9-70 

zero-suppression 
editing, (See editing) 
symbol (*) with BLANK WHEN ZERO 

clause, 7-29 
ZEROES figurative constants, 2-6, (See also 

figurative constants) 
ZEROS figurative constants, 2-6, (See also 

figurative constants) 
zone 

editing considerations for, 6-17 
maintaining sign in, 6-17, 7-38 

Index-41 



Index 

masking of with OPTIMIZE option, 17-33 

. (period),6-18 
* (asterisk), edit character in PICTURE 

clause, 6-18 
- (minus sign), 6-18 
/ (slash) character 

for editing in PICTURE clause, 6-18 
for page ejection, 1-10 

, (comma),6-18 
$ (dollar currency symbol) 

edit character in PICTURE clause, 6-19 

0, edit character in PICTURE clause, 6-18 
01-level-numbers,6-4, (See also 

level-number) 
for records, 6-3 
for redefining memory areas, 7-19 

66 level-numbers, 6-4, (See also 
level-number) 

record layout, 6-3 
redefining records with RENAMES clause, 

7-50 
syntax, 7-50 

77 level-numbers, 6-4, (See also 
level-number) 

record layout, 6-3 
stack operand, 7-21 
syntax, 7-53 

. 88 level-numbers, 6-4, (See also 
level-number) 

format of condition-name, 7-51 
record layout, 6-3 

9, edit character in PICTURE clause, 6-18 

Index-42 8600 0296-000 





I~II~ IIII~~III~III~ IIIII~IIIIIIII~IIII~ III~ III~IIIIIII 
86000296-000 


